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Abstract

We use lattice Boltzmann method to model anisotropic diffusion problem called “oblique
flow". We have adapted a general methodology for equivalent equations to the explicit
determination of discrete gradient and fluxes for this problem. We validate this numerical
approach with a detailed comparison with finite differences.
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1 Lattice Boltzmann scheme

The lattice Boltzmann scheme or Lattice Boltzmann Equation “LBE" is a mesoscopic
method and deals with a small number of functions {f;} that can be interpreted as popu-
lations of fictitious “particles". We consider in this work the particular D2Q9 [dH92] model
(i.e. d = 2 two-dimensional LBE model with nine velocities ¢ = 9). The space is dis-
cretized by a regular lattice £ parametrized by a spatial scale Axz. This lattice is composed
by aset L% = {z; € (AzZ)?} of nodes or vertices. We choose the velocities ¢;,i € (0...8)
defined by: ¢ = (0,0), (1,0), (0,1), (—1,0), (0,-1), (1,1), (—1,1), (—=1,-1), (1,—1) and
we define At as the time step of the evolution of LBE and let the celerity A = i—f. We
choose the velocities v;,i € (0...8) such that v; = Ci% =\
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The populations f; evolve according to the LBE scheme which can be written as fol-
lows [Du08|:

(1) filzy, t+ At) = fi(z; —vAt,t), 0<i<8,

where the superscript * denotes post-collision quantities. Therefore during each time
increment At there are two fundamental steps: collision and advection.

e In the advection step the “particles” move from a lattice node z; to either itself (with
the velocity vg = 0), one of the four nearest neighbors (with the velocity v;, 1 < i < 4),
or one of the four next-nearest neighbors (with the velocity v;, 5 <1 < 8).

e The collision step consists in the redistribution of the populations {f;} at each node z;,
and it is modeled by the operator superscript * in (1). This step is best described in the
space of moments my, [dH92|. They are obtained by a linear transformation of vectors f;:
my = > ; My f;. Explicit formula for My is given by

1 1 1 1 1 1 1 1 1
A 0 =X 0 A=A =A
0 0 A 0 —=A A A=A =
-4 -1 -1 -1 -1 2 2
M = 4 -2 -2 =2 =2 1 1 1
0 -2 0 2 0 1 -1 -1
0 0 -2 0 2 1 1 -1 -1
0 1 -1 1 -1 0 0 0
0 0 0 0 0 1 -1 1 -1

Note that matrix M is invertible and orthogonal. To simulate diffusion problems, we con-
serve only the first moment my = T in the collision step and obtain one macroscopic scalar
equation. For the other quantities (non-conserved moments), we assume that they relax
towards equilibrium values m;? that are nonlinear functions of the conserved quantities
and set:

my = (1 —sp)my +spmy?, 1<k<S8,

where s is a relaxation rate which satisfy 0 < s, < 2 to get a numerically stable scheme.
The precise values of s; are given in the second section With the following choice of
equilibrium values: m{? =0, m3? =0, m5? = o7, m{’ = BT, m? =0, mg! =0, m? =
az, T and mg! = a,,T and using Taylor expansion [DLT08], we find the diffusion equation
up to order three in At:

%—f — div(KVT) = O(A#).

where K = (k; )1<”<2 is the diffusion tensor where ki3 = ’\26At(é — %)(4 + o+ 3ag.),

I€12 = kgl )\ ( + — — 1)amy and k22 = AzﬁAt(g — —)(4 + o — 3am)
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2 Numerical results

e Test 3 Oblique flow, min = 0, max = 1, uniform rectangular mesh, mesh2 We
have used LBE D2Q9 scheme to solve the following anisotropic diffusion problem so called
“oblique flow”:

(2) —div(KVu) =0 in Q=]0,1* u=u on 0Q.

where K = Ry diag(1,1073) R, ', Ry is the rotation of angle § = 40 degrees, and @ = 1
on (0,0.2) x {0} U {0} x (0,0.2), 0 on (0.8,1) x {1} U {1} x (0.8,1), £ on (0.3,1) x
{0} U {0} x (0.3,1),2 on (0,0.7) x {1} U {1} x (0,0.7). Figure 1 and Figure 2 show the
approximate solution on the following uniform rectangular mesh, mesh2: (201 x 21§ =
2..7, calculated by D2Q9 scheme after convergence (i.e. 2.10° iterations) with s; = 1.3,
so = 1.8 and # = 1 and other parameters are fixed to have K as the diffusion tensor given
(2). To impose @ on boundary we have use a first order scheme for boundary conditions
described in [DLT08].

