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a b s t r a c t

Natural convection in a square cavity is simulated by multiple relaxation time (MRT) lattice Boltzmann

method (LBM) with a separate distribution function to solve for the temperature distribution. The Rayleigh

numbers examined range from Ra = 103 to Ra = 106. The simulations are performed for anisotropic thermal

case and compared to isotropic thermal case.
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1. Introduction

Lattice Boltzmann method (LBM) [2,26,37,39] has been success-
fully applied to various hydrodynamic problems and the major ad-
vantage of the LBM is explicit formulation. However, its application
to non-isothermal problem is limited because of the numerical in-
stability for thermal models [32]. In general, there are three thermal
lattice Boltzmann methods (TLBM) named the multi speed approach
[1], the passive scalar approach and the double population approach.

The multi-speed approach adopts a single distribution function in
order to obtain the macroscopic dynamic and thermal equations [1].
However, the Prandtl number is fixed and this approach suffers from
lack of numerical stabilities.

The passive scalar approach also called hybrid method, consists of
solving velocity field using LBM and the macroscopic temperature is
solved by different numerical methods (e.g. finite difference or finite
volume) [24,30]. This approach is more stable than the multi speed
approach. But it has two disadvantages: first the viscous heat dissipa-
tion and compression work done by pressure cannot be incorporated,
and second the simplicity of LBM is lost.
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The double population method, is first used by He et al. [19]. This
approach can be regarded as another version of the passive scalar
method. In fact to solve macroscopic temperature another LBM dis-
tribution is used. This model has a better numerical stability than the
multi speed approach, and the viscous heat dissipation and compres-
sion work done by the pressure can be solved implicitly. Peng et al.
[35] proposed a simplified thermal energy distribution model where
the compression work done by the pressure and the viscous heat dis-
sipation are neglected. By introducing a forcing function, Guo et al.
[17] proposed a thermal lattice BGK equation with viscous heat dissi-
pation in the incompressible limit.

The thermally driven cavity with adiabatic top and bottom walls
(also called natural convection in a square cavity) is a classical bench-
mark to examine the accuracy of the scheme. The solution is given for
4 values of the Rayleigh number (Ra), (Ra = 103,104, 105 and 106). The
value of the Prandtl number (Pr) is equal to 0.71, which corresponds
to a cavity filled by air. The reference solution of this problem is given
by De Vahl Davis [4].

To validate double population LBM method few researchers
[10,16,18,21,29] have carried out the above problem. We note here
that most of this works are using simple relaxation time (SRT), also
called Lattice Boltzmann Bhatngar–Gross–Krook (LBGK). This is due
to extreme simplicity of this method. Even that LBGK suffers from
lack of numerical stability and inaccuracy in implementing boundary
conditions.
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In this paper we present a double population approach using mul-
tiple relaxation time lattice Boltzmann method (MRT-LBM) [38] with
D2Q9 lattice model for solving velocity field and another D2Q9 for
solving macroscopic temperature. The choice of D2Q9 model for ther-
mal is to be able to model anisotropic thermal diffusion. We note
that anisotropic thermal diffusion have many applications in diffu-
sivity study of gas diffusion layer (see [34] for measurements and
[11] for computations), advection and anisotropic-dispersion equa-
tion, porous media (see e. g. [7,13,15]).

First we consider natural convection in a square cavity when the
flow is laminar (i.e. Rayleigh number is less than 106.). To validate
our model, we choose isotropic thermal diffusivity (i.e. diffusivity in x
direction κx is equal to diffusivity in y direction κy). Then we consider
anisotropic thermal diffusion. In fact we consider two cases κx = κy/2
and κx = 2κy, and we compare the solution to the isotropic one.

This paper is organized as follows. In Section 2, a brief overview
of the MRT D2Q9 for advection-diffusion and the MRT D2Q9 for fluid
problem. After in Section 3 we introduce the thermal LBM for the
simulation of a Boussinesq fluid in a square cavity. In Section 4, results
are presented and discussed. Finally, in Section 5 we conclude.

