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schemes of modified bounce back are proposed. The first one is based on the expansion of the iteration
of the internal scheme of the lattice Boltzmann method. The analysis puts in evidence some defects
and a generalized version is proposed with a set of essentially four possible parameters to adjust. We
MSC: propose to reduce this number to two with the elimination of spurious density first order terms. Thus
76M28 a new scheme for bounce back is found exact up to second order and allows an accurate simulation
of the Poiseuille flow for a specific combination of the relaxation and boundary coefficients. We have
validated the general expansion of the value in the first cell in terms of given values on the boundary for
a stationary “accordion” test case.
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1. Introduction 2. D2Q9 lattice Boltzmann scheme

In this contribution, we study boundary conditions for lattice The D2Q9 lattice Boltzmann schemes uses a set of discrete ve-
Boltzmann schemes using the Taylor expansion method proposed locities described in Fig. 1. A density distribution f; is associated to
in our previous work [3]. In that work, we have proposed a method each velocity v; = Aej, where A = % is the fixed numerical lat-
for the analysis of the bounce back boundary condition in the par-  tice velocity. From this particle distribution, we construct a vector
ticular case of the D2Q9 scheme [7] for a bottom boundary. Note m of moments m; according to
that the bounce back boundary condition and anti-bounce back
boundary condition were studied by Ginzburg and Adler [5] , Zou m=Mf (1)

and He [8], Bouzidi et al. [1] and d’Humiéres and Ginzburg [6]. A ) ) ) ) )
particular choice of the LB parameters can enhance the precision ~ With an inversible fixed matrix M usually [7] given by
of the scheme.

In this contribution, more general bounce back boundary con- 1 1 1 1 1 1 1 1 1
ditions are proposed. We follow the same method as in [3] to an- 0 A 0 - 0 A -y A
alyze the proposed_ scheme up to second order in space. Three 0 0 A 0 Y A A —A —A
sc.tilc;mes are m\éestlgated a;(ildlmt[)lt;mgntetit forda tPi)ll]semllte ﬂtom; 432 32 52 52 2 222 232 222 232
with an imposed pressure field at the input and at the output o
mposec p b P M=| o 2 a2 a2 2 0 0 0 0

the domain. Finally, we propose a new scheme for bounce back
i ; : 0 0 0] 0 0 A2 -2 A2 -2

exact up to order two in space that allows an accurate simulation
of the Poiseuille flow for any combination of the relaxation coeffi- 0 22> 0 233 0 B2 B W
cients. 0 0 —223 0 223 A3 PR e &

4)0% 204 —2A% 0 204 24 a4 A At e
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A Fig. 2. Missing distribution functions to define the boundary scheme for the D2Q9
on a boundary located at y = 0.
o o L
7 4 8 . .
the conserved variables W = (p,J,Jy) are not modified; the
Ax nonconserved moments m; to mg relax towards an equilibrium

Fig. 1. Particle distribution f; for 0 <j < 8 of the D2Q9 lattice Boltzmann scheme.

p= Z?:O fi=mg
ijpux=Z?:0)‘e}fj=m1 (3)
Jy=puy=Yjore fi=m

where e¢ are the cartesian components of the vectors e; intro-

duced previously. For fluid mechanics applications, a set of “con-
served variables” W is defined by

W=(p. jx. Jy)- (4)

The moment distribution at equilibrium me? is a function of the
conserved variables only. In particular, the equilibrium value of
the fourth moment associated to kinetic energy (see the fourth
line in the matrix M presented in (2)) is parametrized with the
help of a constanta. For the equilibrium of the last moment (of
fourth order), we introduce a constant B, as in our previous work
[3]. Note that the standard D2Q9 scheme [7]| uses « =-2 and
B =1. The vector m®? of equilibrium moments is defined according
to:

m=(p, e, jy, @A?p, 0,0, =A% jx, =A% jy, B A% p)". (5)

Appling the inverse of relation (1) with the matrix M defined
in (2), we can explicit herein all the components of the vector
fea

ngﬁ [1-a+p]

9
fng% :47a72/3+12)\ux:
2eq:% :47a72ﬁ+12kuy_
§q=% :470[72/3712;{
fea :qz% :4_a—2ﬂ—12kuy: (6)

o [ 3
;q—% 4+2a+/3+x(ux+“y)i|
«a_ P -4+2a+/3+§(—u + uy)
6 736 A

[ 3
cq _ P 4+20{+ﬂ+x(—lb<—uy)i|

I 3
§q=£ 4+2a+;‘5+x(ux—uy):|.
The lattice Boltzmann scheme is composed of two fundamen-
tal steps: relaxation and advection. During the relaxation step,

value:
med =y (W) for k>3,

where the v are linear functions of the conserved moments given
in (5). This step depends upon relaxation rates s, for k > 3:

my = my + 5 (mg? — my)

where superscript * denotes the moment m, after relaxation step.
Now using the matrix M-! the relaxation step becomes in the f
space:

i 6y =>" M} mj. (7)
4

During the advection step fi(x;) is “transported” from the node x;
according to the discrete velocity v; to the node x; + v;At. Thus the
evolution of populations f; 0 <i < 8, at internal node x is described
by :

fitx,t + At) = fr(x — v;At, t). (8)

3. Bounce back boundary conditions for the D2Q9 scheme

Let us consider, without loss of generality, the bottom boundary
configuration as described in Fig.2. The values f;(x — v;At) for i e
{2,5,6} = B to perform the scheme are unknown.

To impose a given velocity (Jx, Jy) on the boundary we apply
bounce back boundary condition :

A
Hx t+ At) = f3(x) + %b(x,u_ J)

2
f5("*t+m)=f7*(x)+(;7(]x+]y)(x—%,t+%> 9)
folt + 80 = 00+ g (o) (x+ 550+ 5).

The bounce back scheme (9) can be explained by a very simple
idea: apply the internal scheme at the boundary. If we focus on f,,
we have f,(x.t+ At) = f5(x— (0, Ax),t). For an internal node x
the particle distribution f; is close to the equilibrium idem for the
particle distribution f;‘ after collision. So a simple calculus leads
to:

f3x— (0, Ax)) — fr(x) = f51(x) — f;1(x) + O(AX).

Now we replace f*9 by their values given by (6), we get
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Fig. 3. Bounce back scheme for bottom boundary configuration with the D2Q9
scheme.

f3(x= (0. Ax)) = f5()

o 12uy] ,o[ _12uy]
36[4 o-2p+=2]-Lla-a-28- =] 10ax)

= i]y(x) + O(Ax).

