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Abstract We investigate in this article the boundary layers appearing in a fluid under
moderate rotation when the viscosity is small. The fluid is modeled by the time-
dependent rotating Stokes equations also known as the Stokes–Coriolis equations.
The equations are considered in an infinite channel with periodicity on the lateral
boundary and Dirichlet boundary conditions on the top and bottom of the channel.
First, we analytically derive the correctors which describe the sharp variations at large
Reynolds number (i.e. small viscosity). Second, thanks to a modified finite volume
method (MFVM) we give the numerical solutions of the Stokes–Coriolis system at
small viscosity (10−3–10−10). We follow the common idea which consists of adding
the corrector functions to the Galerkin basis or its analogous for the classical Finite
Volume Method, see Gie et al. (Discrete Contin Dyn Syst 36(5):2521–2583, 2016),
Gie and Temam (Int J Numer Anal Model 12(3):536–566, 2015), Shih and Bruce
(SIAM J Math Anal 18(5):1467–1511, 1987). The MFVM introduced here can be
applied to a large class of singular perturbation problems.
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1 Introduction

We are interested in this article in the study of boundary layers of a time-dependent
rotating fluid when the viscosity is small and the boundary is characteristic; this occurs
for example when the boundary is solid and at rest. The boundary conditions are then
homogeneous of Dirichlet type. More precisely, we consider a 3D flow which verifies
the following system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂uε

∂t
− ε#uε + ω × uε + ∇ pε = f , in $∞ × (0, T ),

div uε = 0, in $∞ × (0, T ),
uε = 0, on ∂$∞
uε is 2π -periodic in the x and y directions,
uε
|t=0 = u0.

(1.1)

Here ω = αe3 where e3 is the unit vector in the canonical basis of R3,$∞ = R2 ×
(0, h) is the relevant domain, ∂$∞ = R2 × {0, h} its boundary. The functions u0 and
f are given and supposed to be as regular as necessary. Without loss of generality,
the constant h will be taken from now equal to 1. For more details about the theory of
rotating fluids, see [4] and [14] and the references therein.

The solutions (uε, pε) of the system (1.1) are such that uε(t; x, y, z) =
(uε

1, u
ε
2, u

ε
3) ∈ R3 and pε ∈ R, the coefficient ε is a positive constant represent-

ing the inverse of the Reynolds number or the viscosity of the fluid. Throughout this
paper the coefficient ε > 0 is intended to be small ε ≪ 1. Because of the periodic-
ity conditions (1.1)4 we will consider a portion of the channel $∞ that we denote by
$ = (0, 2π)×(0, 2π)×(0, 1) and its boundary' = ∂$ = (0, 2π)×(0, 2π)×{0, 1}
on which all our calculations will be done.

By standard energy estimates, it is easy to see that uε, the solution of (1.1), is
bounded in L∞(0, T ; L2($)). Hence, it is now natural to look for the limit as ε → 0.
Formally, the limit solution corresponding to the system (1.1), that we denote here by
u0, is simply obtained by setting ε = 0 in (1.1). Hence, we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂u0

∂t
+ ω × u0 + ∇ p0 = f , in $ × (0, T ),

div u0 = 0, in $ × (0, T ),

u03 = 0, on ∂$,

u0 is 2π -periodic in the x and y directions,
u0|t=0 = u0.

(1.2)

The absence in the limit system of the Laplacian term (−ε#uε) which is a reg-
ularizing term, generates a loss of regularity for the limit solution u0. Thus some
discrepancies between the viscous and inviscid solutions appear near the boundary
of the domain, that is here z = 0, 1 as it is mentioned in (1.1)3 and (1.2)3. These
thin regions are called boundary layers and where the convergence of uε to u0 is not
expected at least in some Sobolev spaces as we will see later on. Hence, we introduce
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MFVM for rotating channel flows. . .

some correcting term called correctors for which the equations must be of course
simpler than the ones in the original problem, namely (1.1). See e.g. [7,17,18,21] for
more details about the theory of correctors.

