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Abstract

The lattice Boltzmann equation is briefly introduced using moments to clearly separate the propagation and collision steps in the
dynamics. In order to identify unknown parameters we introduce a cost function and adapt control theory to the lattice Boltzmann
equation to get expressions for the derivatives of the cost function vs. parameters. This leads to an equivalent of the adjoint method
with the definition of an adjoint lattice Boltzmann equation.

To verify the general expressions for the derivatives, we consider two elementary situations: a linearized Poiseuille flow to show
that the method can be used to optimize parameters, and a nonlinear situation in which a transverse shear wave is advected by a
mean uniform flow. We indicate in the conclusion how the method can be used for more realistic situations.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

In many situations involving fluid flows, one uses a
combination of experimental measurements and of
numerical simulations in order to obtain a good knowl-
edge of the flow. Experiments can provide accurate data
for some observable quantities (e.g., pressure or local
velocity) but may not provide other information.
Numerical techniques may be used to compute the miss-
ing information but only upon detailed knowledge of
parameters that may not be readily available (like the
viscosity or the boundary conditions). In order to
increase the use of a combination of high quality mea-
surements and refined models, the notion of optimal
model has been developed. The parameters of the
numerical model are chosen by minimizing the value
0045-7930/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
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of a cost function that compares the predictions of the
model to known experimental results.

This minimization can be simply obtained by a des-
cent method. Therefore it requires the determination
of the derivatives of the cost function with respect to
the unknown parameters. A general method to compute
those derivatives is provided by control theory and is
used in many circumstances. Here we adapt this general
method to the modeling of fluid flows by the lattice
Boltzmann equation (LBE).

We shall briefly recall the framework of moments
that allows a very clear distinction of the two steps of
LBE: propagation and collision. Then we adapt the der-
ivation of control theory to the case of a discrete model
in order to get the adjoint lattice Boltzmann model. We
apply the adjoint model to two simple situations (a
steady state and a time dependent case). In the first place
we consider the linear LBE and apply it to Poiseuille
flow in a two-dimensional periodic channel with a
uniform body-force. We then include the nonlinear
terms in LBE and show how this modifies the adjoint
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equation. As a simple application, we consider a trans-
verse shear wave advected by a uniform flow.
0
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Fig. 1. The velocities for the 9-bit lattice LBE model on a square
lattice.
2. Direct model for lattice Boltzmann equation

The lattice Boltzmann equation is a numerical
method based on kinetic theory to simulate various
hydrodynamic systems. It uses elements of several ori-
gins: the classical Boltzmann equation (see e.g. Ref.
[1]), the Broadwell models [2,3] with a small number
of velocities and more recently the lattice gas automata
[4]. In contrast to the continuous Boltzmann equation
that deals with distribution functions /(t, r,n), the
LBE method deals with a small number of functions
that can be interpreted as populations of fictitious ‘‘par-
ticles’’. The dynamics of these ‘‘particles’’ is such that
time, space and momentum are discretized. They move
at successive discrete times from nodes to nodes of a
regular lattice T ¼ frl; 1 6 l 6 Kg, composed by K

nodes so that momentum space n is discretized into a
small set of discrete velocities {ea ja = 0,1, . . . ,b}. The
unknown is the distribution fa = fa(rl, t) which is func-
tion of velocity ea at location rl and at time t. The lattice
Boltzmann equations are written as

faðrl þ ea; t þ 1Þ ¼ faðrl; tÞ þ Xaðf Þ; ð1Þ
The term Xa(f) models the collisions. Macroscopic quan-
tities are obtained by taking velocity moments of f as
follows:

qðrl; tÞ ¼
Xa¼b

a¼0

faðrl; tÞ; ð2Þ

quðrl; tÞ ¼
Xa¼b

a¼0

eafaðrl; tÞ; ð3Þ

eðrl; tÞ ¼
Xa¼b

a¼0

e2
afaðrl; tÞ; ð4Þ

where q is the density (mass), u is the velocity and e is
the energy. They will be used later.

