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Abstract

The lattice Boltzmann method is briefly introduced using moments. We use this method
to model diffusion problems. We have adapted a general methodology for equivalent
equations to the explicit determination of discrete gradient and fluxes for this problem.
We validate this new approach with a detailed comparison with finite differences. We
show some results for an anisotropic test case.
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1 Lattice Boltzmann scheme

The lattice Boltzmann equation (LBE) is a numerical method based on ki-
netic theory to simulate various hydrodynamic systems. It uses a small num-
ber of velocities; the Lattice Boltzmann Equation (LBE) was derived by
Higuera and Jiménez [HJ89] from lattice gas automata of Frisch et al. [FHP86].
The LBE is a mesoscopic method and deals with a small number of functions
{fi} that can be interpreted as populations of fictitious “particles". The
dynamics of these “particles" is such that time, space and momentum are
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discretized. The “particles" evolve in a succession of collision and propaga-
tion steps on the nodes of a regular lattice £ parametrized by a spatial scale
Ax. This lattice is composed by a set £° = {z; € (A2Z)?} of nodes or
vertices where d is the dimension of space. We define At as the time step of
the evolution of LBE and let the celerity A = %. We choose the velocities
vi, 1 € (0...q) such that v; = Ci% = ¢;\, where ¢; are vectors connecting
neighbouring nodes of L.

For the sake of simplicity we consider the particular D2Q9 [dH92| model (i.e.
d = 2 two-dimensional LBE model with nine velocities ¢ = 8). In this model,

we choose the velocities ¢;,7 € (0...8) defined by: ¢ = (0,0), (1,0), (0,1),
(—=1,0), (0,—1), (1,1), (—=1,1), (—=1,—=1), (1,—1).

The populations f; evolve according to the LBE scheme which can be written
as follows [Du07]:

(1) filwj,t+At) = fi(z; —vAt,t), 0<i<8,

where the superscript * denotes post-collision quantities. Therefore during
each time increment At there are two fundamental steps: collision and ad-
vection.

e In the advection step the “particles" move from a lattice node z; to either
itself (with the velocity vo = 0), one of the four nearest neighbors (with the
velocity v;, 1 < i < 4), or one of the four next-nearest neighbors (with the
velocity v;, 5 < i < 8),

e The collision step consists in the redistribution of the populations {f;} at
each node z;. It is modeled by the operator subscript * in (1) and is best
described in the space of moments my [dH92|. They are obtained by a linear
transformation of vectors f;:

mp — ZMkjfj'
J

Explicit formula for M}, ; coefficient is given in [dH92]. Note that matrix M is
invertible. The moments have an explicit physical significance (e.g. |[LL00]):
mo = T is the temperature (density), m; and my are z-momentum, y-
momentum, mg is the energy, my is related to energy square, ms and mg
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are r-energy flux and y-energy flux and my, mg are diagonal stress and off-
diagonal stress.

To simulate diffusion problems, we conserve only the first moment myg in
the collision step and obtain one macroscopic scalar equation. For the other
quantities (non-conserved moments), we assume that they relax towards equi-
librium values m;! that are nonlinear functions of the conserved quantities
and set:

(2) my=(1—=sp)mp+sgm;’, 1<k<S8,

where s;, = f—: is a relaxation rate (0 < s < 2 for stability). The relaxation

rates s are not necessarily identical as in the so called BGK case |QHL92|.
The equilibrium values m;’ of the non-conserved moments in equation (2)
determine the macroscopic behaviour of the scheme (i. e. of equation (1)).
Indeed with the following choice of equilibrium values: m3! = o7, my? =
BT, ¢ =0, ¢ =0, pil = az,T and pg! = a,,T and using Taylor ex-
pansion [Du07] or Chapman-Enskog procedure [FHH87| we find the diffusion
equation up to order three in At:

or

— — div(KVT) = O(At?),

ot
where K = (k; j)1<i j<2 is the diffusion tensor with ky; = /\Zﬁm(é —Dd+a+
3CL;m«), klg = ]{721 = AZAt(i + é - 1)afy and ]{22 = A%At(é - %)(44—0[— SCLJH)

These equations reduce to the standard isotropic diffusion equation for a,, =
azy = 0 and s = sy = s, with the diffusion coefficient
A2 11
=—At(4 - — ).

s= AN+ )
With a given velocity field (v,, v,), if we take m{? = Av, T and my! = A, T
the LBE scheme describes the following advection-diffusion |[GdHO07] equa-
tion: %—? +0.VT — KAT = O(A#?).