2. Multi relaxation time lattice Boltzmann method

2.1. Dynamic field

The multi relaxation time (MRT) lattice Boltzmann method [23]
can be expressed as:

m∗
l (x⃗, t) = ml(x⃗, t) − Sl j[mj(x⃗, t) − meq

j
(x⃗, t)] (1)

fi(x⃗ + e⃗i△t, t + △t) = M− 1
il

m∗
l (x⃗, t) (2)

m∗
l
, Eq. (1), is the collision at the moment space and Eq. (2) repre-

sents the streaming operation. Here, M is a matrix that transforms
the distribution function f to the velocity moment, m=Mf, and S is
the relaxation matrix. These will be defined later.

Based on the particle distribution functions, the macroscopic den-
sity and velocity are defined as:
∑

i

fi = ρ,
∑

i

fie⃗i = ρu⃗. (3)

For the present 2D applications, D2Q9 model are adopted to
model fluid problems and the particle speed e⃗i are defined as,

⎧
⎪⎪⎨

⎪⎪⎩

e⃗0 = 0,

e⃗i = ( cos[π(i − 1)/2], sin[π(i − 1)/2])c,
for i = 1, 2, 3, 4,

e⃗i = ( cos[π(i − 4 − 1/2)/2], sin[π(i − 4 − 1/2)/2])
√

2c,
for i = 5, 6, 7, 8,

where c = dx/dt is the lattice speed, and dx and dt are the lattice
width and time step, respectively. Here, dt is chosen to be equal to
dx, thus c = 1. Moreover, the speed of sound is Cs = c/

√
3.

The transformation matrix M and the velocity moment vector m
are defined as,

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m0 (ρ)
m1 (e)
m2 (ε)
m3 ( jx)
m4 (qx)
m5 ( jy)
m6 (qy)
m7 (pxx)
m8 (pxy)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
m

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1
− 4 − 1 − 1 − 1 − 1 2 2 2 2

4 − 2 − 2 − 2 − 2 1 1 1 1
0 1 0 − 1 0 1 − 1 − 1 1
0 − 2 0 2 0 1 − 1 − 1 1
0 0 1 0 − 1 1 1 − 1 − 1
0 0 − 2 0 2 1 1 − 1 − 1
0 1 − 1 1 − 1 0 0 0 0
0 0 0 0 0 1 − 1 1 − 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
M

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f0

f1

f2

f3

f4

f5

f6

f7

f8

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
f

(4)

and the equilibria of the velocity moments meq are,

⎧
⎨

⎩

ρeq = ρ, eeq = − 2ρ + 3
ρ ( j2

x + j2
y), ϵeq = ρ − 3

ρ ( j2
x + j2

y),
jeq
x = jx, qeq

x = − jx, jeq
y = jy, qeq

y = − jy,

peq
xx = 1

ρ ( j2
x − j2

y), peq
xy = jx jy

ρ .

(5)

The relaxation matrix S is a diagonal matrix, i.e.,

S = diag[s0, s1, s2, s3, s4, s5, s6, s7, s8] (6)

where s0 = s3 = s5 = 0 enforces mass and momentum conserva-
tion before and after collision [23]. Here, s4 = s6 ≡ sq, s7 = s8 ≡ sν ,

thus the viscosity formulation is the same as that by the SRT model
as shown in [23], i.e. the corresponding kinematic viscosity is ν =
( 1

sν
− 1

2 )C2
s dt in the simulation. More specifically, we choose to use

the following relationship between two relaxation rates: sq = 8 (2− sν )
(8− sν )

where sq ≡ s4 = s6. See [8,14] for more details.
We note that, the MRT model can recover to SRT model if s1 = s2

= s4 = s6 = s7 = s8 = sν .