The rest of the article is organized as follows. In Sect. 2, we derive the analytical
expression of the correctors in addition to several estimates useful for the asymptotic
analysis later on. Then, in Sect. 3, we prove the main theoretical result of this article
which rigourously confirms the choice of the correctors. From the numerical point of
view, we recall in Sect. 4 the CFVM discretization of the solution of (1.1) which is
inherited from [11].Afterwards,we introduce theMFVMinSect. 5 andwenumerically
prove its accuracy in Sect. 6. Finally, in Sect. 7, we end the article with the conclusion
and some future research directions.

2 The corrector equations

To study the asymptotic behavior of uε, when ε → 0, we propose the following
asymptotic expansion of uε:

uε ≃u0 + ϕε,

where ϕε is the corrector function that will be introduced to correct the difference
uε − u0 at z = 0, 1. The equations verified by ϕε are as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂ϕε

∂t
− ε

∂2ϕε

∂z2
+ ω × ϕε = 0, in $ × (0, T ),

divϕε = 0, in $ × (0, T ),

ϕε
|z=0,1 = −u0|z=0,1,

ϕε is 2π -periodic in the x and y directions,

ϕε
|t=0 = 0.

(2.1)

We now introduce an approximate function ϕ̌ε of ϕε defined as the sum of ϕ0,ε

and ϕ̃1,ε the correctors that we propose to solve the boundary layers at the boundaries
z = 0 and z = 1, respectively,

ϕ̌ε(t, x, y, z) = ϕ0,ε
(
t, x, y,

z√
ε

)
+ ϕ̃1,ε

(
t, x, y,

1 − z√
ε

)
.

Omitting for instance the incompressibility condition (2.1)2 and considering the
boundary conditions (2.1)3 separately at z = 0 and z = 1, then the system verified by
ϕ0,ε is given by:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂ϕ0,ε

∂t
− ∂2ϕ0,ε

∂z2
+ ω × ϕ0,ε = 0, in $̃ × (0, T ),

ϕ0,ε(z = 0) = −u0(z = 0),
ϕ0,ε → 0 as z → ∞,

ϕ0,ε is 2π -periodic in the x and y directions,
ϕ0,ε
|t=0 = 0,

(2.2)
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where z = z√
ε
, and we denoted by $̃ the stretched domain, i.e. $̃ = (0, 2π) ×

(0, 2π) × (0,+∞).
Similarly ϕ̃1,ε satisfies the following system:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂ϕ̃1,ε

∂t
− ∂2ϕ̃1,ε

∂ z̃2
+ ω × ϕ̃1,ε = 0, in $̃ × (0, T ),

ϕ̃1,ε (̃z = 0) = −u0(̃z = 0),
ϕ̃1,ε → 0 as z̃ → ∞,

ϕ̃1,ε is 2π -periodic in the x and y directions,
ϕ̃1,ε
|t=0 = 0,

(2.3)

where z̃ = 1 − z√
ε

.

In the following we will derive the expressions of the solutions of the systems (2.2)
and (2.3). For that purpose, we need the following proposition where we used the
techniques borrowed from [22] to prove the result stated below.

Proposition 2.1 Let u = u(t; x, y, z) be the solution of the following problem:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂u
∂t

− ∂2u
∂z2

+ ω × u = 0, in $̃ × (0, T ),

u = g , at z = 0,
u → 0, as z → +∞,

u = 0, at t = 0.

(2.4)

where g = (g1, g2, 0) is a continuous function in $̃ × (0, T ) and w = αe3.
Then, the explicit expression of u is given by:

u(t; x, y, z) = −
∫ t

0

∂K
∂z

(t − τ, z)[(g − i(e3 × g))(τ, x, y, 0)eiα(τ−t)

+ (g + i(e3 × g))(τ, x, y, 0)eiα(t−τ )]dτ,

where i is the complex number s.t. i2 = −1, and K is the fundamental solution of the
heat equation:

K (t, z) = 1√
4π t

e
−z2
4t .

Proof Let u = (u1, u2, u3) be the solution of (2.4). We have g3 = 0, hence u =
(u1, u2, 0), i.e. u3 = 0. Taking the cross product of (2.4)1 with e3, we find:

∂t (e3 × u) − ∂2z (e3 × u) − αu = 0.

