Publications

  • Preface of Special Issue: On mesoscopic methods and their applications to CFD.
    M. M. Tekitek, Manfred Krafczyk, Li-Shi Luo.
    Discrete and Continuous Dynamical Systems - S, doi:10.3934/dcdss.2024184, 2024.  
  • Beyond linear analysis: Exploring stability of multiple-relaxation-time lattice Boltzmann method for nonlinear flows using decision trees and evolutionary algorithms.
    F. Dubois, C. Saint-Jean, M. M. Tekitek.
    Discrete and Continuous Dynamical Systems - S, doi:10.3934/dcdss.2024162, 2024.  
  • Lattice Boltzmann convection-diffusion model with non-constant advection velocity.
    J. Michelet, M. M. Tekitek, M. Berthier.
    Discrete and Continuous Dynamical Systems - S, doi:10.3934/dcdss.2023088, 2023.  
  • Multiple Relaxation Time Lattice Boltzmann schemes for advection-diffusion equations with application to radar image processing.
    J. Michelet, M. M. Tekitek, M. Berthier.
    Journal of Computational Physics, vol. 471, 111612, (2022).  
  • Wave-Leak Interaction in a Simple Pipe System.
    M. Louati, M. S. Ghidaoui, M. M. Tekitek, P. Jose Lee.
    Journal of Hydraulic Engineering , Vol. 146, 04020013, (2020).  
  • On anti bounce back boundary condition for lattice Boltzmann schemes.
    F. Dubois, P. Lallemand, M. M. Tekitek.
    Computers & Mathematics with Applications, vol. 79, p. 555-575, (2020).  
  • Multiple Relaxation Time Lattice Boltzmann Models for Multigrid Phase-Field Segmentation of Tumors in 3D Ultrasound Images.
    K.L. Nguyen, M. M. Tekitek, P. Delachartre, M. Berthier.
    SIAM Journal on Imaging Sciences, vol. 12, p. 1324-1346, (2019).  
  • On the dissipation mechanism of lattice Boltzmann method when modeling 1-d and 2-d water hammer flows.
    M. Louati, M. M. Tekitek, M. S. Ghidaoui.
    Computers & Fluids, Vol. 193, Art. 103996, (2019).  
  • Generalized bounce back boundary condition for the nine velocities two-dimensional lattice Boltzmann scheme.
    F. Dubois, P. Lallemand, M. M. Tekitek.
    Computers & Fluids, Vol. 193, Art. 103534, (2019).  
  • Unexpected convergence of lattice Boltzmann schemes.
    B. Boghosian, F. Dubois, B. Graille, P. Lallemand, M. M. Tekitek.
    Computers & Fluids, Vol. 172, pp. 301-311, (2018).  
  • Multiple relaxation time lattice Boltzmann simulation of 2D natural convection in a square cavity for high Rayleigh numbers.
    M.M. Tekitek.
    Advances in Applied Mathematics and Mechanics, doi: 10.4208/aamm.2015.m1357, (2018).  
  • Curious convergence properties of lattice Boltzmann schemes for diffusion with acoustic scaling.
    B. Boghosian, F. Dubois, B. Graille, P. Lallemand, M. M. Tekitek.
    Communications in Computational Physics, Vol. 23, pp. 1263-1278, doi:10.4208/cicp.OA-2016-0257, (2018).  
  • New Finite Volume Method for rotating channel flows involving boundary layers.
    S. Ben Chaabane, M. Hamouda, M. M. Tekitek.
    Numerische Mathematik, doi: 10.1007/s00211-016-0857-3, (2017).  
  • Lattice Boltzmann model approximated with finite difference expressions.
    F. Dubois, P. Lallemand, C. Obrecht, M. M. Tekitek.
    Computers & Fluids, vol. 155, pp. 3-8, (2017).  
  • Taylor expansion method for analyzing bounce-back boundary conditions for lattice Boltzmann method.
    F. Dubois, P. Lallemand, M. M. Tekitek.
    ESAIM: Proceeding and Surveys, 52, p. 25-46, (2015).  
  • Finite volume approximation of stiff problems on two-dimensional curvilinear domain.
    S. Faure, M. M. Tekitek, R. Temam.
    International Journal of Computer Mathematics, DOI:10.1080/00207160.2015.1075013, 07 (2015).  
  • Anisotropic Thermal Lattice Boltzmann simulation of 2D natural convection in a square cavity.
    F. Dubois, C.-A.Lin , M. M. Tekitek.
    Computers & Fluids, 124. DOI:10.1016/j.compfluid.2015.10.015, 11 (2015).  
  • Taylor Expansion Method for Linear Lattice Boltzmann Schemes with an External Force: Application to Boundary Conditions.
    F. Dubois, P. Lallemand, M. M. Tekitek.
    Lecture Notes in Computational Science and Engineering , vol. 99, pp: 89--107, (2014).  
  • On a superconvergent lattice Boltzmann boundary scheme.
    F. Dubois, P. Lallemand, M. M. Tekitek.
    Comput. Math. Appl., vol. 59, pp. 2141--2149, 2010.  
  • Towards Perfectly Matched Layer for Lattice Boltzmann Methods.
    M. M. Tekitek, M. Bouzidi , F. Dubois, P. Lallemand.
    Progress in Computational Fluid Dynamics ,vol. 58, pp. 903--913, (2009).  
  • Benchmark on anisotropic problems.
    F. Dubois, P. Lallemand, M. M. Tekitek.
    Finite volumes for complex applications 5, pp. 795--800, ISTE, London, Hermes Science Publishing, (2008).  
  • Using Lattice Boltzmann scheme for anisotropic diffusion problems.
    F. Dubois, P. Lallemand, M. M. Tekitek.
    Finite volumes for complex applications 5, pp. 351--358, ISTE, London, Hermes Science Publishing, (2008).  
  • On numerical reflected waves for lattice Boltzmann schemes
    M. M. Tekitek, M. Bouzidi , F. Dubois, P. Lallemand.
    Progress in Computational Fluid Dynamics ,1-4, 8, pp. 49-55, (2008).  
  • Adjoint Lattice Boltzmann Equation for Parameter Identification.
    M. M. Tekitek, M. Bouzidi , F. Dubois, P. Lallemand.
    Computers and Fluids, 8-9, 35, pp. 805-813, (2006).  
  • Boundary Conditions for Petrov-Galerkin Finite Volumes.
    S. Borel, F. Dubois, C. Le Potier, M. M. Tekitek.
    Finite volumes for complex applications 4, pp 305-3014, Hermes Science Publishing, Paris, (2005).