We remark here that puy was substituted by the given function
Jy on the boundary which is the non-homogenous velocity to im-
pose. An analogous calculus for the two other expressions gives the
scheme (9).

* When the boundary condition is taken in a nonlinear way, the
particle distribution at equilibrium is taken as a nonlinear function
of the conserved quantities. Then taking appropriate sums and
differences of the corresponding relations that generalize (6), the
extension of the bounce back conditions (9) to the nonlinear
framework is elementary. Our present analysis method is com-
pletely linear and we do not consider the nonlinear framework in
this contribution.

« Analysis of bounce back boundary condition.

In a previous work [3] we made an analysis of the bounce back
scheme using Taylor development which provides a development
of the velocity on the boundary node up to order two in space.

The main result is the following proposition.

Proposition 1 (Expansion of momentum at the node near the
boundary up to order two). The momentum (Jx,Jy) (with upper-case
letters) is given on the boundary (see Fig. 4). In this proposition, we
expand the momentum (jx,jy) (with lower-case letters) at the vertex
X, located half a mesh size over the boundary, in terms of these data.
We have

. At AX
Jx=J— -5 (407 +3) 0Jx + TBy]x
+)LAX<3a+él3+4O'7* Ol—6|—4 (20’7+ )) N

+ 802 [ 02 + uf Bed + o s+ afy O

+BY, 3y + BY 82y + S 02y + 15, axayp]
+O(AX) (10)

At

. Ax Ax
y=I- 73Jy+ Tayfy— V) (@ +4)dyp

00209, 8 + 03 e+ 1, 02y + o2l

+)7?y 0r0yJy + T)Sy 8X2]y + Ct?/ 0edyp + +§)g/ 813'0]

+O(AX3).

The coefficients that parametrize the second order terms in (10) can
be explicitly evaluated and we have

Fig. 4. Expansion of the momentum (jy,jy) in the first cell as a function of the data
(x.Jy) on the boundary.

13
ad = vl (607 +607+ 8)

ap, = fﬁ (207 +304+3)
1
ol = 57 (240407 + 80703+ 1204 + 807+ 15)

o), =l(204+1)

(12040'7 40703+60'4*4O'779)

IB[x ]2)\4

BY == (120407 —40703—407-9)
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0
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1
n&——a(a4+4)
0 _40'4+1
x4

1
My = 35 203 +5)

1
ly =154 2ao3+a+8)

(8 =2 Qoit 1) (e +4)
0 A
Sy ="73 (1+207)
—-4B0407+2004+ 10007 + 80307
+80407 +5a + 804 + 4007 + 20).

(60307 —2a0407+4B 0307

(11)

Remark. We summarize here the demonstration established in our
previous work [3] to use its results later and make this paper inde-
pendent and clear.

Proof of Proposition 1. We write bounce back in general form:

f]f‘(x,t+At):fz*(x,t)—i-fj(x/,t/), jeB, (12)
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where ¢ is opposite of j (i.e. vj+ v, =0) and &;(x, t') is the given m(x, t 4+ At) = (MTM~ o), me(x,t) (16)
velocity on the boundary as e.g. proposed in (9) to fix the ideas. 1 16

. A ) +(My Uy M mg(x — Vv, At t) + M ,
If j ¢ B the above equation is replaced by the internal scheme (8). (M U s J.p Uo)pa) Ml ¢ ) ke ¢
By introducing tables T; ,, and U; , the unified expression of the with an implicit summation on the repeated indices. We expand
lattice Boltzmann scheme for a node x near the boundary is given this relation to order O, 1 and 2.
by » Analysis of bounce back at order zero

Let us introduce the matrix K =1— M(T +U)M~1J,, where I is
fitx, t 4+ At) = Z T, fi(x, t) + ZUN fix—vjAt,t) +&; (13) the identity matrix. Then the equivalent equations for bounce back
¢ ¢ scheme at order zero are the solution of

where the matrix U;, =1 if £ = j ¢ B and Uj, = 0 if not. The ma- Km =M§ + O(Ax). (17)
trix U describes the “internal” numerical scheme (8) whereas the For the D2Q9 scheme the matrix K is given by :
0 0 % 0O 0 O 0 0 0
0 5 0 0 0 0 L¥ 0 0
0 0 1 0O 0 O 0 0 0
—s3a A2 0 AMl-s;) s3 0 0 0 L 0
K= 0 0 ~As) g5 0 0 1 0 (18)
0 22) 0 0 0 s4 L¥ 0 0
0 Q) 0 0 0 0 I 0 0
0 0 0 0O 0 O 0 1 0
—,358)\.4 0 —57)\.3 0 0 0 0 )\.(1 — 57) S8
matrix T takes into account the bounce back boundary scheme (9). We remark that the matrix K is singular and the dimension of its
For the particular bottom boundary with the D2Q9 scheme as pre- kernel is equal to 1. In fact with o= (1,0,0,aA?, 0,0,0,0, B A%),
sented in Fig.3, the tables U and T are: we have K pg = 0.
In consequence, we have one compatibility relation to satisfy, it
1 0 0 0 0O O O 0O O is a linear combination of the equivalent equations of the internal
0O 1. o 0 0 0 0 0 O scheme:
0O 0 0 0O 0O OO 0 O ) ) . a+4.,
0 00 1 000 0 O A (8o + B + dydy) — (at]y +=— A Byp> = 0(Ax).
u=|J0 0 0 0 1 0 O O O}, o )
0 0 00O OO 0O 0 O With given momenta Jy and J, on the boundary, the density p re-
0 0 00O 0 O 0 O mains still undefined by the boundary scheme. We develop the
0 0 00O O O 1 0 moments m as: m = mgy + At m; + O(At?). We find that the so-
0 0 00O 0 0 0 1 lution of (17) at order zero is:
t
0 0 0 0 0 0 0 o 0 my = (,OJny,Ol,O)LZ,O, 0, _)‘-Zj)h —)szy,ﬂp)fl) )
0O 0 0 0 0O 0O O 0 O .
00 001 0 0 0 O « Analysis of bounce back at order one
00 00OO O O 0 O Let introduce the matrix
T=]0 0 0 0 O O O O O (14) BY :ZM U, i 1> M7 (Jo) a=1,2
k.p ke e jvi Mjq NO0)g.ps ) 4
0000000 01
00 00O 0O 0 0 O Then the equivalent equations for bounce back scheme up to order
00 00 0 O 0O 0 O one are solutions of