From here, for the sake of simplicity we consider the
particular two-dimensional LBE model: the nine veloc-
ity model without thermal effects [7]. In this model,
K = NxNy and T ¼ frl � xi;j; i ¼ 1; 2; . . . ;N x; j ¼ 1; 2;
. . . ;N yg is a square lattice, and there are nine discrete
velocities (i.e., b = 8) shown in Fig. 1 and algebraically
given by

ea ¼

ð0; 0Þ; a ¼ 0;

cos ða� 1Þ p
2

� �
; sin ða� 1Þ p

2

� �� �
; a ¼ 1; . . . ; 4;

cos ð2a� 9Þ p
4

� �
; sin ð2a� 9Þ p

4

� �� �
; a ¼ 5; . . . ; 8.

8>><>>:
ð5Þ

Eq. (1) describes the evolution of the particle in a one
time increment. So in each increment there are two fun-
damental steps: advection and collision. Now we will
describe these two steps.

2.1. Advection step

In this step the ‘‘particles’’ move from a lattice node
xi,j to either itself (with the velocity e0 = 0), one of the
four nearest neighbors (with the velocity ea, a = 1,
. . . , 4), or one of the four next-nearest neighbors (with
the velocity ea, a = 5, . . . , 8). This step is exact and global
in space, since it is the solution to the transport equation
given by

of
ot
þ n � rf ¼ 0.

We will represent this step by the operator A defined by

A : Vf !Vf ;

F 7!AðFÞ;
ð6Þ

where Vf � R9�K and F ¼ ðfaðxi;j; tÞÞTð06a68;16i�Nx;16j6Ny Þ
is a vector in Vf . Boundary conditions are taken into
account through modification of the operator A. Here
we shall take either periodic boundary conditions on
the outer edges of the fluid domain or the simple
‘‘bounce-back’’ conditions on fluid-solid boundaries.

2.2. Collision step

This step consists in the redistribution of the distribu-
tion {fa} at each node xi,j, and it is modeled by the oper-
ator Xa(f) in (1). The lattice Boltzmann equation (1) can
be rewritten in vector form:

fðxi;j þ ea; t þ 1Þ ¼ fðxi;j; tÞ þXðfÞ; ð7Þ
where f = (f0, f1, . . . , f8)T and X(f) = (X0(f),X1(f), . . . ,

X8(f))T. We remark that F ¼ fðxi;j; tÞ
� �T

ð16i6Nx;16j6Ny Þ
2Vf .

Remark 2.1. If we take the discrete velocities,
{ea ja = 0,1, . . . , 8}, with corresponding distribution
functions, {fa ja = 0,1, . . . , 8}, then we can construct a
vector space V ¼ R9 based upon the discrete velocity
set. So f = (f0, f1, . . . , f8)T is a vector in V. The collision
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operator acts locally in space V. It will be expressed with
the help of the moments.

To describe this operator for each lattice node, we
can construct [5] a nine-dimensional vector space
M ¼ R9 based upon the different moments of {fa}. Such
that

M : V!M;

f 7!MðfÞ ¼M � f ¼ m;
ð8Þ

where the orthogonal matrix M is explicitly given by

M ¼

1 1 1 1 1 1 1 1 1

0 1 0 �1 0 1 �1 �1 1

0 0 1 0 �1 1 1 �1 �1

�4 �1 �1 �1 �1 2 2 2 2

4 �2 �2 �2 �2 1 1 1 1

0 �2 0 2 0 1 �1 �1 1

0 0 �2 0 2 1 1 �1 �1

0 1 �1 1 �1 0 0 0 0

0 0 0 0 0 1 �1 1 �1

0BBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCA
ð9Þ

and m = (q, jx, jy,e,�,qx,qy,pxx,pxy)T, where the physical
interpretation of the nine moments are respectively: den-
sity, x-momentum, y-momentum, energy, energy square,
x-heat flux, y-heat flux, diagonal stress and off-diagonal
stress. Thus, with the help of the linear transformation
M, we can describe the collision operator in moment
space M.

In the athermal model the only conserved quantities
are density q and linear momentum j = (jx, jy). For the
other quantities (non-conserved moments) [5], we
assume that they relax towards equilibrium values that
are nonlinear functions of the conserved quantities.
Due to symmetry arguments, the relaxation equations
are given by

e� ¼ e� s2 e� a2qþ c2ðj2
x þ j2

yÞ
� �h i

; ð10Þ

�� ¼ �� s3 �� a3qþ c4ðj2
x þ j2

yÞ
� �h i

; ð11Þ

q�x ¼ qx � s5 qx � c1jxð Þ½ �; ð12Þ

q�y ¼ qy � s5 qy � c1jy

� �� �
; ð13Þ

p�xx ¼ pxx � s8 pxx � c1ðj2
x � j2

yÞ
� �h i

; ð14Þ

p�xy ¼ pxy � s8 pxy � c3jxjy

� �� �
; ð15Þ

where the quantities with and without superscript * are
post-collision and pre-collision values, respectively.