2.2. Thermal field

The thermal field is modeled using the passive scalar approach to
enhance the numerical stability, where a separate distribution func-
tion is used to solve for the temperature distribution [27,35,36]. The
D2Q9 model introduced in the above section is adopted. The evolu-
tion of the scalar MRT LB scheme is given as:

m̃∗
l (x⃗, t) = m̃l(x⃗, t) − σl j[m̃ j(x⃗, t) − m̃eq

j
(x⃗, t)] (7)

gi(x⃗ + e⃗i△t, t + △t) = M− 1
il

m̃∗
l (x⃗, t) (8)

Here, fi is replaced by gi in Eq. (2), because gi is now the energy dis-
tribution function. The transformation matrix is the same as in equa-
tion (4), thus m̃ = Mg. Again, m̃∗

l
is the scalar collision at the moment

space. σ is the diagonal relaxation matrix, i.e.

σ = diag[σ0,σ1,σ2,σ3,σ4,σ5,σ6,σ7,σ8] (9)

where σ 0 = 0 enforces energy conservation, m̃0 =
∑

i gi = T, before
and after collision.

The equilibrium values m̃eq
i

of the nonconserved moments are
given by (see [22] for more details) :

m̃eq
1 = α̃T + 3T(u2 + v2),

m̃eq
2 = β̃T,

m̃eq
3 = uT,

m̃eq
4 = uT( − 1 + 3(u2 + v2)),

m̃eq
5 = vT,

m̃eq
6 = vT( − 1 + 3(u2 + v2))

m̃eq
7 = axT + T(u2 − v2),

m̃eq
8 = ayT + T(uv),

where V ≡ (u, v) is the dynamic field.
Using Taylor expansion [5,6] or Chapman–Enskog procedure [12],

the advection diffusion [15] equation with an-isotropic coefficient up
to order two in *t can be expressed as:

∂T

∂t
+ U

∂T

∂t
+ V

∂T

∂y
= C2

s dt

2

(
1

2
− 1

σ3

)
(α̃ + 3ax + 4)

∂2T

∂x2

+C2
s dt

2

(
1

2
− 1

σ5

)
(α̃ + 3ax + 4)

∂2T

∂y2

+3C2
s dt

2
ay

(
1

σ3
+ 1

σ5
− 1

)
∂2T

∂xy
,
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Fig. 1. Configuration of natural convection in a square cavity.

Fig. 2. Left: Boundary node xb in the bottom of the domain ,. Right: Boundary node

xb in the right of the domain ,.

Fig. 3. Isobars (P) of flow fields for Pr=0.71. From top to bottom Ra = 103, 104, 105, and 106 respectively for mesh size 1052, 1552, 2052 and 2552. From left to right : (left) κx = κy/2,

(center) isotropic case κx = κy ,(right) κx = 2κy .
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Table 1

Grid dependence and order of accuracy for numerical results of simulating 2-D natural

convection of air in a square cavity for the case Ra = 106.

Mesh size Nu umax y vmax x

472 9.5729 64.6766 0.8414 222.8704 3.6585.10− 2

572 9.2079 64.8453 0.8508 218.5256 4.3859.10− 2

812 8.8913 64.8181 0.8456 218.6303 4.3209.10− 2

1612 8.7828 64.8375 0.8478 220.1784 4.0372.10− 2

2252 8.8006 64.8393 0.8511 220.7288 3.7777.10− 2

3212 8.8139 64.8403 0.8489 220.5115 3.8940.10− 2

6152 8.8226 64.8391 0.8495 220.5741 3.8211.10− 2

Reference solution 8.8241 64.8372 0.8495 220.5739 3.7993.10− 2

Accuracy 2.109 2.0154 1.9261 2.0592 1.7571

Davis [4] 8.817 64.630 0.850 219.360 3.8.10− 2

Le Quéré [25] 8.825 64.483 0.850 220.559 3.8.10− 2

Table 2

Grid dependence and order of accuracy for numerical results of sim-

ulating 2-D natural convection of air in a square cavity for the case

Ra = 108.