Km = ME + At[MOE — 9;m — B*0,m] + O(Ax?),
After linearization of the equilibrium, we can write the relaxation . 5
step as follows : with m = mg + At my + O(Ax“), and we have

mp = . (Maé — Btmo —B"‘Bamo).

m*=Jom, . .
The matrix ¥ is given by:
with
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
o s3 A2 0 0 1-s53 0 0 0 0 0
Jo= 0 0 0 0 1—354 0 0 0 0 (15)
0 0 0 0 0 1—54 0 0 0
0 —s7 A2 0 0 0 0 1-57 0 0
0 0 —s7 A2 0 0 0 0 1-57 0
Bsg Al 0 0 0 0 0 0 0 1—sg

Then the unified LB scheme (13) for the bounce back becomes:
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0 0 0 0O 0 O 0 0 0
0 2+ ¢ 0 0 0 0 % (1 - %) 0 0
0 0 1 0O 0 o0 0 0 0
by
0 0 g(s7—1) L0 o0 0 m(s7-1) o0
»-|0 0 &(+s) 0 L 0 0 S 0 (19)
0 —& 0 0o o & 0 0 0
4 4

0 -227(1+1) 0 0o 0 0 2.1 0 0
0 0 0 0O 0 O 0 1 0
0 0 A3 0 0 0 0 Ls;-1) &

« Analysis of bounce back at order two

Let us introduce the matrix . A Ax
=)+ ay]x (301+2,3 +4) 07 0xP
po.B _
By = kZ My Up V5 V) Mig (o)ge. 1<t p=<2. + sz[agx 32y +&0 821x + BY, 82y + 75, dxdyp] + O(AX)
j.pq

Then expand the various terms of the relation (16) up to second Jy=l + ay]y (ot +4) dyp

order. We get the following equation: ~ ~
8 §ed + Ax? [exyaxaij + nxvaJy + 119,02y + g“y'}aj,o] +0(AX3)

Km = M& + At [MO& — 0ym — B*0,m]| (22)
Tae [M0%& — 92 mB*F0,05m] + O(AL) (20
*3 — O o OpTm | + : with

Now we develop m as: m=mg+ Atm; + At my + O(Ax3). We
get m, as solution of the Eq. (20):

1 ~
my = K oy — B0y + 5 (M3 — 9mo + B4 3, 0mo)|
Finally the development of the velocities on the boundary nodes
are given by the second and third components of m =mg+

Atmy + At2m, + O(Ax3). When we explicit the conserved mo-
ments, the previous relation leads to the relation (10). O

«We can use the equivalent partial differential equations of the
internal scheme derived with the initial Taylor expansion method
in order to express the relations (10) and (11) without the time
derivatives. Recall that we have in the linearized case

0P + Oxjix + ayjy = O(AXZ)

. A2
Ot jx + Cg 0xp —

A .
04 (62 +83)
At

A2 . .
+T o3 ax(ax.lx +dyjy) = 0(Ax?)

A2 At o
73 4

A% At ) .
+T o3 o 8y(axe + any) = O(sz)

dejy + 2 dyp — (83 +97)dy

=A

In the result proposed in Proposition 1, we can take into ac-
count time dependent velocity data on the boundary. In the fol-
lowing proposition, we transform the first and second order time
derivatives introduced in the expansion (10) with the help of the
partial differential equations presented at the relations (21). We
obtain after a tedious computation a new expression of the mo-
mentum in the cell directly close to the boundary.

where cg e

is the speed of sound.

Proposition 2 (A second expression of the velocity up to order two
at the boundary node). We have the following expansions of the val-
ues jx,jy at the boundary node in terms of the exact solution Jy,J, on
the boundary (at x — 5%):

&0

1
9 = —8(24a0307+72a072+48/3072-1—16,30708
+36a07 +24 807+ 160407 + 96 02
+160,03 — 7 — 48 +4807 — 6)

~ 1
Ol%,:**(8040'773)
ﬁxy (240503074—720107 +48B07 +16 o705 +36a07
+24/307—480407+9607+1607Ug—7ot 46 +4807)
~ A
0 _ 2 2 2
"= 3G T (12a 0307 —36a 0407 + 240 07 03

+8B0302 —24B0402 +16B 0205 — 180307

— 18w 04074+ 24a0? —12B0307 — 12 80407+ 160302
—48040% +320% 03+ 12a 07 — 12 B o7 — 240307
—240,407+9607 +9a + 9607 + 36)

~ o

0 -2

o 1o 1

Mx = 24’ 77yy=—@(05—8)

~ A

;J?y:_m(6a0307—6a0407+4,30307
—4ﬂ(74(77—6(¥0'7+8030'7—804G7—3C(—24(77—12).

(23)

Remark. We have validated all the stationary coefficients of the
Eq. (10) by different numerical test cases [3].

4. Towards a generalized first order bounce back boundary
condition

To get a generalized first order bounce back scheme the idea is

to apply the internal scheme at the boundary

fs(x. t+ At) = f&(x — (Ax, Ax),t)
L t+ At) = f3(x— (0, Ax),t)
fo(x, £+ At) = fE(x+ (AX, —AX),1).

(24)

Then the expressions:
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by = fi(x = (Ax, Ax)) — f7(x)
bm = f5(x = (0, Ax)) — fz(x) (25)
by = fE(x+ (Ax, —AXx), 1) — fE(x)

are expanded at order one.

Remark. If the expressions b;, by, and b, are expanded only to or-
der zero we get the traditional bounce back.

Proposition 3 (First order bounce back). For the boundary config-
uration described in Fig. 3, the bounce back of first order scheme is
given as follows :

fs(x, t+ At) = f3(x) + 5%

L) (x- 5

R I
+5 (qx+qy+x(1x+1y)>
4+B+ 2«

35 (P - (x+ (Ax, Ax)))
hxt+AD = fi(X) + 3 Jy(X) (qy(X) +7 jy(X))
4-28 -« 26)

—,o(x+ (0, Ax)))

1 Ax

67(X__]y)(x+7)
1 1 P

+6(_q;+q;+x(—]x+]y)>

%7;_2“(,0()() — p(x+ (=Ax, AX))).