We then set C± = u ∓ i(e3 × u), we obtain:

∂tC± − ∂2z C
± ± iαC± = 0.
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Denoting by H ± = C± e± iαt , one arrives to the following system:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂H ±

∂t
− ∂2H ±

∂z2
= 0, in $̃ × (0, T ),

H ± (z = 0) = (g(z = 0) ∓ i(e3 × g(z = 0))e± iαt ,

H ± → 0, as z → +∞,

H ± |t=0 = 0.

(2.5)

Hence H ± satisfies a heat equation with non-homogeneous boundary conditions, then
it has the following expression [3]:

H ± = −2
∫ t

0

∂K
∂z

(t − τ, z)[(g ∓ i(e3 × g))(τ ; x, y, 0)]e± iατdτ.

Then, we infer that:

C± = −2
∫ t

0

∂K
∂z

(t − τ, z)[(g ∓ i(e3 × g))(τ ; x, y, 0)]e± iα(τ−t)dτ.

Coming back to u we have:

u = 1
2
(C+ + C−),

hence we deduce the explicit expression of the solution of (2.4):

u = −
∫ t

0

∂K
∂z

(t − τ, z) × {[(g − i(e3 × g))(τ, x, y, 0)]eiα(τ−t)

+[(g + i(e3 × g))(τ, x, y, 0)]eiα(t−τ )}dτ.

Now, according to Proposition 2.1, the solution of (2.2) ϕ0,ε = (ϕ0,ε
1 ,ϕ0,ε

2 ,ϕ0,ε
3 ) has

the following expression:

ϕ0,ε
j = −

∫ t

0

1√
4π(t − τ )

z
2
√

ε(t − τ )
e

−z2
4ε(t−τ ) × {2u0j (τ, x, y, 0) cos(α(τ − t))

+ 2(e3 × u0) j (τ, x, y, 0) sin(α(τ − t))}dτ, j = 1, 2, (2.6)

for the two tangential components ofϕ0,ε, and the normal component ofϕ0,ε is simply
deduced using the incompressibility condition:

ϕ0,ε
3 = −

∫ t

0

√
ε√

4π(t − τ )
e

−z2
4ε(t−τ ) × {−2∂zu03(τ, x, y, 0) cos(α(τ − t))

−2(∂xu02 − ∂yu01)(τ, x, y, 0) sin(α(τ − t))}dτ
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+
∫ t

0

√
ε√

4π(t − τ )
e

−1
4ε(t−τ ) × {−2∂zu03(τ, x, y, 0) cos(α(τ − t))

−2(∂xu02 − ∂yu01)(τ, x, y, 0) sin(α(τ − t))}dτ. (2.7)

Then we write the system satisfied by ϕ0,ε which reads as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ϕ0,ε

∂t
− ε

∂2ϕ0,ε

∂z2
+ ω × ϕ0,ε =

(

0, 0,
∂ϕ0,ε

3

∂t
− ε

∂2ϕ0,ε
3

∂z2

)

, in $ × (0, T ),

div ϕ0,ε = 0, in $ × (0, T ),
ϕ0,ε(z = 0) = (−u01(z = 0),−u02(z = 0),ϕ0,ε

3 (z = 0)),
ϕ0,ε(z = 1) = (ϕ0,ε

1 (z = 1),ϕ0,ε
2 (z = 1), 0),

ϕ0,ε is 2π -periodic in the x and y directions,
ϕ0,ε(t = 0) = 0.

(2.8)
Now, we have to calculate the right-hand side (denoted hereafter RHS) of (2.8)1. First,
by differentiating (2.7) with respect to the time variable t , we obtain:

∂ϕ0,ε
3

∂t
=

∫ t

0

√
ε

4
√

π(t − τ )
3
2

e
−z2

4ε(t−τ ) × {−2∂zu03(τ, x, y, 0) cos(α(τ − t))

−2(∂xu02 − ∂yu01)(τ, x, y, 0) sin(α(τ − t))}dτ

−
∫ t

0

z2

8
√

ε
√

π(t − τ )
5
2

e
−z2

4ε(t−τ ) × {−2∂zu03(τ, x, y, 0) cos(α(τ − t))