Mesh size Nu Umax Y Vmax X

4952 29.97 313.97 0.926 2219.3 0.011

9872 30.20 319.81 0.927 2222.8 0.011

20162 30.22 321.59 0.928 2222.7 0.012

Le Quéré [25] 30.22 321.88 0.928 2222.2 0.012

Table 3

Comparison of predicted numerical results. Davis [4], Mayne et al. [31], Liu et al. [28],

Dixit et al. [10], Kuznik et al. [21], Mezrhab et al. [33] and Wang et al. [38].

Ra [4] [31] [28] [21] [33] [38] Present

103 umax 3.649 3.649 3.649 3.636 3.667 3.649 3.649

y 0.813 0.812 0.810 0.809 – 0.813 0.814

vmax 3.697 3.696 3.698 3.686 3.714 3.697 3.697

x 0.178 0.179 0.180 0.174 – 0.178 0.176

Nu 1.117 1.114 1.115 1.117 1.112 1.117 1.117

104 umax 16.178 16.179 16.154 16.167 16.202 16.183 16.188

y 0.823 0.823 0.820 0.821 – 0.823 0.822

vmax 19.617 19.617 19.614 19.597 19.644 19.627 19.632

x 0.119 0.119 0.120 0.120 – 0.118 0.119

Nu 2.243 2.259 2.229 2.246 2.241 2.244 2.243

105 umax 34.730 34.774 34.508 34.962 34.805 34.743 34.748

y 0.855 0.853 0.855 0.854 – 0.854 0.856

vmax 68.590 68.692 68.595 68.578 68.630 68.631 68.652

x 0.066 0.066 0.065 0.067 – 0.065 0.065

Nu 4.519 4.483 4.489 4.518 4.519 4.521 4.517

106 umax 64.630 64.691 63.456 64.133 64.793 64.827 64.842

y 0.850 0.846 0.848 0.860 – 0.849 0.849

vmax 219.360 220.833 219.788 220.537 219.663 220.550 220.669

x 0.037 0.038 0.036 0.038 – 0.037 0.037

Nu 8.799 8.881 8.750 8.792 8.817 8.819 8.806

Let ax = ay = 0, the above advection diffusion equation is reduced to
equation anisotropic diffusion coefficient and is expressed as:

∂T

∂t
+ V.∇T = κx

∂2T

∂x2
+ κy

∂2T

∂2y
, (10)

where the values of x-diffusivity κx and y-diffusivity κy are :

κx = C2
s dt

α̃ + 4

2

(
1

σ3
− 1

2

)
, κy = C2

s dt
α̃ + 4

2

(
1

σ5
− 1

2

)
. (11)

Here, α̃ and β̃ are − 2 and 1, respectively. The present D2Q9 ad-
vection diffusion equation can accommodate thermal problem with
isotropic (i. e. κx = κy = κ) diffusivity [7]. When U = V = 0, Eq. (10)
reduces to diffusion equation.

Remark Note here that using D2Q5 for thermal problem (see [3])
and isotropic diffusivity is sufficient, faster and requires less memory
than using D2Q9. The advantages of using Thermal D2Q9 is the ability

Table 4

Convergence for the case Ray = 106 and κx = κy

2 .

Mesh size Nu umax y vmax x

472 23.1332 50.5699 0.8919 168.2357 3.2749.10− 2

572 22.2512 50.7018 0.9019 164.9560 3.9260.10− 2

812 21.4861 50.6805 0.8963 165.0350 4.3209.10− 2

1612 21.2239 50.6957 0.8987 166.2036 3.6139.10− 2

2252 21.2805 50.6999 0.9000 166.5744 3.3333.10− 2

3212 21.2991 50.6979 0.8998 166.4551 3.4857.10− 2

6152 21.3201 50.6970 0.9005 166.5023 3.4205.10− 2

Reference solution 21.3237 50.6955 0.9005 166.5022 3.4009.10− 2

Accuracy 2.1009 2.0582 1.9368 2.0855 1.7009

Table 5

Convergence for the case Ray = 106 and κx = 2κy .