+—3— (X

folx.t + At) = fg(x) —

Proof of Proposition 3. We use Taylor expansion for the expres-
sions b, by, and b, (see Eq. (25)), we get:

= fr(x) — f3(x) + dfs4(x)e(—AX, —AX) + O(AX?)
bm = f5(x) — f; () +df57(x)«(0, —Ax) + O(Ax?) (27)
br = fE(x) — f{(x) +dfg(x)e(AX, —AX) + O(AX?).

With the help of (7), we obtain the following exact expressions :

1, 1,
fi = =55 (et dy) + 5 (G +0))
11, (28)
fz—f4=ﬁly—§q3/s

1
fi—fi= 55 (k=) - 5 (- ).

On the other hand, we use the expressions (6) for fjeq, for j equals
2, 5 and 6. So we have for D2Q9 particle equilibrium distribution :

1

1
§q=%(4+20‘+,3):0 ?(Jerly)
1 1 .
;q:—36(4—a—2ﬂ)p TR (29)

«_ (44204 B)p-

1
36 127 (= o).

In the expression (27) we need to expand dfjeq for j equals 2, 5 and

6. Taking into account the above equations we need to develop the
gradient of density and the gradient of momentum.

e Gradient of density: using a Taylor expansion of the density
around the node x (see Fig.5) we get:

Vpe(Ax, Ax) ~ p(x+ (Ax, Ax)) — p(x) + O0(Ax?)

Vp (0, Ax) ~ p(x+ (0, Ax)) — p(x) +0(AX?)

Vpe(=AX, AX) =~ p(x+ (—Ax, AX)) — p(x) + O(AX?).
(30)

X+ AX, AX)  x+(0, Ax) X+ (Ax , AX)
® & ®
& & ®
/ x\
S 2 /\&
o (@)

Fig. 5. Node near the boundary for the D2Q9 scheme.

g Y Ax

AX o

Fig. 6. Approximation of the momentum gradient with finite differences.

e Gradient of momentum : using again Taylor expansion of the
following combinations of the momentum around the node x (see
Fig.6) we get:

. . . . A
V i+ i)+ (A% 80 =2 (100 + 1y(0) = (ke +5) (x = 5 )
+0(AX?)
Vijy« (0, Ax) ~ 2 (jy(x) —Jy(x)) + O(AX?)
. . . . Ax
V(jx = Jy) + (=A%, Ax) =2 [(h(x) = 5y00) = (=) (x+ 7)]
+0(AX?).
(31)

e Gradient of equilibrium particle distributions. Now using ex-
pressions (30), (31) and (29) we obtain the following expressions
for the gradient of equilibrium particle distributions :

VS (—AX, —AX) =

7 [(+h) (x

V2900, —Ax) =

(4+,8+2(x) (0
- %) — (k@) + Jy0)] + 0(AR)
(4 2B -a)(p(x) - p(x+ (0, AX)))
+ﬁ (]x(x) —jy(x)) +0(AX%)

erq.(Ax —AX) =

- p(x+ (Ax, AX)))

(4 +B+2a) (p®x) — p(x+ (—Ax, Ax)))

o [ 1) e+ s 2

(jx(0) = jy ()] + 0(AR?).
(32)

So by using the Egs. (28) and (32) in the expressions given by
(27) we get the following expansion of the “boundary gaps”:

fs(x = (Ax, Ax)) - f7 (X)
=51 b))+ ¢
3]6 (2a+B+4) (p(0) —p(x+ (Ax, AX))) +0(AX)
bm = f3(x— (0 Ax)) - fi‘(x)
(qy(x) +7 jy ®)

b,

5 (G +q0 + 5 (Jx ) + jy(0))

2
= 33h00 -
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+31*6(7°‘ —2B+4) (o) — p(x+ (0, Ax))) + O(AX*)

br = fe(x+ (Ax, —AX),t) — f§(x)
A 1 . .
= 7 U= (x4 57) = 5 @00 ~ g0 + 30— Jy(x0)

+ 3176(201 +B+4) (o) — p(x+ (—Ax. AX))) +0(AX?).

Thus the result of the proposition is a direct consequence of the
above expressions. [

5. Analysis of first order bounce back

In this section we perform a formal analysis of first order
bounce back scheme (26) given in the Proposition 3. We consider
here the same configuration as before (i.e. bottom boundary con-
dition described in Fig.2). In this case we give the development of
the velocity on the boundary node up to order two in space in the
following proposition.

Proposition 4 (Expansion of the momentum for first order bounce
back). We have the following expansion of momentum in the first cell
up to order2:

A Ax
4
+ AR [ag[ 02 + ), Ded i+l 02+l 92

. A
]x=]x+7xay]x—3At8t]x— (4+a)dp

+ Bl ey + Bl Dy + vk e o + v 0o |
+0(AX3) (33)

. AX 1
]y:]y+78y]y —Atf)[]y —EA,AX(4+(X)8J,IO

LAY [9& 3Dy + 6L, 0yl + 1t 92y + 1, Bedyy

7k 02Uy -+l 02 + £, 0By + 5 93 | + O(A).

with

15 1

atlt—ﬁ, ozt‘yzﬂ(4a7—604—ll)
1 1

al = ﬂ(24a4+408+19), oy, = Z(204+1)
1 1

53X=m(1204 —20g—11), ﬁgyzﬁ(208—604+12)
1

ytlx:m(17a+ﬂ—2ﬁas+2aog+72)

Yy = ;—6(88+28a+1204+6/3 +403+3040
+12a 07+ 12807 + @ 03)

1 1, 1

—m(5‘4"7+6”“)’ Oy = 7 _m(11+204)

9t1x: =
n =l(1+40) nl =l(5+20)
Y ARGV ¢

1
1
;ty=ﬂ(2a03+16+3a)

A
gxlxz—% (-407+16+ B+ 1204+ 5a+a07+2B0o7+304x)

Ly = _7% (11+204) (4+0).
(34)

Proof of Proposition 4. We use here exactly the same method as
in the proof of the Proposition 1. We begin by writing the first or-
der bounce back given by (26) for j € B = {5, 2, 6} in the following
form:

[t + A =T fi(x.t) + &K, 1), (35)
4

where the transmission matrix T is now :
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1/3 0 2/3 -2/3 -2/3 2/3 2/3
0 0 0 0 0 0 0 0 0

T=1]0 0 0 0 0 0 0 0 0
o -16 -1/6 1/6 1/6 2/3 0 13 0
o 16 -1/6 -1/6 1/6 0 2/3 0 1/3
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

and &;(x',t) is the given data for j € B = {5, 2, 6}:
1 Ax Ax?