−2(∂xu02 − ∂yu01)(τ, x, y, 0) sin(α(τ − t))}dτ

−
∫ t

0

√
ε√

4π(t − τ )
e

−z2
4ε(t−τ ) × {−2α∂zu03(τ, x, y, 0) sin(α(τ − t))

+ 2α(∂xu02 − ∂yu01)(τ, x, y, 0) cos(α(τ − t))}dτ

−
∫ t

0

√
ε

4
√

π(t − τ )
3
2

e
−1

4ε(t−τ ) × {−2∂zu03(τ, x, y, 0) cos(α(τ − t))

−2(∂xu02 − ∂yu01)(τ, x, y, 0) sin(α(τ − t))}dτ

+
∫ t

0

1

8
√

ε
√

π(t − τ )
5
2

e
−1

4ε(t−τ ) × {−2∂zu03(τ, x, y, 0) cos(α(τ − t))

− 2(∂xu02 − ∂yu01)(τ, x, y, 0) sin(α(τ − t))}dτ

+
∫ t

0

√
ε√

4π(t − τ )
e

−1
4ε(t−τ ) × {−2α∂zu03(τ, x, y, 0) sin(α(τ − t))

+ 2α(∂xu02 − ∂yu01)(τ, x, y, 0) cos(α(τ − t))}dτ. (2.9)
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Then by differentiating ϕ0,ε
3 with respect to the normal variable z, we obtain:

ε
∂2ϕ0,ε

3

∂z2
= −

∫ t

0

√
ε

4
√

π(t − τ )
3
2

e
−z2

4ε(t−τ ) × {2∂zu03(τ, x, y, 0) cos(α(τ − t))

+2(∂xu02 − ∂yu01)(τ, x, y, 0) sin(α(τ − t))}dτ

−
∫ t

0

z2

8
√

πε(t − τ )
5
2

e
−z2

4ε(t−τ ) × {−2∂zu03(τ, x, y, 0) cos(α(τ − t))

−2(∂xu02 − ∂yu01)(τ, x, y, 0) sin(α(τ − t))}dτ. (2.10)

Therefore we deduce from (2.9) and (2.10):

∂ϕ0,ε
3

∂t
− ε

∂2ϕ0,ε
3

∂z2
= −

∫ t

0

√
ε√

4π(t − τ )
e

−z2
4ε(t−τ ) × {−2α∂zu03(τ, x, y, 0) sin(α(τ − t))

+ 2α(∂xu02 − ∂yu01)(τ, x, y, 0) cos(α(τ − t))}dτ

−
∫ t

0

√
ε

4
√

π(t − τ )
3
2

e
−1

4ε(t−τ ) × {−2∂zu03(τ, x, y, 0) cos(α(τ − t))

− 2(∂xu02 − ∂yu01)(τ, x, y, 0) sin(α(τ − t))}dτ

+
∫ t

0

1

8
√

ε
√

π(t − τ )
5
2

e
−1

4ε(t−τ ) × {−2∂zu03(τ, x, y, 0) cos(α(τ − t))

− 2(∂xu02 − ∂yu01)(τ, x, y, 0) sin(α(τ − t))}dτ

+
∫ t

0

√
ε√

4π(t − τ )
e

−1
4ε(t−τ ) × {−2α∂zu03(τ, x, y, 0) sin(α(τ − t))

+ 2α(∂xu02 − ∂yu01)(τ, x, y, 0) cos(α(τ − t))}dτ. (2.11)

We denote by J1 + · · · + J4 the sum of the terms in the RHS of (2.11).
Then, estimating |J1|, we get:

|J1| ≤ k
√

ε

∫ t

0

1√
t − τ

e
−z2

4ε(t−τ ) dτ

≤ k
√

ε

∫ t

0

1√
t − τ

dτe
−z2
8εT , (2.12)

and we obtain the L2-norm of the term J1:

∥J1∥2L2($)
≤ kε

∫ 1

0
e

−z2
4εT dz

≤ kε
∫ 1

0
e

−cz√
εT dz, c > 0

≤ kε3/2.
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Hence, we obtain
∥J1∥L2($) ≤ kε3/4. (2.13)

Finally, combining (2.13) and the fact that J2, J2 and J4 are e.s.t. (where e.s.t. stands
for quantities which are exponentially small terms in all Hm((0, T ) × $), m ≥ 0),
we conclude that: ∥∥∥∥∥

∂ϕ0,ε
3

∂t
− ε

∂ϕ0,ε
3

∂z2

∥∥∥∥∥
L2($)

≤ kε3/4. (2.14)

Remark 1 By symmetry the corrector ϕ̃1,ε has the same expression as ϕ0,ε with z
replaced by 1 − z. Hence, all the estimates satisfied by ϕ0,ε remain valid for ϕ̃1,ε.

3 Convergence result

In this section we prove the main theoretical result of this article.

Theorem 3.1 The solution uε of (1.1), with u0 and f supposed to be sufficiently
smooth, satisfies the following estimates:

∥uε − u0 − ϕ0,ε − ϕ̃1,ε∥L∞(0,T,L2($)) ≤ kε3/4, (3.1)

∥uε − u0 − ϕ0,ε − ϕ̃1,ε∥L2(0,T,H1($)) ≤ kε1/4, (3.2)

where k is a positive constant depending on the data but not ε and u0, ϕ0,ε, and
ϕ̃1,ε are defined respectively by (1.2), (2.8) and as in Remark 1. Here we denoted by
L2($) = (L2($))3 and H1($) = (H1($))3.

Proof First we observe that the corrector ϕε does not satisfy the desired boundary
conditions as given by (2.1)3, this is due to the choice of a corrector in a simpler form.
To overcome this difficulty we introduce additional (small) correctors θ

ε
and θ̃

ε
as

follows: ⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−ε#θ
ε + ∇*ε = 0, in $ × (0, T ),

divθ
ε = 0,

θ
ε|z=0 = (0, 0,−ϕ0,ε

3 |z=0),

θ
ε|z=1 = (−ϕ0,ε

1 |z=1,−ϕ0,ε
2 |z=1, 0),

θ
ε
is 2π -periodic in the x and y directions,

(3.3)

and ⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−ε#θ̃
ε + ∇Qε = 0, in $ × (0, T ),

diṽθ
ε = 0,

θ̃
ε|z=1 = (0, 0,−ϕ̃0,ε

3 |z=1),

θ̃
ε|z=0 = (−ϕ̃0,ε

1 |z=0,−ϕ̃0,ε
2 |z=0, 0),

θ̃
ε
is 2π -periodic in the x and y directions.

(3.4)

⊓/
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Remark 2 The boundary values of θ
ε
and θ̃

ε
satisfy the compatibility condition∫

z=0,1 θ
ε · n d' = 0 and

∫
z=0,1 θ̃

ε · n d' = 0, thanks to the 2π -periodicity in x
and y of u01 and u02.

To estimate the L2- norm of the additional correctors, we set θ
ε = √

ε̃θ
ε
,*ε =

ε3/2*̃ε, hence θ̃
ε
satisfies the following system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−#θ̃
ε
+ ∇*̃ε = 0, in $ × (0, T )

diṽθ
ε
= 0,

θ̃
ε
|z=0 =

(
0, 0,−ϕ

0,ε
3√
ε
|z=0

)
,

θ̃
ε
|z=1 =

(
−ϕ

0,ε
1√
ε
|z=1,−ϕ

0,ε
2√
ε
|z=1, 0

)
,

θ̃ is 2π -periodic in the x and y directions.

(3.5)

Then we deduce from the direct estimates of the Stokes problem (see [1]) that:

∥̃θ
ε
∥L2($) ≤ k

∥∥∥∥∥
ϕ0,ε
3√
ε
|z=0

∥∥∥∥∥
H−1/2(')

+ k

∥∥∥∥∥
ϕ0,ε
1√
ε
|z=1

∥∥∥∥∥
H−1/2(')

+ k

∥∥∥∥∥
ϕ0,ε
2√
ε
|z=1

∥∥∥∥∥
H−1/2(')

≤ k

∥∥∥∥∥
ϕ0,ε
3√
ε

∥∥∥∥∥
L2($)

+ e.s.t.