Mesh size Nu umax y vmax x

472 3.8261 119.7447 0.8569 285.6379 4.0420.10− 2

572 3.6802 120.0571 0.8665 280.0695 4.8457.10− 2

812 3.5537 120.0067 0.8612 280.2036 4.7738.10− 2

1612 3.5103 120.0426 0.8634 282.1877 4.4604.10− 2

2252 3.5174 120.0460 0. 8668 282.8932 4.1737.10− 2

3212 3.5227 120.0478 0.8645 282.6147 4.3022.10− 2

6152 3.5262 120.0456 0.8652 282.6949 4.2216.10− 2

Reference solution 3.5268 120.0421 0.8652 282.6946 4.1976.10− 2

Accuracy 2.1747 2.0581 1.8891 2.3270 1.7507

Table 6

Predicted numerical results for different cases: κx =
κy

2
,

κx = κy and for κx = 2κy .

Ra κx =
κy

2
κx = κy κx = 2κy

103 umax 3.3705 3.6496 3.8185

y 0.8142 0.8142 0.8142

vmax 3.4515 3.6973 3.8428

x 0.1761 0.1761 0.1857

Nu 2.4957 1.1179 0.5226

104 umax 12.3628 16.1881 21.1512

y 0.8290 0.8225 0.8225

vmax 16.0159 19.6323 24.0035

x 0.1064 0.1193 0.1322

Nu 5.3711 2.2438 0.9261

105 umax 23.5783 34.7486 56.0032

y 0.8560 0.8560 0.8609

vmax 53.5863 68.6527 86.0559

x 0.0609 0.0658 0.0707

Nu 10.9325 4.5177 1.8262

106 umax 50.6999 64.8428 120.0525

y 0.9000 0.8490 0.8647

vmax 166.5744 220.6695 282.8172

x 0.0333 0.0372 0.0411

Nu 21.2805 8.8062 3.5197

to model non isotropic thermal problem and the possibility to cancel
the dependence of thermal diffusivity on the advection velocity (for
more details see [22]).

2.3. Coupling of dynamic and thermal fields

With the Boussinesq approximation, the buoyancy term is as-
sumed to depend linearly on the temperature as,

Fy = βgy(T − Tre f ) (12)

where β is the thermal expansion coefficient, gy is the acceleration
due to gravity, and Tref is the reference temperature.

To perform the coupling, the buoyancy force Fy is added in mo-
ment space before and after the collision process of the LB scheme as
described by Eq. (1). The procedure goes like this [9]:
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Fig. 4. First component of velocity (U) of flow for Pr=0.71. From top to bottom Ra = 103, 104, 105, and 106 respectively for mesh size 1052, 1552, 2052 and 2552. From left to right :

(left) κx = κy/2, (center) isotropic case κx = κy ,(right) κx = 2κy.

• The y direction momentum (jy) and energy flux (qy) are modified
by adding half of the external force Fy, i.e.

j̄y = jy + *t

2
Fy, q̄y = qy − *t

2
Fy,

• Compute the equilibrium moments in Eq. (5) using j̄y and q̄y to
replace jy and qy.

• Perform collision in Eq. (1).
• Post collision y direction momentum and energy flux are modified

by adding another half of the external force, i.e.,

j̄∗y = j∗y + *t

2
Fy, q̄∗

y = q∗
y − *t

2
Fy,

• Perform streaming in Eq. (2) using j̄∗y and q̄∗
y to replace j∗y and q∗

y.

Other forms of forcing term accounted for the discrete effect could
also be adopted [17]. It is noted that the compressibility may influ-
ence the results, and this can be eliminated by incompressible model

[20]. However, since the present Mach number is low, therefore this
influence could be neglected [35].