G- (15 %+ T %) (k)
4+B+2a Ax?

4oL (_ Ax(@+8,) — S (3 + ay)Z)p +0(AY)

2 4-2B8 -«

Ax?
=55+ 36 (—Axay—Taf),o(x, t) +0(Ax?)

1 AX Ax?
go=—g (1- 50+ S-02) ()
2
N “27(:2“ (Ax(ax —d) - ATX((aX - 3y)2),0 +0(AR).

(36)

Note here that the transmission matrix T is modified to take into
account the new given data &. Thus we can write the unified LB
scheme (11) for the first order bounce back:

my(x, t + At) = (MTM~Jo)y, me(x, t)
(37)
+ (Mk.zUz.jM;I]J Jo)pg) Mg(x —ve AL t) + My &

where matrices J, and U are given by (15) and (14) respectively.
Then as for the Proposition 1, we expand this relation for m at
order 0, order 1 and order2:

m=mg+ Atm1 —+ Afz my +O(AX3),

and we expand also the Eq. (37) at order 0, 1 and 2. At order
zero, we have to solve Kmg = ME&, where the matrix K is given
by K=I1-M(T+U)M 1] :

0 0 1 0 00 0O0TO

0 3 0 0 00 0O0TO

0 0 1 0 00 00O
—s30 A2 0 0 s3 00000
K= 0 0 -2+ 0s 00 00
0 3 0 0 0s;4 000

0 (i3s) 0 0 00s 00

0 0 A%(s7-1) 0 0 0 0 s; O
—Bsg A 0 -2*> 0 0 0 0 0 s

Note here that matrix K here is different from that given by
(18) and is still singular. So to solve the linear system Km = g, we
must satisfy the compatibility condition which is g, — A gg = 0, be-
cause the first and third lines of the matrix K are proportional.
The linear space kerK is generated by u = (1, 0, OcA2, 0, 0, 0,
0, B A%t Thus the solutions of the equation

Kmg=ME
can be written as my=pu+XME with
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0 0 0 0 0 0 0 0 0
0 3 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1/s3 O 0 0 0 0

s_|0 0 2 0 1/s4 O 0 0 0
0 —A/S4 0 0 0 1/s4 O 0 0
0 203w 0 0 0 0 1/57 O 0
0 0 ~Ee=b g 0 0 0 1/s7 O
0 0 v 0 0 0 0 0 1/ss

Ss

At order zero, we get:

mo = (p. Je Jy @ p. 0. 0, —Ji /A, —Jy/% B ).

Note here that density p is not fixed and (J, Jy) are given functions
on the boundary.

Going further in the development of Eq. (37), we get first order.
Here the compatibility condition g5 —Ago =0 is:

M (3 + 0o+ 31 — (90 + &

The above equation is a linear combination of the equivalent equa-
tions of the internal scheme. So this condition is satisfied. At sec-
ond order, the compatibility condition still has the form:

@+4,2 3yp> = 0(Ax).

A( conservation of the mass )

—( conservation of momentum alongy) = O(Ax?).

Thus we can find the momentum development up to order two at
the boundary node at the vertex x (inside the flow, located at Ax/2
of the boundary). O

Proposition 5 (Second expression of the momentum for first or-
der bounce back). When we replace in the expansion (33) the time
derivatives by their values obtained thanks to the partial equivalent
Eq. (21), we obtain the following expansion of the value of momenta
Jjx and j, at the boundary node in terms of the exact solution Jx,Jy
on the boundary :

=k S 0o+ AR [&,lx 32,

'nyy ke + E)}y dyly + Py O 3y,0] +0(AX)

> (38)
Jy =Jy+78y]y+AX2[9xly axaij+ﬁ;x a)%]y
+ 1Ty Oy + E}}y 33'0] +0(ax%).
with
- 1
a,}x=ﬂ(80103*5*25*40‘+408+4/308)
- 1
O‘;y:_f 2os—1)
ﬂxy (40103 200+203—604+2B0g—f—1)
J7x1y:_* (B+3ao7;+2Bo7+407+)
6 (39)

~ 1

1
nyzﬂ(Z(x@—Z—a)
~ 1
n;x:_ﬂ (4o4-1)

~ 1
My = ﬂ(2a03—4a4+2—a),

~ A
é-xlxz_ﬁ(8(77+506+2,3+6060’7+4,3(77+]2)_

The analysis of momentum at the boundary node obtained by first
order bounce back scheme proof shows that this scheme is more ac-
curate than the simple bounce back scheme described by (9). In fact if

we compare the analysis of the two schemes we see that for first or-
der bounce back the order one terms are null (see Eq. (33)).Moreover
we note that with the following choice of the LB parameter o4 = %
(ie—} 2oy —1) = 1) the coefficients of 82], and d2], in the Eq.
(33) are null. Thus by this choice we get a quartic value at the bound-
ary for Poiseuille flow. This situation is not completely satisfactory and
we propose in the following section to generalize the previous first or-
der bounce back.

6. Generalized bounce back boundary scheme

Here we extend the first order bounce back scheme described
by Eq. (26) with the aim to cancel all the second order terms in
the analysis of momentum at the boundary node given by (33), al-
lowing to get a second order bounce back scheme. Let us introduce
unknown parameters ay, as, dg, kxy and ky in the previous first or-
der bounce back scheme (see Eq. (26)). Thus we get the following
boundary scheme for bottom boundary (see Fig.3) :

(x+Jy)( -5 f)
gs(qﬁqy i(1x+1y))(x t)
Jr—6 (0. ) = p(x+ (Ax, Ax), 1))
3@

+—é (p(x. t) = p(x+ (0, Ax), )
folet + A0 = fi — g (—J) (4 5 )
P8 (qirap g (i) D

+—g (P& ) = p(x+ (-Ax, Ax), t)).

fs(x,t+ At)

Fal €4 AD) = F00 + 55y ©) -

Note here that we recover simple bounce back scheme (essen-
tially described by Eq. (9)) for all the parameters equal to zero
(ie. ay =as =ag = ay = kx = ky = 0). If we choose all the param-
eters in the way proposed in relations (26), id estay = as = ag =1,
ky=4-a-28 and ks =kg=4+2c+ f, we recover the first
order bounce back. It is possible to derive very long formal ex-
pansions of the momenta jy and jy in the first cell in terms of the
boundary data, as in the relations (10), (22), (33) and (38).