Now we will estimate the L2- norm of
ϕ0,ε
3√
ε
, hence we have:

|ϕ
0,ε
3√
ε
| ≤ k

∫ t

0

1√
t − τ

e
−z2

4ε(t−τ ) dτ

≤ k
∫ t

0

1√
t − τ

dτe
−z2
8εT .

Therefore, we have

∥ϕ0,ε
3√
ε

∥2L2($)
≤ k

∫ 1

0
e

−z2
4εT dz

≤ k
∫ 1

0
e

−cz√
2εT dz, c > 0

≤ k
√

ε.

Hence, we infer that

∥̃θ
ε
∥L2($) ≤ kε1/4.
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Finally, we get
∥θε∥L2($) ≤ kε3/4. (3.6)

In the following we will estimate the L2($) norm of the gradient of θ̃
ε
, hence we

find:

∥∇ θ̃
ε
∥L2($) ≤ k

∥∥∥∥∥
ϕ0,ε
3√
ε
|z=0

∥∥∥∥∥
H1/2(')

+ k

∥∥∥∥∥
ϕ0,ε
1√
ε
|z=1

∥∥∥∥∥
H1/2(')

+ k

∥∥∥∥∥
ϕ0,ε
2√
ε
|z=1

∥∥∥∥∥
H1/2(')

≤ k

∥∥∥∥∥
ϕ0,ε
3√
ε

∥∥∥∥∥
H1($)

+ e.s.t

≤ kε−1/4.

Thus we deduce that:
∥∇θ

ε∥L2($) ≤ kε1/4. (3.7)

We notice that the estimate (3.6) also holds for the time derivative of θ
ε
, i.e.,

∥∥∥∥∥
∂θ

ε

∂t

∥∥∥∥∥
L2($)

≤ kε3/4. (3.8)

Remark 3 Note that by symmetry all the estimates satisfied by θ
ε
remain valid for θ̃

ε
.

We now define wε = uε − u0 − ϕ0,ε − ϕ̃1,ε − θ
ε − θ̃

ε
, and according to (1.1),

(1.2), (2.8), (3.3) and (3.4), wε verifies:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂wε

∂t
− ε#wε + ω × wε + ∇(pε − p0 − *ε − Qε) = ε

∂2ϕ0,ε

∂x2
+ ε

∂2ϕ̃1,ε

∂x2

+ ε
∂2ϕ0,ε

∂y2
+ ε

∂2ϕ̃1,ε

∂y2
+ ε#u0 − ω × θ

ε − ω × θ̃
ε − ∂θ

ε

∂t
− ∂ θ̃

ε

∂t

+
(

0, 0,
∂ϕ0,ε

3

∂t
− ε

∂2ϕ0,ε
3

∂z2

)

+
(

0, 0,
∂ϕ̃1,ε

3

∂t
− ε

∂2ϕ̃1,ε
3

∂z2

)

, in $ × (0, T ),

div wε = 0, in $ × (0, T ),
wε = 0, at z = 0, 1,
wε is 2π -periodic in the x and y directions,
wε|t=0 = 0.

(3.9)
We multiply (3.9)1 bywε, integrate over $, and apply the Cauchy–Shwarz inequality,
we obtain:

1
2
d∥wε∥2

dt
+ ε∥∇wε∥2 ≤ ε

∥∥∥∥∥
∂2ϕ0,ε

∂x2

∥∥∥∥∥ ∥wε∥ + ε

∥∥∥∥
∂2ϕ̃1,ε

∂x2

∥∥∥∥ ∥wε∥ + ε

∥∥∥∥∥
∂2ϕ0,ε

∂y2

∥∥∥∥∥ ∥wε∥

+ ε

∥∥∥∥
∂2ϕ̃0,ε

∂y2

∥∥∥∥ ∥wε∥ + ε∥#u0∥∥wε∥ + ∥θε∥∥wε∥ + ∥̃θε∥∥wε∥
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+
∥∥∥∥∥
∂θ

ε

∂t

∥∥∥∥∥ ∥wε∥ +
∥∥∥∥∥
∂ θ̃

ε

∂t

∥∥∥∥∥ ∥wε∥ +
∥∥∥∥∥
∂ϕ0,ε

3

∂t
− ε

∂2ϕ0,ε
3

∂2z

∥∥∥∥∥ ∥wε∥

+
∥∥∥∥∥
∂ϕ̃1,ε

3

∂t
− ε

∂2ϕ̃1,ε
3

∂2z

∥∥∥∥∥ ∥wε∥.