In this section we deal with boundary conditions for lattice Boltzmann method.
We explain in detail how to reconstruct classical bounce-back or anti-bounce
back boundary conditions using a general Taylor expansion proposed in
[Du07]. Let 02 a boundary surface cutting the link between fluid node
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xp and an outside one x, = x, — Az (see Figure 1).
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Figure 1. A boundary surface cutting the link between node xy, (a fluid
node) and x. = x, — Ax (a fictitious outside node).

Let fi(ap,t),i € (0...8) be the population at node x; and at time ¢t. After
the collision step distribution f3(zy,t) has left the fluid and goes to the
fictitious node x.. At time t + At we have to define the unknown population
fi(zp, t + At) which comes from node z, and is equal to f;(z.,t). So the
choice of this population will determine the boundary conditions. Here we
consider the case of Dirichlet boundary conditions at 92 which intersects the
link between z,. and x; at z, + %.

e To have T'(z. + %) on 0f) in the configuration of Figure 1 up to order 1
in At we do the following scheme:

filzp, t + At) = — f3(ze, t + At) + (4 — a — 28+ 9az,) T(ze + 5E),
fo(@p, t + At) = — fr(za, t + At) + 5=(4 4 20+ 8 4 9ayy) T(x5),

fs(zp, t + At) = — fo(z1,t + Ab) + 55 (4 + 20 + 8 — agy) T(zw).

By using moments and relation (1) we have:

(=2}
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1 6m]
fi(xp, t + At) = fi(x,,t) = 36 —(4my % —mjs — 2mj — 6m; + 9Im3)(z., t),
1 6mj

fs(@e, t + At) = fo(xp,t) = 3—(4m0 — —— —m3 — 2my + 6m; + 9mz)(xy, ).

We have the following development of non-equilibrium moments at second
order on At (as described in [Du08]):

1
(3) mp=m"+ At <§ — ak> Op + O(AL), k> 2,

where 0, = (i — %) and 6}, is the defect of conservation defined by:
O = O + > My ;Mo ;00 ",
7,
The detailed expansion of these coefficients is given in [Du08| and is used
below. Now we consider the quantities fi(xy, t + At) + f3(xe, t + At), and
we use the above identity and the different expressions of the 0, we get:

fi(ap, t + At) + f3(ze, t + At) =
=72(4—oz—26+9am)(T( ze) + T'(x)) + O(At)
= (4 —a— 284 9a,,)T (zc + §E) + O(At).

To obtain the other identities we perform similar operations on the quan-
tities f5, fg, fr and fs. We note here that if we have homogeneous boundary
conditions (i.e. T(z, + &%) = 0) we obtain classical boundary condition
called “anti-bounce back". Note that Ginzburg [Gi05] proposes more elab-
orate boundary conditions of higher order by using the Chapman-Enskog

method.

e Gradient and Flux
Compared to classical numerical methods, the lattice Boltzmann method uses
more parameters and variables. It turns out that in steady state situations

some of these variables can be used to determine the first and second space
3 T

derivatives 2 a_ and o in all nodes € £°, and the flux along the interface
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of the control volume K.

e The gradient of the solution on the node x; at time ¢ can be evaluated as
follows. By using Taylor expansions we get a general second order expression
of non-conservative moments:

1
(4) mg = mzq—At(E—FO'k) [Qk — At(ak&ﬁk + alAia&ﬂg)] —|—O(At3>, k>1,
where Af;p =2 My My Mjfel.

To determine first order space derivatives of T' for the present diffusion prob-
lem, we use equation (4) for moments m; and ma:

1 (44 o+ 3ay,) 0T oT
Y 4 xx 3
m; = —NAt (2 +01> { 6 o +%y—8y] + O(At?),
1 OT  (4+a— 3az)dT
_ )2 s il 3
me = —NAt <2 +02) {%yax -+ 5 0y} + O(A??).