2.4. Geometry and boundary conditions

Natural convection in a square cavity , =]0, H[×]0, H[ (see Fig. 1)
is considered, where the flow is bounded by a stationary square
enclosure with sidewalls maintained at different temperatures and
driven by the buoyancy force. For laminar convection in this flow
configuration, the viscous heat dissipation is assumed to be negli-
gible. The temperature difference between the walls introduces a
temperature gradient in the fluid, and the consequent density dif-
ference induces a convective fluid motion. The left wall is at the
higher uniform temperature Tl and the right wall is at the lower uni-
form temperature Tr. Both the top and bottom walls are adiabatic,
i.e. ∂T/∂y = 0. The summary of the boundary conditions is shown
below.

u = v = 0 on ∂, (13)
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Fig. 5. Second component of velocity (V) of flow for Pr=0.71. From top to bottom Ra = 103, 104, 105, and 106 respectively for mesh size 1052, 1552, 2052 and 2552. From left to

right: (left) κx = κy/2, (center) isotropic case κx = κy , (right) κx = 2κy.

T = Tl on {0} × [0, H] (14)

T = Tr on {H} × [0, H] (15)

∂T

∂y
= 0 on [0, H] × {0} and [0, H] × {H} (16)

For Dirichlet boundary condition for the velocity (13) at the walls
of the cavity, the classical half way bounce-back boundary condition
is adopted. So, for example, consider the bottom wall for a boundary
node xb (see left figure of Fig. 2), the following bounce-back boundary
condition is applied.

f2(xb, t + *t) = f4(xe, t + *t) = f ∗
4(xb, t),

f5(xb, t + *t) = f7(xc, t + *t) = f ∗
7(xb, t),

f6(xb, t + *t) = f8(xd, t + *t) = f ∗
8(xb, t).

For the thermal boundary condition, the Dirichlet boundary con-
ditions given by Eqs. (15) and (14) on the left and right wall of the
domain , are introduced. For a given constant temperature T, this

can be archived using the following scheme in boundary node xb on
the right wall (see right figure of Fig. 2) :

g3(xb, t + *t) = − g1(xe, t + *t) + 1

36
(4 − α̃ − 2β̃)T,

g7(xb, t + *t) = − g5(xc, t + *t) + 1

36
(4 + 2α̃ + β̃)T,

g6(xb, t + *t) = − g8(xd, t + *t) + 1

36
(4 + 2α̃ + β̃)T,

For the Neumann boundary condition on the top and bottom wall
of the domain , given by Eq. (16), the classical “bounce back” scheme
is adopted. Consider a boundary node xb in the bottom wall (see right
figure of Fig. 2), the following scheme is used.

g2(xb, t + *t) = g4(xe, t + *t) = g∗
4(xb, t),

g5(xb, t + *t) = g7(xc, t + *t) = g∗
7(xb, t),

g6(xb, t + *t) = g8(xd, t + *t) = g∗
8(xb, t).

For more detail about how to reconstruct the above boundary con-
dition for thermal problem see [7].
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Fig. 6. Streamlines of flow fields (-) for Pr=0.71. From top to bottom Ra = 103, 104, 105, and 106 respectively for mesh size 1052, 1552, 2052 and 2552. From left to right : (left)

κx = κy/2, (center) isotropic case κx = κy ,(right) κx = 2κy.

In the present parallel implementation, the single program
multiple data (SPMD) environment is employed. Message-Passing-
Interface (MPI) is adopted for the communication between the pro-
cessors. The domain decomposition is done on direction of the
computational domain, where the ghost cells are adopted along the
inter-processor boundary.