¢ Analysis of the generalized bounce back

For this extended bounce back we still have the following rela-
tion as for first order bounce back:

{mko« t+ At) = (MTM o)y, me(x.t)

(41)
+ (Mk.zUz,jM;; UJo)pq) Mg(x — Ve AL, t) + My ,&e.

The matrix U is unchanged but the transmission matrix T
satisfies :
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0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

T = 0 0 0 0 0 0 0 0 0

0 % - % ¥ 2% 0 1-F 0

0 % % % & 0 o 1.
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Now to get momentum development up to order two at the
boundary node we perform as in the previous section. So we ex-
pand this relation at order 0, 1 and2:

m=mg+ Atm; + At? my + 0(AX3).

At order zero we introduce the matrix K =1—M(T +U)M~1J;. Re-
mark that the matrix K depends on the parameters a,, as, dag, ay,
ky and ky. Once again, we must solve the equation

K mop = Ms .
Its solution can be written as
mo=ppu+%M§.
As in the previous case we get:

t
moy = (,O,Jx, _]y, P, 07 O, _]X/)\" _Jy/)"v 1310) .

Note that in this case the compatibility condition at second order
still has the form:

X (conservation of mass)
—(conservation of y—momentum) = O(Ax?).

The momentum (jx,jy) at the vertex x located at Ax/2 can
be expanded as powers of Ax. We fit the parameters to get no
artefact at first order and to recover the Taylor expansion at the
boundary.

Proposition 6 (Interesting choice of the parameters of the gen-
eralized bounce back). If we take the parameters of the boundary
scheme (40) according to the relations

as = dg,
k5=k6=(30l+2ﬁ+4) (1—05)07
1 1
+§(3a+2,3+5)a5+§(a+4)
ky=23a+2B+4)(a-1)oy
—(Ba+2B+4) 0 +2(+4),

then we get the following expansion of the momentum (jx,jy) near
the boundary:

Jx :jx+%8y]x+(2asa7—207—2—a5)At8th

+% (4+a)(2aso7 —207 —2 —as) dyp

+ Ax? [aft Of)x + afy O Oy + gy 02y + y, 07

B2 0y + Bl iy + v B o + v B yp | + 0(A%0)
h:]ﬁ%ay]y — Atdyy - %AAX(4+&)8yp

+AX [9[2x B O + Oy, OByl + 1; O2)y + My Bedyly

02020y + 2, 02y + 2 Bedyp + ayzp] 1+ O(AY)
(43)

with the following coefficients for the first component :

1
ak = A2<6<772+4a§<772—10a5<772+7<77

5
_3a507—4a§o7+2+4a5+a§)
1
(thyzH(8050‘7—4O'7—60‘4—7—405)

2 :—21—4 (80507—80'70'8+24G4a507+8050703—807

Ox
—240407 — 120’4(15 74(15 *4(15 og — 15 — 120’4),
1
ap, = 1 2oz +1)

1
Poe=—137 9+ 12040507 +20a5+407 —4a507 420504
+40703 —604—6040a5 — 120407 — 40507 03)
1
Be = ﬁ(1204(1507 +407 —120407 + 40,05 — 4as oy

—4a50703+20a5 — 60405 +2as0g+9)

Ve = 11—2(30+7a+ﬁ+8a§+6407+3ao3+34a5
—32as07-2Basos —40703 —aa503 — 200703
—72as502 + 4002 + 2 as 0703 + 4 B as 07 03
+32d20? -32ao;+2Bo7;+ 1707 —2as07 B
~9aaso7+8asa+ 607 —40? f+2dka+8dioia
—8adio; —14as07 o +4as507 )

A

inZ—% (60 -607004+2070 05+ a5 05 + 15

+80705+4a505 — 120405 — 240407 + 2404 + 56 07
+28as5 —56a507 +6a 04 —8as 0705 + 24040507

+24,307+380l07 —120507,3—2605070[

+6asB+130as — 2 a5 0705 + 60 a5 0704 — 305 04)

and the coefficients for the second component given according to:

02 __i (40507—3—205—604) (20702—207—02—1)

T4 4a507 —2a5+207a, —607 -3 —ay

, 1 1

Xy:ﬁ4(150772(154’207(12*60’7737(12
(12670204—40‘7020‘3-’-140‘702—60’4(12+2(120'8

—7a; +4as0; — 1807 +4as 0703

—120507U4+605U4—20503—2615—9)
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1 1

2 _

nty_ 12A 4as07 —2a5+2070, —607;—3 —ay
(—260’702+4O’7020'3+13(12 —2ay,03+ 120407

—4(150’70'8 —12040507—400507

+6607+20a5 +2as0g+ 60405 + 604+ 33)
1

2 _
My = 12 4as07 —2as +207;a, —607—3 —a,
(—140702 +40;a,03+7a, —2a,05 — 16as oy

+]204O'7+3OO'77120'4(150'7

—405070'8+805+20568+604a5+604+15)

=g 1
ty 24 4a507—-2as5+207a, — 607 -3 —ay
(-48 -9 —9607 — 6003 —24a, —24a;s

+64as507 +3207a; +4Basos +2xas03 — 120703
+320%a; —32as0? —4aas o703 —8 B as 0703
—-18ao07+4as0;8+18aso7a —6a, 00 —2a, B
+2asB-3asa —4070 8 -8aay03 +2402
+160%2a; B —4a, Bog —24as0? a — 16as 02 B
+807a2ﬂ08+16aa71aza3)

2 _ =
b = 24 4a507 —2a5+207a, — 607 -3 —qay
(4aso;8-1607;,—-8Bo7— 120, +10as 07«

+24a507 —20—-2404—-5a5a0 — 50 — 6004
—12(15—2(15,8)

&= 1
w72 4a507 —2a5+207a, —607 —3 —ay
(—132—120’70[0’4—2(15(¥O'g—33(¥+80208—805(78

—24040a5 — 480407 — 2404 — 26407 —40a, — 92 as

+208as507 + 56070, + 4807 ay —48as07 — 6 oy
+2a,x0g3 — 1607 a, 03 + 16 a5 07 05 + 48 04 a5 07
—660 07 +24as078+76as0;00 —4a, 0 +6a B
—6as B —29asa —2407a; B —1007a,
+3602a, +240%a, B —36as507 o —24as02

—40;a0,0003+40a5070008+ 120507004 — 605 0y).