Similarly the determination of second order space derivatives of T"is obtained
using equation (4) for moments ms, m; and ms:

1 4 30z — 3a,, \ 0*T
m3:QT+At2<§—|—0’3))\2 {(Ul +a+ 3a +U5oz+ﬁ a ) N

6 3 0x?
4+ a+ 3ag, a+ B+ 3ay,. 0°T o*T
+ (09 5 + 0% 3 ) 5 + (01 + 09 + 05 + 0%) axym} ,
1 A2 4+ a4+ 3a., Q — 3a,, \ 0°T
mr=ay, T + At® (5—1—07) 3 {(U1—+ 6+ — 03 +ﬁ3 > 972 +
a+ B+ 3az, A4+ a — 3ay, 0*T 0T
+(o 3 — 09 6 )ay2+(01_02+06_05>amy8$—ay:| )

1 A2 o*T 0T
mg = gy T + At? (5 + ag> Y {(202 + ag)amyw + (201 + 05)axya—y2 +

4+Oé+3@xz 4—{—0&—3@;,;33
L S R
a+ 3 — 3az, a+ [+ 3a.,\ 0°T
+ 0 .
3 3 0x0dy

+O’5
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We note that we could have used the combination my and mg for VI and my,
m7 and mg for second order space derivatives. Note that applying the new
methodology with Taylor expansion instead of Chapman-Enskog one [dH92]
is original in this framework of diffusion problems.

We show now that the lattice Boltzmann method for purely diffusive prob-
lems relates to classical Fourier law. The mass flux j is generally defined as
the amount of particles that cross an interface at a given time instance. The
flux can be defined at the interface (zg,xy) = (SN) between two lattice
nodes z, and x, = x. + Az as (see Figure 1):

A
jon (e + 795 4 A = A (fa(p,t+ AL) — falwe,t + A1) +

AN (fs(mp, t + AL) — fr(we, t + AL) + f(w3,t + At) — fr(mp, t + AL)) +
AN, (fs(xp, t + AL) — folay, t + At) + fa(ag, t + At) — fo(ap, t + At)),

where W and W5 are two scalars determined by:

oT or
div(K.VT).ngndy = KH%(:B[, t) + Klga—y(m, t) + O(Azx) =

= _jSN(ny t+ At) + O(AZL’),

A.T SN

& (see Figure 1). If we suppose that %L is constant along
SN and with the help of Taylor expansion we obtain the first equality of the
above calculus. To find ¥y and Wy, we develop the quantity jsy by using (3),
then we choose ¥ and W, such that this quantity is equal to the normal flux.

In the case of isotropic problems (i.e. azy = agy = 0), we find Uy = Uy = %

where r; = z. +

2 Numerical results

First we have tested our scheme for the following 1D problem: —Ku"(x) = ¢
in ]0, 1], u(0) = u(1) = 0. We take periodic condition on y, anti-bounce back
condition on = to have homogeneous Dirichlet boundary conditions and the
following parameters: a = =2, 8 =1, a3y = a3y = 0, 51 = 59 = 1.2, 53 =
1.8, 54 = 1.2, s5 = s¢ = 1.5 and s7; = sg = 1.3. The results concerning the
% relative errors between the exact affine solution u(z) = z(1 — z)c/(2K)
and the solution calculated with the D2Q9 LBE scheme shows second order
accuracy.
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Second we have tested our scheme for the following 2D isotrope diffusion
problem with Dirichlet and Neumann bounday conditions: —KAwu = f in
Q =]0,1[%> w = uw on I'p, d,u = g on I'y, where K is a scalar, f = —2K,
Ip={0}x(0,1)U{1} x(0,1),u=00n {0} x(0,1),1—3yon {1} x (0,1)
and g = =3z on 'y = (0,1) x {0} U (0,1) x {1}. The analytical solution of
this problem is: u(z,y) = 22 — 3zy. We take anti-bounce back condition on
x to have Dirichlet boundary condition, bounce back condition on y to have
Neumann boundary and the following parameters: a = —2, 8 = 1, a,, =
Apy = 0, 81 =80 =12, 53 =1.1, 54 = 1.4, 55 = s¢ = 1.5 and s7 = sg = 1.5.
The Figure 2 shows ¢2 relative errors between the exact solution and the
solution calculated with the D2Q9 LBE, which is second order accuracy.
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Figure 2. The (2 error between analytical solution and approxrimate one vs
mesh size.