Remark 2.2. The relaxation parameters si, i = 2,3,8 are
directly linked to the transport coefficients. For the
seven other adjustable parameters a2, a3, c1, c1, c2, c3, c4,
we will fix them as follows:
c1 ¼ c3 ¼ 1; c2 ¼ 3; c1 ¼ �1;

a2 ¼ �2; a3 ¼ 1 and c4 ¼ �3.
ð16Þ

This choice of the parameters c1, c2, c3, c1 yields Galilean
invariance and isotropy. The parameter a2 is linked to
the speed of sound. Two other parameters a3 and c4

are fixed to improve stability. See [7] for the complete
derivation of these properties. The relaxation rates s3

and s5 play no role in the hydrodynamic behaviour of
the model, however they are relevant for stability [7]
and for the accuracy of the boundary conditions [11,12].

Now we can contract the collision operator in
moment space, with the help of (10)–(15), as follows:

C : M!M;

m 7! m� ¼ CðmÞ.
ð17Þ

Thus, we have the collision operator in V, for an initial
distribution f, given byeXðfÞ ¼ f þXðfÞ ¼ M�1 � C M � fð Þ.
So, now we define the global collision operator C like
the advection operator by

C : Vf !Vf ;

F 7! CðFÞ;
ð18Þ

where CðFÞ ¼ eXðfÞðx1;1; tÞ; eXðfÞðx1;2; tÞ; . . . ; eXðfÞðxi;j;
�

tÞ; . . . ; eXðfÞðxNx;Ny ; tÞÞ
T.

2.3. Direct model

The net result of the advection and the collision steps
is that if Fini is the initial state of the system, it evolves
according to

F0 ¼Fini;

Fkþ1 ¼A 	 C Fk
� �

� U Fk
� �

; k 2 0; 1; . . . N � 1;

(
ð19Þ

where Fk is the discrete state for particle distribution in
space at time k. So Fk ¼ ðfaðxi;j; kÞÞTð06a68;16i6Nx;16j�Ny Þ.
We shall call Eq. (19) the direct model which has been
shown [6] to behave like the solutions of those of the
Navier–Stokes equations in situations where the flow
evolves sufficiently slowly in space and time.
3. Adjoint method for identifying parameters

In this section we are interested in identifying some
parameters of the lattice Boltzmann scheme, for instance
the relaxation parameters s5 and s8 by comparing the
predictions of the direct model to those derived from
some other technique (analytic or numerical solution
to the Navier–Stokes equations or from experiments).
So, we will use inverse modeling to estimate these
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parameters. This will be done using the adjoint method,
which is directly derived from the optimal control
theory [8].

3.1. General discrete theory for adjoint method

To introduce the method, let us consider a steady
state laminar Poiseuille flow, with kinematic velocity m,
between two plates parallel to Ox, separated by height
h, with periodic boundary condition along the flow
and a uniform body force (dp) to drive the flow. We
know an analytic solution at discrete time k

uðxi;j; kÞ ¼ uðxi;j; kÞ; vðxi;j; kÞ
� �

¼ hdp
2m

yj 1�
yj

h

� �
; 0

� 	
;

where xi;j ¼ ðxi; yjÞ for 1 6 i 6 N x; 1 6 j 6 Ny . ð20Þ

We consider the state of the LBE solution for a long en-
ough time so that it has reached steady state computed
for the same geometry as the analytic case but with un-
known relaxation coefficient k = (s5, s8). We note that we
neglect any space dependence of the density q. So that
we will identify from here velocity with momentum qu

evaluated by (3). Since we take q � 1.
We wish to estimate an optimal k in the sense that it

will correspond to the minimum of a cost function. We
define the cost-function J(k) in a ‘‘natural’’ way: it is the
mean-square difference between the velocity eukðk; xi;j; kÞ,euðk; xi;j; kÞ ¼ euðk; xi;j; kÞ;evðk; xi;j; kÞ

� �
; ð21Þ

at discrete time kdt, calculated by LBE (21) and the ex-
act velocity u which is the analytic solution (20). The
notation euðk; xi;j; kÞ corresponds to the fact that the dis-
crete LBE solution eu depends also on some parameters k
of the model.