Proposition 7 (A second expression of the momenta expansion
for the generalized bounce back). If we take the parameters of the
boundary scheme (40) according to (42), we can drop away the un-
stationary terms in (43) with the help of the partial differential Egs.
(21). Then we get the following expansion of the momentum (jx,jy)
near the boundary :

. A N -
=+ TX 8y_]x + Ax? [afx af]x + (Xfy 8; N
+ B2 0y + 72 O ayp] +0(AX)

| ! : ) (44)
y=k+ -5 dyly + AX? [szy Oyl + T O3y

+1T5y 02y + C3, 020 + &5 3y2,0] +0(A%).

The associated coefficients are given by the following relations :

&3x=—2171 (5—-80704—80703+6007,+4B0;—6a507«
+8Baso;08+12aas0703 +4a+2B —4aso7 B
-8B 0,038 +404+807+8a50703 —2x 03 —80as07
+16as0? — 1607 — 12070 — 807 B
—4as03 —4asoy—4Basog +8asol B
+12a50? 0 — 1200703 — 6 as 03)

ap, = ﬁ(8a507(74-|—3—4a5c74—204—807a4)

53y=711f2(1 +120704— 40703 +3007+2B07 —3a507
+4Baso;08+6aas0703+2a+ B —2as07p
—4B 0,03 +40;—12as50704+ 4050703 — 03
—4a507+8as0? —80% —602a —407 B
—2as03+60as04—2 B asog +4aso?
+6as0?a - 600703 —3aaso3)

Vo = %(2a507a+2ay507ﬂ—a5,3

—5007—-4B07;—asa —407)

~ 1

2

Y724 4a507 —2as+207;a; —607—3 —ay
(—6—60[0'7+]0(150'705—4(120[—2(12ﬂ—407(120[

—4o7a, 8 +2asB+asa —4oay o3
-1—240'72(120[—4(12,30'3+16/30’72(12+8(10'7020'3

+807a, Bog —4a,08 — 8P aso;03 — 200 as 0703
+1204a, -3+ 807003 +4as0; 8 — 1207
—24070,04+240507;04 —8a50708 + 6 03

—2ay —4as+24as0;—1207a; —32a507 + 3202 ay
+4as03 —12as04+4Basog — 16as 0?2 B —24as 07 a

+120 0703+ 10 as o3)

1 1

~ _ 1
Mo = 24 4as507 —2as5+207a, —607 -3 —ay
(—60’7—3(12—32(150704+80'7(120’4—3+]204

+6070a; +160a504 +240704 —4040)
~ 1

2 _
My = 24 4a50;—-2as+207;a; —607 -3 —ay
(6-240704—6a07+10as070 —4a,x —2a, 8

—4o0,000—4070, 8+2asB+asa —4aay o3
+2402 a0 —4a, Bog+16 807 ay + 8w 07003
+807a,Bog —4a,08 — 8P aso;03— 200 as 0703
—-804a; —3a+807a,03+4a5078 1204+ 1205
+1607a,04+8a50;04—8as507,05+6a 03 —2a;

+8as —1207a; —32as0? + 3207 ay
-1—4(150'8—4(150'4-}—4,3(150’8—16(150'72,3
—24a50? 0+ 1200703+ 10 as 03)

5y A 20702—2(77—02—1

ng: ﬂ 4as0;—2a5+207;a, —607; -3 —ay
(—8,30'7—120{07—1607+805U7+605(T70{
+4as07f —3asa — 20 —4as —2as ff — 8)

~ A 20y —1)2

é‘y“‘}:iﬂ 4as07 —2as5+2070, —607 —3 —ay

(Ba+2B+4)(az—as).
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Fig. 7. Theoretical and measured rates of convergence 6 for classical bounce back (9) as a function of the number of mesh points in the axial direction. The error is
proportional to Ax? in the ¢2 norm for x and y component of the momentum, for aspect ratio & =2.

7. Numerical test

e Let first consider Poiseuille flow driven by a pressure gradi-
ent in the domain € = [1, Nx] x [1, Ny]. So we apply “anti-bounce
back” boundary condition at inlet (i = 1) and outlet (i = Nx) of the
channel to impose pressure dp and —&p and simple bounce back
on the bottom j=1 and the top j =N, of the domain to impose
uy = 0. So the solid wall (jx = 0) of the Poiseuille solution is ex-
actly at % for the following condition :

3 o+4
8a+2p-4"
as proposed in our previous contribution [2].

Now we use the extended bounce back scheme described by
(40) instead of the classical bounce back to impose the homoge-
neous Dirichlet boundary condition uy, = 0. In this case we find
that the parabolic solution of the Poiseuille flow is null exactly at
% (i.e. the solid wall jy = 0 is located exactly at % below the first
mesh vertex) for the following choice of the parameters as, s4 and
S7:

0407 =

_ 1 8aso4+404—3
0.40—7_E ((15—1)

This is because when the coefficient &)%y introduced in

Proposition7 is equal to %, we have the relation (45). This
proves numerically that this extended bounce back scheme is
exact for Poiseuille flow test case. All the extra order terms of
the expressions (44) are null and the developments of the jy
momentum on the boundary node becomes:

(45)

) Ax Ax?
Jx=J+ 5 Oy + e af]x-

«We consider now the “accordion” test case introduced in our
contribution [3]. In the rectangular domain €2 =]0, L[x]0, h[, we
introduce periodic boundary conditions at x =0 and x = L. For
the boundaries at y =0 and y = h, we impose Jx(x,0) = Jx(x,h) =
Jo cos(Zkm$) and Jy(x,0) =Jy(x.,h) =0, for 0 < x < L with the
integer k equal to 1 in our simulations. In the low velocity regime
the steady state is solution of the Stokes equations

divj=0, -vAJ+Vp=0. (46)

L _
E=

An analytic solution is given by the following expressions. Intro-
duce the function fly) defined by

h

o sorgemy —ien S (KY)
B sinh (K h)
fy) = +Jo my cosh (’C}/)
1 —cosh (K h) . _ 2km
+]omy sinh (Ky)., K= -

The stream function ¥ = f(y) cos(Kx), the two components Jx =

% and J, = —%—‘f of momentum and the pressure field

3
p(x.y) = % sin (ICx)(iyJ; _ K2 g)

define a particular solution of the Stokes problem (46).