3. Numerical results and discussion

3.1. Isotropic case

Let consider the isotropic thermal case, i. e. the x- thermal diffusiv-
ity κx is equal to y− thermal diffusivity κy equal to a given thermal
diffusivity κ . In this case we fix σ3 = σ5 to have κx = κy, described
by Eq. (11), equal to the given thermal diffusivity κ . For the present
natural convection within the square cavity as shown in Fig. 1, the
major control parameter is the Rayleigh number Ra = βg*TH3Pr/ν2

associated with the heat transfer within the fluid, where H is the
height or width of the cavity.

The Nusselt number is also an important dimensionless parameter
in describing the convective heat transport. Its average in the whole
flow domain is defined as,

Nu = 1

κ△T

∫ H

0
qx(x, y)dy (17)

where qx(x, y) = uT(x, y) − κ ∂T(x, y)/∂x is the local heat flux in the
horizontal direction.

To compare with previous results, the main quantities to compute
are : umax, y, vmax, x and Nu. Where umax and its location y, the maxi-
mum vertical velocity on the horizontal mid-plane of the cavity, vmax

and its location x, the maximum horizontal velocity on the vertical
mid-plane of the cavity and the average Nusselt number Nu.

We compute, for some cases, the maximum stream function ψmax

on the whole domain. Where the stream function is determined
from:

∇ .(∇ × ψ) = ∂v
∂x

− ∂u

∂y
.
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Fig. 7. Isotherms of flow fields (T) for Pr=0.71. From top to bottom Ra = 103, 104, 105, and 106 respectively for mesh size 1052, 1552, 2052 and 2552. From left to right : (left)

κx = κy/2, (center) isotropic case κx = κy ,(right) κx = 2κy.

Note here that for the computation of Nu described by Eq. (17),
the temperature gradient ∂T

∂x
is need. To calculate this gradient we do

not do any additional interpolation method. In fact this quantity can
be evaluated by using Taylor expansion [8] up to second-order of the
non-conserved moment m̃1:

m̃1 = − λ2*t
1

σκ

[
4 + α̃

6

∂T

∂x

]
+ O(*t2).

All the velocities are normalized using the diffusion velocity κ/H.
The temperature are dimensionless, locations x and y are normalized
using H.

3.2. Stability and admissible grid

Let define the Mach number as follows:

Ma = U

Cs
, (18)

where the quantity U =
√

αg*TH =
√

Ra
Pr

ν
H is the characteristic ve-

locity in thermal convective flows. So, to keep stability of the LBM
scheme related dynamic field, the Mach number should be smaller
than critical value 3

10 (see [38] for more details). As in numerical sim-
ulation the parameters are fixed as Pr = 0.71 and ν = 0.01, Eq. (18)
gives a constrain on mesh size H. In fact, the mesh size must verify

10

3

ν
Cs

√
Ra

Pr
< H. (19)

Example for Ra = 107 and Ra = 108 the mesh size must satisfy H
> 216 and H > 685, respectively.

3.3. Grid dependence

We begin by the study of the grid dependence and the accuracy
of the scheme. In fact, Table 1 gives the results for the simulation
for Rayleigh number Ra = 106 by using some different mesh sizes.
We note that the calculated values approach the values given by the
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benchmark of de Vahl Davis [4] and the benchmark of Le Quéré [25].
In other hand table shows also second order accuracy for every mea-
sured quantities. Where the accuracy is calculated by least squares
method using relative error between the solution obtained by mesh
size N2 and the reference one obtained by fine mesh (N2

re f
= 10012).

We have also see the grid dependance in the case of Ra = 108 for
the following mesh size : 495 × 495, 987 × 987 and 2016 × 2016.
The Table 2 shows that the quantities calculated quickly approach the
values given by the benchmark of the Le Quéré [25]. We note here
that the first grid size do not resolve the stability condition Eq. (19).
But this size still gives a good solution.