We consider the following cost-function J(k), where
the first term (with coefficient a) deals with a vision of
the error at the final time and the second term (with
coefficient b) is a discrete time integration of the error.

JðkÞ ¼ a
2

XNx

i¼1

XNy

j¼1

jeuðk; xi;j;NÞ � uðxi;j;NÞj2

þ b
2

XN�1

k¼0

XNx

i¼1

XNy

j¼1

jeuðk; xi;j; kÞ � uðxi;j; kÞj2. ð22Þ

k = kdt (dt = 1) is the observation time, N = Ndt is the
time when the steady state is reached, k ¼ ðs5; s8Þ 2 R2,
and a, b are two real adjustable constants. In the cost-
function (22), the term associated with a is used when
we simulate a steady state problem. So for the first case
of the Poiseuille flow, it is obvious that the exact solu-
tion (20) is stationary (i.e., u(xi,j,k) = u(xi,j)). We will
take a = 1, b = 0 for the cost function. The term with
b is used for the unsteady simulation (e.g., see nonlinear
case). The discrete time N = Ndt (dt = 1) is the final time
where we evaluate the solution. So in this case we will
take a = 0, b = 1.

Now the assimilation process consists in minimizing
the cost-function J. We decide to use a gradient method:

knþ1 ¼ kn þ exrkJ nðkÞ; ex > 0.

So we need to estimate the gradient of the cost-function
$kJ(k). The adjoint method is used to evaluate the
gradient of the cost-function $kJ.

First, we rewrite the cost-function:

JðkÞ ¼ a
2
WðFN ;N ; kÞ þ b

2

XN�1

k¼0

WðFk; k; kÞ; ð23Þ

where Fk 2Vf is the solution to LBE and

WðFk; k; kÞ ¼
XNx

i¼1

XNy

j¼1

jeuðk; xi;j; kÞ � uðxi;j; kÞj2;

is the global error at time step k measured with least
squares.

Proposition 1. With the cost-function given by the rela-

tion (22) the gradient $kJ can be evaluated as follows:

rkJ ¼ �
XN�1

k¼0

Pkþ1 oU
ok
; ð24Þ

where Pk are a set of dual parameters, which are natu-

rally line vectors. The parameters Pk
� �T

belong to the

space Vf introduced in Section 2.1 and are determined

by the following backward lattice Boltzmann equation

called adjoint lattice Boltzmann equation (ALBE):

PN ¼�a
2

oW
oF

;

Pk ¼Pkþ1 oU
oF
� b

2

oW
oF

for k ¼ N � 1;N � 2; . . . ;1.

8><>:
ð25Þ

Remark 3.1. The Pk for k = N � 1,N � 2, . . . , 1
describe an inverse dynamics. So Pk is a vector defined
by ðpaðxi;j; kÞÞð06a68;16i6Nx;16j6Ny Þ where pa(xi,j,k) is the
‘‘dual distribution’’ function of velocity ea at location
xi,j and at discrete time k.

Proof. As Fk is the solution to the direct state (19), we
can see this dynamics as a constraint:

F0 ¼ 0;

Fkþ1 � U Fk
� �

¼ 0; k ¼ 0; 1; . . . N � 1.

(
ð26Þ

And now we can consider the constrained minimization
problem of finding the minimum of J given by (23)
under the constraint (26).

A classical way to do this is to give a Lagrangian
formulation of this problem. So we define a Lagrangian
as follows:
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L ¼ J þ
XN�1

k¼0

Pkþ1 � Fkþ1 � U Fk
� �� �

; ð27Þ

where the dot Æ denotes the scalar product in Vf , and
Pk 2Vf is a Lagrange multiplier related to the
constraint (26).

The differentiation of L, reads:

dL ¼ dJ þ
XN�1

k¼0

Pkþ1 dFkþ1 � oU
oF

dFk � oU
ok

dk

� 	
.