Figure 1. Solutions for the oblique flow on mesh2 i for i=2 (left), i=3 (center), i—/
(right). The Grey scale of the figure corresponds to a linear variation from 0 (black) to 1
(white).

Figure 2. Solutions for the oblique flow on mesh2_i for i=5 (left), i—6 (center), i=7
(right).
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Figure 3. Solutions for the oblique flow on mesh 4 (32 x 32) at y = 17. (a)
Approzimate solution vs x on the center and boundary of the volume control K. (b)
Approzimate solution vs x using Taylor expansion on the center of the volume control K
where discrete Vu 1s given by LBE.

We note that we can improve the approximate solution by using the discrete gradient Vu
without any additional computation (as Vu is given by LBE). Figure 3 (a) shows the
interpolate solution and Figure 3 (b) shows the solution using Taylor expansion of order
one in Az, where Vu is given by LBE.

i | nunkw nnmat sumflux umin umax

1]9x16 - 5.27E-16 1.14E-01 8&.86E-01
2|1 9x%x64 - 2.44E-15 3.78E-02 9.62E-01
319 x 256 - 1.01E-14 1.11E-02 9.89E-01
419 x 1024 - 3.59E-14 7.14E-03 9.93E-01
5|9 x 4096 - 1.42E-13 3.53E-03 9.96E-01
6|9 x16384 - 5.75E-13 1.76E-03 9.98E-01
719 x 65536 - 7.88E-10 9.36E-04 9.99E-01

Table 1. Number of unknowns (nunkw), the discrete fluz balance (sumfluz), value of the
minimum (umin) and value of the mazimum (umaz) vs the mesh size i.

Table 1 shows the following quantities:

e nunkw: number of unknowns.

e nnmat: number of nonzero terms in the matrix. As the lattice Boltzmann scheme is
an explicit method, designed to simulate time dependent problems, we have no matrix
to inverse to find solution (like in classical numerical method finite elements or finite
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volumes) but we have to make many iterations to reach convergence.

e sumflux: the discrete flux balance, that is: fluxO+flux1+fluyO-+fluyl-sumf, where flux0,
flux1, fluy0, fluyl are the outward fluxes at the boundaries z =0,z =1,y =0, y = 1,
for example flux0 is an approximation of — [ _ KVu.nds, and sumf= Y |K|f(z;)
where z; denotes lattice node and represents the center of the control volume K. Since
f = 0 in our test (no source term in equation (2)), we have sumf= 0 and sumflux= 0
(see Table 1). Here the discrete gradient Vu on the boundaries is computed using the
Dirichlet boundary condition @ and the mass flux j [DLT08] on the boundaries. Note that
when refining the mesh, the sumflux variable looses 6 orders of magnitude. This indicates
the difficulties to reach the steady state.

e umin: value of the minimum of the approximate solution. Table 1 shows that the
minimum umin converge to 0 and umin > 0. The variable umax is the value of the
maximum of the approximate solution. Table 1 shows that the maximum umax converge
to 1 and umax < 1. Note that the effective grid points follow the classical cell center
finite volume methodology. Hence the points at which umin and umax are determined
are located at % from the actual boundary and thus data in Table 1 have not been
extrapolated to the boundary.

flux0 flux1 fluy0 fluyl
1.46E-01 2.57E-01 1.52E-01 -5.57E-01
1.04E-01 -1.04E-01 1.89E-01 -1.89E-01
2.46E-01 -2.46E-01 4.90E-02 -4.90E-02
1.97E-01 -1.97E-01 9.53E-02 -9.53E-02
1.75E-01 -1.75E-01 1.16E-01 -1.16E-01
1.89E-01 -1.89E-01 1.02E-01 -1.02E-01
1.96E-01 -1.96E-01 9.56E-02 -9.56E-02