* We have measured the error between the measured values jy
and jy in the first cell and the four following quantities: (i) the
given value Jy and J, on the boundary, (ii) the result of the Taylor
expansion (33) taking into account only the first order terms, (iii)
Taylor expansion (33) with all terms of second order and (iv) the
exact values Jy(x, 5%) and Jy(x, 5*) of the problem (46) at the
mesh point location.

We have done two numerical experiments. One (see Fig.7)
with very simple values of the coefficients of (40): ay = a5 = ag =
0, ky = ks = kg =0 and the other (see Fig.8) with the condition
(42) and the choice ay; =as = -1, ky; =4, ks =kg=1.

The results are as expected. This validates the formal expan-
sion proposed in [3] for the analysis of the bounce back boundary
condition. The error is only first order for the x component of the
momentum. This is due to a particulary good precision with only
16 mesh points (see Fig. 8).

8. Conclusion

We have shown that the classical bounce back is the result of
an approximation at order zero of the internal lattice Boltzmann
scheme. An analysis by an extension of the Taylor expansion
method was described as in [3]. Then a new scheme called first
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Fig. 8. Theoretical and measured rates of convergence 6 for generalized bounce back (40) as a function of the number of mesh points in the axial direction. The error is

L

proportional to Ax? in the ¢2 norm for x and y component of the momentum, for aspect ratio P=2

order bounce back was proposed and analyzed. We proved that
in this scheme the artefact/defect at order 1 of the classical
bounce back can be removed. Finally we proposed an extended
bounce back scheme where we removed all the artefacts/defects
at order1 and we proved that for a special choice the bounce
back can be exact up to order two for Poiseuille flow test case.
The stationary “accordion” test case shows that for a nontrivial
flow, the analysis proposed for the boundary condition does not
present any contradiction. Other numerical experiments will be
presented in forthcoming contributions. Moreover, an analysis of
the anti-bounce back [4], appropriate for taking into consideration
a pressure boundary condition, seems also possible.

Acknowledgments

A part of this work has been realized during the stay of two of
us at the Beijing Computational Science Research Center. We thank
the colleagues of CSRC for their hospitality. Last but not least, the
authors thank the referees who suggested several points in need of
improvement.

References

[1] Bouzidi M, Firdaous M, Lallemand P. Momentum transfer of a Boltzmann-lattice
fluid with boundaries. Phys Fluids 2001;13:3452-9.

[2] Dubois F, Lallemand P, Tekitek MM. On a superconvergent lattice Boltzmann
boundary scheme. Comput Math Appl 2010;59:2141-9.

[3] Dubois F, Lallemand P, Tekitek MM. Taylor expansion method for analysing
bounce-back boundary conditions for lattice Boltzmann method. ESAIM
2015;52:25-46.

[4] Ginzburg I. Generic boundary conditions for lattice Boltzmann models and their
application to advection and anisotropic dispersion equations. Adv Water Resour
2005;28:1196-216.

[5] Ginzburg I, Adler P. Boundary flow condition analysis for the three-dimensional
lattice Boltzmann model. J Phys II France 1994;4:191-214.

[6] d’Humiéres D, Ginzburg I. Multi-reflection boundary conditions for lattice Boltz-
mann models. Phys Rev E 2003;68(6):30. 066614

[7] Lallemand P, Luo L-S. Theory of the lattice Boltzmann method: dispersion, dissi-
pation, isotropy, galilean invariance, and stability. Phys Rev E 2000;61:6546-62.

[8] Zou Q, He X. On pressure and velocity boundary conditions for the lattice Boltz-
mann BGK model. Phys Fluids 1997;9:1591-8.

Please cite this article as: F. Dubois, P. Lallemand and M.M. Tekitek, Generalized bounce back boundary condition for the nine velocities
two-dimensional lattice Boltzmann scheme, Computers and Fluids, https://doi.org/10.1016/j.compfluid.2017.07.001



http://refhub.elsevier.com/S0045-7930(17)30239-6/sbref0003
http://refhub.elsevier.com/S0045-7930(17)30239-6/sbref0003
http://refhub.elsevier.com/S0045-7930(17)30239-6/sbref0003
http://refhub.elsevier.com/S0045-7930(17)30239-6/sbref0003
http://refhub.elsevier.com/S0045-7930(17)30239-6/sbref0011
http://refhub.elsevier.com/S0045-7930(17)30239-6/sbref0011
http://refhub.elsevier.com/S0045-7930(17)30239-6/sbref0011
http://refhub.elsevier.com/S0045-7930(17)30239-6/sbref0011
http://refhub.elsevier.com/S0045-7930(17)30239-6/sbref0012
http://refhub.elsevier.com/S0045-7930(17)30239-6/sbref0012
http://refhub.elsevier.com/S0045-7930(17)30239-6/sbref0012
http://refhub.elsevier.com/S0045-7930(17)30239-6/sbref0012
http://refhub.elsevier.com/S0045-7930(17)30239-6/sbref0013
http://refhub.elsevier.com/S0045-7930(17)30239-6/sbref0013
http://refhub.elsevier.com/S0045-7930(17)30239-6/sbref0014
http://refhub.elsevier.com/S0045-7930(17)30239-6/sbref0014
http://refhub.elsevier.com/S0045-7930(17)30239-6/sbref0014
http://refhub.elsevier.com/S0045-7930(17)30239-6/sbref0017
http://refhub.elsevier.com/S0045-7930(17)30239-6/sbref0017
http://refhub.elsevier.com/S0045-7930(17)30239-6/sbref0017
http://refhub.elsevier.com/S0045-7930(17)30239-6/sbref0017
http://refhub.elsevier.com/S0045-7930(17)30239-6/sbref0021
http://refhub.elsevier.com/S0045-7930(17)30239-6/sbref0021
http://refhub.elsevier.com/S0045-7930(17)30239-6/sbref0021
http://refhub.elsevier.com/S0045-7930(17)30239-6/sbref0027
http://refhub.elsevier.com/S0045-7930(17)30239-6/sbref0027
http://refhub.elsevier.com/S0045-7930(17)30239-6/sbref0027
https://doi.org/10.1016/j.compfluid.2017.07.001

	Generalized bounce back boundary condition for the nine velocities two-dimensional lattice Boltzmann scheme
	1 Introduction
	2 D2Q9 lattice Boltzmann scheme
	3 Bounce back boundary conditions for the D2Q9 scheme
	4 Towards a generalized first order bounce back boundary condition
	5 Analysis of first order bounce back
	6 Generalized bounce back boundary scheme
	7 Numerical test
	8 Conclusion
	Acknowledgments
	References