ð28Þ

We note here that the cost-function J does not depend
directly on k, so we have:

dJ ¼ a
2

oW
oF

dFN þ b
2

XN�1

k¼0

oW
oF

dFk. ð29Þ

With a discrete part integration we deduce that:XN�1

k¼0

Pkþ1 dFkþ1 � oU
oF

dFk

� 	
¼PN dFN �P1 oU

oF
dF0

þ
XN�1

k¼1

Pk �Pkþ1 oU
oF

� 	
dFk. ð30Þ

Now using (28)–(30), we find:

dL ¼ a
2

oW
oF

dFN þ b
2

Xk¼N�1

k¼1

oW
oF

dFk þPN dFN

�P1 oU
oF

dF0 þ
XN�1

k¼1

Pk �Pkþ1 oU
oF

� 	
dFk

�
XN�1

k¼0

Pkþ1 oU
ok

dk. ð31Þ

Since we do not change the initial condition of the direct
model (19), we choose

dF0 ¼ 0.

Due to (27), we notice that dL � dJ ¼ rkJ � dk when
constraint (26) holds. When we choose the adjoint
dynamics, i.e., Pk be equal to the solution to the back-
ward LB equation (25), we cancel all the terms in factor
of dFk in the expression (31) of dL, so that the expres-
sion (24) of $kJ is established. h

We proceed now to compute the adjoint state and the
gradient of J.

3.2. Adjoint lattice Boltzmann equation for linear case

Now, we describe the adjoint model (25), which
allows us to compute all the Pk. In a first case we con-
sider the steady state laminar Poiseuille flow which is
introduced in Section 3.1. This case is a natural way to
test this method, since laminar Poiseuille flow is also a
solution to the Stokes problem which is linear. So the
coefficients c1 = c2 = c3 = c4 = 0 and the direct algo-
rithm (19) is simpler (i.e., the operator U is linear). Since
we have a steady problem we choose a = 1 and b = 0. So
we have an adjoint dynamics Pk ¼ Pkþ1 oU

oF
, with initial

condition depending on error, where oU
oF

is a linear
operator defined by

oU
oF

: VH

f !VH

f ;

P 7!PAC ¼ ðCTATPTÞT.

ð32Þ

where VH

f is the dual space of linear space Vf . This oper-
ator (since the operator U ¼AC is linear in the direct
model) is composed of two fundamental steps:

• Transposed advection AT: which models the trans-
port with ‘‘backward’’ discrete velocity.

• Transposed collision CT: as in the direct model, this
operator is local in space.

So we also need to introduce the following nine ‘‘dual
moments’’ of p(xi,j,k) = (pa(xi,j,k))06a68 with the help of
the matrix M (9):

m ¼ ðm0;m1; . . . ;m8Þ ¼ p �M�1.

Since there are three conserved moments in the direct
model, there are also three conserved quantities in the
adjoint model given by

m0 þ 2m3 � m4 scalar invariant like mass q;

m1 þ m5;

m2 þ m6

 !
vector invariant like velocity.

The matrix of transposed collision C in the space of
moments satisfies:

CT¼

1 0 0 �2s2 s3 0 0 0 0

0 1 0 0 0 �s5 0 0 0

0 0 1 0 0 0 �s5 0 0

0 0 0 1� s2 0 0 0 0 0

0 0 0 0 1� s3 0 0 0 0

0 0 0 0 0 1� s5 0 0 0

0 0 0 0 0 0 1� s5 0 0

0 0 0 0 0 0 0 1� s8 0

0 0 0 0 0 0 0 0 1� s8

0BBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCA

.

The collision is defined by P � C ¼ P� where P ¼ ðpðxi;j;
kÞÞð16i6Nx ;16j6NyÞ 2VH

f , P� ¼ ðp�ðxi;j; kÞÞð16i6Nx;16j6Ny Þ

2VH

f , where p*(xi,j,k) = p(xi,j,k) Æ M�1 Æ C Æ M =

((M)T Æ CT Æ (M�1)T Æ (p(xi,j,k))T)T.



Table 1
Comparison of the proposed determination of gradient with a simple

finite difference quotient: relative error:
jJ 0df ðs8Þ�J 0

inv
ðs8Þj

J 0
inv
ðs8Þ for s8 = 0.3 and

optimal s8 = 0.8

� Relative error

10�2 4.89 · 10�3

10�3 4.84 · 10�5

10�4 4.83 · 10�7

10�5 3.85 · 10�9

10�6 9.44 · 10�10

10�7 9.19 · 10�10

10�8 1.30 · 10�9

10�9 3.20 · 10�9

10�10 4.56 · 10�8

10�11 1.00 · 10�7

10�12 3.63 · 10�6

10�13 1.99 · 10�5
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3.3. ALBE algorithm for the nonlinear case