3.4. Isotropic test case

Many papers study the square heated cavity, for the following 4
values of the Ra numbers : Ra = 103, 104, 105 and 106. So we compare
our results to the following results: de Vahl Davis [4] benchmark so-
lution where second order finite differences scheme and a Richardson
extrapolation scheme are used, Mayne et al. [31] using h-adaptive fi-
nite element method, Kuznik et al. [21] and Liu et al. [28] using TLBM
based on the BGK and Mezrhab et al. [33] and Wang et al. [38] using
TLBM based on MRT D2Q9 for flow and MRT D2Q5 for temperature.

Table 3 shows the numerical results where the domain is covered
by a lattice sizes of 105 × 105, 155 × 155, 205 × 205 and 255 ×
255, respectively for Ra = 103, 104, 105 and 106 compared to the re-
sults obtained by the methods listed above. The simulated results are
contrasted with the benchmark solutions of De Vahl Davis [4] and
the agreements are satisfactory. It is also noted that differences of
the predicted velocities and average Nusselt number are less than
0.1%. The middle column of Figs. 3–7 show the solution predicted
by the present double D2Q9 MRT LBE method for Rayleigh numbers
Ra = 103, for Ra = 104, Ra = 105 and Ra = 106 for isotropic case.

3.5. Anisotropic test case

In this section the effect of the anisotropy is performed. Let κx

the x thermal diffusivity and κy the y thermal diffusivity. So we de-
fine the x Rayleigh number Rax = βg*TH3κx/ν associated with the
x thermal diffusivity and Ray = βg*TH3κy/ν associated with the y
thermal diffusivity. The choice of the anisotropy will be for different
Rayleigh numbers fixed Ray = 103, . . . , 106 as follows:

• x thermal diffusivity given by κx =
κy

2
.

• x thermal diffusivity given by κx = 2 κy.

The average of Nusselt number in the whole flow domain is de-
fined now as,

Nu = 1

κx△T

∫ H

0
qx(x, y)dy (20)

where qx(x, y) = uT(x, y) − κx ∂T(x, y)/∂x is the local heat flux in
the horizontal direction.

To compare with isotropic results, the same main quantities to
compute are : umax, y, vmax, x and Nu. We remark that all the velocities
are normalized using the y diffusion velocity κy/H.

First we study the convergence and the accuracy of the scheme for
anisotropic case. In fact, Tables 4 and 5 give the results for the simula-
tion in case of Rayleigh number Ray = 106, for κx = κy

2 and κx = 2κy,

respectively, by using some different mesh sizes. Tables 4 and 5 show
also second order accuracy for every measured quantities. Here the
accuracy is calculated by least squares method using relative error
between the solution obtained by mesh size N2 and the reference one
obtained by fine mesh (N2

re f
= 10012).

Table 6 shows the numerical results for three different cases:
κx = κy

2 , κx = κy (isotropic case) and κx = 2κy. The domain is cov-
ered by a lattice sizes of 105 × 105, 155 × 155, 205 × 205 and 255

× 255, respectively for Ray = 103, 104, 105 and 106. We note here that
the umax and vmax increase when the κx increase. This is due to the
fact of the imposed hot wall (at x = 0) and cold wall (at x = 1) is in x
direction.

Figs. 3–7 show the solution predicted by the present double D2Q9
MRT LBE method for Rayleigh numbers Ray = 103, 104, 105 and 106

for anisotropic case. We refind here that the effect of x thermal diffu-
sivity κx is more important than y thermal diffusivity κy. In fact when
κx = 2κy the velocity of the fluid is bigger.

4. Conclusion

In this paper, a multi-relaxation time thermal lattice Boltzmann
scheme has been applied to compute natural convection flow within
differential heated square cavity. For Rayleigh number under 106 the
present results compare favorably with previous benchmark solu-
tions. Then anisotropic thermal diffusion is investigated (κx = κy

2 and
κx = 2κy). The solution is compared to the isotropic case. We note the
ability of double D2Q9 population to resolve anisotropic problem. Fi-
nally we remark when the x thermal diffusivity κx increase the ve-
locity of the fluid increase and the convergence of the scheme to the
steady state is faster.
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