We have also used our algorithm to solve the following anisotropic diffusion
problem so called “oblique flow:

—div(KVu) =0 in Q=]0,1[% u=u on Of.

where K = Ry diag(1,1073) R;l, Ry is the rotation of angle 6 = 40 degrees,
andw = 1on (0,0.2)x{0}U{0}x(0,0.2),00n (0.8,1)x{1}U{1}x(0.8,1), %
on (0.3,1)x{0}U{0}x(0.3,1), 3 on (0,0.7) x {1}U{1} x (0,0.7). The Figure
3 shows the approximate solution on regular mesh (151 x 151), calculated
by D2Q9 scheme after convergence (i.e. 5.10° iterations) with s; = 1.3,
sy = 1.8 and # = 1 (other parameter are fixed to have K as diffusion tensor).

The value of the maximum of the approximate solution in the same mesh is
Tinae = 0.9984 and the minimum one T),;, = 0.0015. In Figure 4 (a) and



Using Lattice Boltzmann scheme for anisotropic diffusion problems

(b) we compare VT calculated by centred finite difference method and by
using moments my and my (figure (a)) or by using ms and mg (figure (b)).

In Figure 5 we compare 8222,3 calculated by finite differences and by using

non-equilibrium moments (mgz, m; and mg). Note that there are 9 x 1512
unknowns in this problem but no matrix inversion is necessary with this

entirely explicit scheme.

Figure 3. Approxzimate solution on regular rectangular mesh (151 x 151
nodes). The gray scale of the figure corresponds to a linear variation from 0

(black) to 1 (white).
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Figure 4. (a) Left figure: g—g vs x, right figure (b) ?9_2 vsx aty=1/2.
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Figure 5. Second order spatial derivatives of temperature vs x at y = 1/2.

3 Conclusion

Lattice Boltzmann scheme is a very simple second order accurate method for
fluid mechanics, thermal and acoustic problems. We have obtained interest-
ing results for a not trivial test case. However, as it is a really unstationary
methodology, it is not extremely efficient to simulate elliptic diffusion prob-
lems as it takes many time steps to reach a steady state. We have performed
similar work in three space dimensions based on lattice Boltzmann models

to simulate anisotropic diffusion equation. Similar work has been done by
[. Ginzburg [Gi07].

References

|[dH92] D'HUMIERES D., «Generalized lattice-Boltzmann equationy, ATAA

Rarefied Gas Dynamics: Theory and Simulations Progress in Astronau-
tics, vol 159, 1992, p. 450 458.

|[Du07] DuBoI1s F., «Une introduction au schéma de Boltzmann sur réseau,
ESAIM: Proceedings, vol 18, 2007, p. 181 215.

|[Du08] DuBois F., «Third order equivalent equation of lattice Boltzmann
schemey», Discrete and Continuous Dynamical Systems, to appear, 2008.



Using Lattice Boltzmann scheme for anisotropic diffusion problems

[FHP86| FriscH U., HASSLACHER B., POMEAU, Y., «Lattice-gas au-

tomata for the Navier-Stokes equation», Physical Review Lett, vol 56,
1986, p. 1505 1508.

[FHH87| FriscH U., D’HUMIERES D. HASSLACHER B., LALLEMAND P.,
PoMEAU Y., RIVET J.-P., «Lattice gas hydrodynamics in two and
three dimensionsy, Complex Systems, vol 1, 1987, p. 649-707.

|Gi05] GINZBURG 1., «Generic boundary conditions for lattice Boltzmann
models and their application to advection and anisotropic dispersion
equationsy, Advances in Water Resources, vol 28, 2005, p. 1196 1216.

|Gi07] GINZBURG ., «Lattice Boltzmann modeling with discontinuous colli-

sion components: hydrodynamic and advection-diffusion equations», .J.
Stat. Phys., vol 126, 2007, p. 157 206.

[GAHO7] GINZBURG I., D’HUMIERES D., «Lattice Boltzmann and analytical
modeling of flow processes in anisotropic and heterogeneous stratified

aquifersy, Advances in Water Resources, vol 30, 2007, p. 2202 2234.

[HJ89] HIGUERA F.J., JIMENEZ, J., «Boltzmann approach to lattice gas
simulationsy», Furophys. Lett., vol 9, 1989, p. 345-349.

[LLOO] LALLEMAND P., Luo L.-S., «Theory of the lattice Boltzmann
method: Dispersion, dissipation, isotropy, Galilean invariance, and sta-
bility», Physical Review E, vol 61, 2000, p. 6546 6562.

[QHL92] QiaAN Y.H., D’HUMIERES D., LALLEMAND P. «Lattice BGK
models for Navier-Stokes equation», FEurophys. Lett., vol 17, 1992,
p. 479-484.

11