When we model the Navier–Stokes equation, the
direct algorithm (19) is nonlinear. So ci 5 0,
i = 1,2,3,4, and the collision step is nonlinear. In this
case the adjoint algorithm (25) is still linear since
Pk ¼Pkþ1 oU

oF
, where oU

oF
is a linear operator. As in the

linear case oU
oF

is defined by (32) and it is composed of
two steps: transposed advection AT and transposed col-
lision CT. Only the transposed collision CT is different
from the linear case. To describe this step let us use
the superscript d for quantities related to the direct
problem and among them Vd(xi,j, t) the velocity field.
So the transposed matrix collision CT is expressed as
follows:

CT¼

1 0 0 �2s2 s3 0 0 0 0

0 1 0 2c1s2V d
x 2c3s3V d

x �s5 0 c3s8V d
y 2c1s8V d

x

0 0 1 2c1s2V d
y 2c3s3V d

y 0 �s5 c3s8V d
x �2c1s8V d

y

0 0 0 1� s2 0 0 0 0 0

0 0 0 0 1� s3 0 0 0 0

0 0 0 0 0 1� s5 0 0 0

0 0 0 0 0 0 1� s5 0 0

0 0 0 0 0 0 0 1� s8 0

0 0 0 0 0 0 0 0 1� s8

0BBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCA

.

Compared to the linear case, there are just a few addi-
tional off-diagonal terms and these terms can be com-
puted from the information in the stored F field of
the direct problem.
10�14 2.10 · 10�4

10�15 2.23 · 10�3

-14  -10  -7 - 4  -1
-4.87299

-4.8729

-4.8728

-4.8727

-4.8726

-4.87256

Ln(epsilon)

qu
ot

ie
nt

 o
f J

Fig. 2. Difference quotient of the cost function J vs. ln(�).
4. First numerical experiments for a Poiseuille flow

4.1. Case of a one scalar parameter problem

Our first simple case consists in identifying a single
parameter s8 (i.e., the viscosity m ¼ 1

3
ð 1

s8
� 1

2
Þ) and the

parameter s5 is supposed to be known. So the unknown
parameter k is equal to s8 (i.e., k ¼ s8 2 R). In this case,
the discrete exact gradient is given by the help of (31),
(32) and (25) as follows:

rkJ ¼ J 0ðs8Þ ¼ dL ¼ �
XN�1

k¼0

Pkþ1 oU
os8

. ð33Þ

The computation of J 0(s8) requires one integration of the
direct model and one integration of the adjoint model.
Thus, we may try and apply a descent method in order
to find the solution to the minimization problem.

Before making use of the adjoint method, it is neces-
sary to check that we calculate exactly the gradient of
the cost-function J. For that purpose we consider a sim-
ple determination of the gradient for finite difference
quotient.
• Difference quotient of the cost function J

J 0dqðs8Þ ¼ lim
�!0

Jðs8 þ �Þ � Jðs8 � �Þ
2�

. ð34Þ

So we can validate the adjoint model if and only if the
two quantities (33) and (34) are equal. We have gradient
J with adjoint method J 0invðs8 ¼ 0:3Þ ¼ �4:87278648�
10�7.

Table 1 shows that the gradient is well calculated, so
for � = 10�6 we have the same quantity for two gradi-
ents with a 10�8 relative accuracy.

Remark 4.1. Fig. 2 shows that for � 6 10�10 we have
machine precision errors and for � P 10�3 we have
convergence errors.
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In Fig. 3, we show that the adjoint method is able to
calculate exactly the gradient of cost-function.

Now, we try to identify the parameter s8 by a descent
method with a fixed step:

snþ1
8 ¼ sn

8 þ exJ 0ðs8Þn; ex > 0.

Fig. 4 shows the convergence of algorithm to the opti-
mal parameter s�8. In this case the first guess is s8 = 0.2
and the optimal one s�8 ¼ 0:8.
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Fig. 4. Log of the error ðjs8 � s�8jÞ vs. iteration n.
4.2. Case of two parameters

In the second case, the two parameters s8 and s5 are
unknown (i.e., k = (s5, s8)). So we use the adjoint method
to evaluate the discrete gradient $kJ. So in this case the
gradient is given by the help of (31), (32) and (25) as
follows:

rkJ ¼ rJðs5; s8Þ ¼ �
XN�1

k¼0

Pkþ1 oU
ok

¼ �
XN�1

k¼0

Pkþ1 oU
os5

;�
XN�1

k¼0

Pkþ1 oU
os8

 !
.