N O O s W N e

Table 2. Outward fluzes at the boundaries with Taylor expansion. Results obtained using
the discrete gradient Vu given by the LBE method.

flux0 flux1 fluy0 fluyl
-3.18E-01 3.18E-01 2.02E-02 -2.02E-02
-6.78E-02 6.78E-02 -1.28E-01 1.28E-01
2.51E-01 -2.51E-01 1.61E-01 -1.61E-01
2.50E-01 -2.50E-01 1.60E-01 -1.60E-01
1.76E-01 -1.76E-01 8.30E-02 -8.30E-02
1.76E-01 -1.76E-01 8.31E-02 -8.31E-02
1.96E-01 -1.96E-01 1.02E-01 -1.02E-01

N O Ot = W DN |

Table 3. Outward fluzes at the boundaries with Taylor expansion. Results obtained using
the discrete gradient Vu given by finite difference method.
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In Table 2 and Table 3 we show the values (flux0,flux1,fluy0,fluyl) the outward fluxes at
the boundaries vs the i which represent the mesh size of mesh2 (equal to 2(:+9) x 20+9).
The discrete gradient Vu on the boundaries is obtained in Table 2 by using fluxes at the
boundaries |DLT08| (Fourier low), Dirichlet boundaries condition @ and Taylor expan-
sion [Du08|. In table 3 the fluxes are obtained by using the discrete gradient Vu on the
boundaries obtained by parabolic interpolation. We note here that the outward fluxes
computed by both above methods converge to the same value on the fine grids.

enerl ener2 eren
2.42E-01 2.02E-01 1.64E-02
2.53E-01 2.55E-01 9.39E-04
2.08E-01 2.75E-01 6.16E-03
2.55E-01 2.66E-01 4.07E-03
2.44E-01 2.50E-01 2.72E-03
2.42E-01 2.45E-01 8.95E-04
2.42E-01 2.43E-01 3.00E-04

N O O = W N e

Table 4. Two computations of energy enerl and ener?2. Results obtained using the
discrete gradient Vu given by the LBE method.

enerl ener2 eren
5.83E-01 2.21E-01 6.20E-02
7.71E-01 3.35E-01 5.65E-02
5.67E-01 4.93E-01 1.30E-02
3.56E-01 4.37E-01 1.84E-02
2.59E-01 2.88E-01 1.00E-02
2.47E-01 2.57E-01 3.92E-03
2.43E-01 2.60E-01 6.62E-03

N O O = W DN | =

Table 5. Two computations of energy enerl and ener2. Results obtained using the
discrete gradient Vu given by finite difference method.

Table 4 and able 5 show the following quantities:

e enerl: is energy given by enerl = fQ KVu.Vudz. To compute enerl we need the discrete
gradient Vu on all nodes x; of the mesh. This discrete gradient is given by the method
using moments (my, mg) or (ms, mg), for more details see [DLT08].

e ener2: is energy given by ener2 = faﬂ KVu.nudx. We note here that to compute ener2,
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we use only the boundary outward normal fluxes. Since f = 0 (i.e. no source term in
equation (2)), the quantities enerl and ener2 should converge to the same value. Table
1 shows that these two discrete quantities converge to the same value and shows that
relative error between enerl, ener2 given by: eren = |enerl — ener2|/max(enerl, ener2),
converge to zero on fine grids.

Table 5 shows the value enerl, ener2 and eren computed using discrete gradient Vu which
is obtained by finite differences (using a 9 points stencil). We note here that the results
obtained by LBE (see Table 4) are more efficient than those obtained by finite differences
method.

3 Comments on the results

The lattice Boltzmann scheme is a mesoscopic method which have a lot of unknowns per
node of the lattice (9 unknowns in D2Q9 model), however linear combinations of these
local unknown allow to compute the first order and the second order space derivatives
of the solution. We have shown how to adapt the lattice Boltzmann scheme to simulate
an anisotropic diffusion problem and present numerical results showing that the scheme
converges to the solution.

The lattice Boltzmann scheme has been designed for time dependent situations and is
founded on the fact that the scheme is exact for particular advection velocities. We have
used this method for a steady diffusion problem. The scheme converges slowly towards
the stationary solution with a time constant proportional to the number of nodes in the
mesh. We have not used any acceleration techniques like embedded grids.
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