We use a descent method with a variable step.

knþ1 ¼ kn þ exnrkJ nðkÞ; exn
> 0;

where exn are calculated by a standard line search [9].
Fig. 5 shows the convergence of algorithm to the opti-
mal parameters k� ¼ ðs�5; s�8Þ ¼ ð1:0; 0:8Þ. The first guess
is (s5, s8) = (1.2,1.2). We find that jrs8

J j 
 jrs5
J j as ex-

pected, since it is known that s8 is related to the viscosity
whereas s5 has only subtle effects on the accuracy of the
boundary conditions [11,12].
5. ALBE method for a Navier–Stokes flow

We shall consider a simple case, that of a flow arising
from the superposition of a uniform flow with speed
{V, 0} and a transverse shear wave in a domain with
periodic boundary conditions, so that if Nx is the
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number of lattice points along Ox, one expects to find a
time dependent solution, assuming v� V,

vx ¼ V ; ð35Þ
vy ¼ v cosðkðx� VtÞ þ /Þ expð�mk2tÞ; ð36Þ

where the wave vector k is of the form k = 2mp/Nx

(m integer) and / some phase factor.
Now we will suppose that c1 ¼ c3 ¼ c2

3
¼ c and

c4 = 3d. We have introduced two unknown parameters
c and d (i.e., k = (c,d)) in the expression (16) of ci,
i = 1,2,3,4, having in mind the use of the adjoint
method to find their values in order to get a model opti-
mally chosen with respect to a required solution. Once
we have solved the adjoint problem, we can determine
the derivatives of the cost function, using expressions
(24).

We have tested the ability of the adjoint method to
determine c and d using the particular cost function with
a = 0 and b = 1 in Eq. (22), which is appropriate for a
time dependent problem. We have found that the deriv-
ative of the cost function with respect to the parameter d

is very small (and probably insignificant due to rounding
errors in the numerical simulations). This is expected as
the term depending upon d does not show up in the
Chapman–Enskog analysis [5] of the problem. It is
taken into consideration for the simple reason that in
the ordinary BGK-LBE model [10], the equilibrium
distributions lead to such a term.

The derivative of the cost function with respect to c

obtained by the adjoint method is close to that deter-
mined by finite differences as was the case above for
the parameter s8 directly linked to the viscosity. We
show in Fig. 6 the convergence of the error function with
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Fig. 6. Log of the cost-function J(k) vs. iteration.
iteration number (no effort has been made to accelerate
convergence).

Note that for one case the error levels at a significant
value (dashed-dotted line in Fig. 6). That case corre-
sponds to using as the expression given above for the
‘‘target function’’ and using as initial state F0 the
distribution function computed to second order in
Chapman–Enskog development. The case that leads to
much better convergence (solid line in Fig. 6) uses as
‘‘target function’’ the velocity of a LBE model in which
c = d = 1. This shows that the initial conditions used in
the first case are not satisfactory and that they do not
lead precisely to the simple analytic expressions given
above. This result could be used to try and determine
better initial conditions that lead to a small residual
error.

Note more generally that the identification procedure
proposed in this paper will not give information on
other sources of error (quality of the target or in the
numerical model).
6. Conclusion

We have considered the problem of parameter identi-
fication for the LBE model in computational fluid
dynamics. We have used a gradient method associated
with the adjoint methodology applied for discrete time.
We have compared this approach with a finite difference
methodology and have tested our scheme for two differ-
ent configurations: a simple linear Poiseuille flow and a
more realistic nonlinear model. We have derived the
general adjoint model (ALBE). We note that this algo-
rithm is as easy to parallelize as the standard LBE
model.

Work is under way to test the ability of the proposed
method to determine a large number (p) of unknown
parameters. In that case for each set of unknown para-
meters for which the gradients are required, one needs
one direct and one backward computation instead of
at least p direct computations using the simple finite
quotient determination.

The extension for future work could be the following:
determination of the numerical scheme for ALBE model
in case of curved boundaries, identification of unknown
flow parameters at the boundary or identification of
local viscosity for turbulent flows. The extension to
three-dimensional flows is straightforward concerning
the methodology but the difficulty will be in the larger
amount of data to manage.
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