Hence according to (2.14), (3.6) and (3.8), we have:

1
2
d∥wε∥2

dt
+ ε∥∇wε∥2 ≤ 1

2
∥wε∥2 + kε3/2.

Using the Gronwall inequality, we obtain

∥wε∥L∞(0,T ;L2($)) ≤ kε3/4 and ∥∇wε∥L2(0,T ;L2($)) ≤ kε1/4.

Hence, according to (3.6), (3.7) and the triangular inequality, we deduce (3.1) and
(3.2). This concludes the proof of Theorem 3.1.

4 A collocated finite volume scheme with a splitting method for the time
discretization

We follow here the notations of [11] that we recall in this section for the reader
convenience. In the following, we uniformly discretize the domain $ by using cube
finite volumes of dimensions #x#y#z:

Ki, j,k = [xi− 1
2
, xi+ 1

2
] × [y j− 1

2
, y j+ 1

2
] × [zk− 1

2
, zk+ 1

2
],

where:

xi+ 1
2
= i#x, y j+ 1

2
= j#y, zk+ 1

2
= k#z,

∀ i = 0, . . . ,M, ∀ j = 0, . . . , N , ∀ k = 0, . . . , L .

The edges of the control volumes are defined by:

'i+1/2, j,k = {(x, y, z); x = xi+1/2, y ∈ [y j−1/2, y j+1/2], z ∈ [zk−1/2, zk+1/2]},

'i, j+1/2,k = {(x, y, z); x ∈ [xi−1/2, xi+1/2], y = y j+1/2, z ∈ [zk−1/2, zk+1/2]},

'i, j,k+1/2 = {(x, y, z); x ∈ [xi−1/2, xi+1/2], y ∈ [y j−1/2, y j+1/2], z = zk+1/2]},

∀ i = 0, . . . ,M,∀ j = 0, . . . , N ,∀ k = 0, . . . , L .
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The velocity and the pressure are approximated in the center of the cells as follows:

ui, j,k(t) ≃ 1
#x#y#z

∫ x
i+ 1

2

x
i− 1

2

∫ y
j+ 1

2

y
j− 1

2

∫ z
k+ 1

2

z
k− 1

2

u(x, y, z, t)dxdydz,

pi, j,k(t) ≃ 1
#x#y#z

∫ x
i+ 1

2

x
i− 1

2

∫ y
j+ 1

2

y
j− 1

2

∫ z
k+ 1

2

z
k− 1

2

p(x, y, z, t)dxdydz,

where u = (u, v, w) and p are the solutions of the system (1.1). We consider this
notation instead of uε = (uε

1, u
ε
2, u

ε
3) and pε, introduced in Sect. 1, since we aim here

to simplify our presentation when we discretize the system (1.1).
We also define the velocity fluxes:

Fu
i+ 1

2 , j,k
≃ 1

#y#z

∫ y
j+ 1

2

y
j− 1

2

∫ z
k+ 1

2

z
k− 1

2

u(xi+ 1
2
, y, z, t)dydz,

Fv
i, j+ 1

2 ,k
≃ 1

#x#z

∫ x
i+ 1

2

x
i− 1

2

∫ z
k+ 1

2

z
k− 1

2

v(x, y j+ 1
2
, z, t)dxdz,

Fw
i, j,k+ 1

2
≃ 1

#x#y

∫ x
i+ 1

2

x
i− 1

2

∫ y
j+ 1

2

y
j− 1

2

w(x, y, zk+ 1
2
, t)dxdy.

4.1 Time discretization

For the time discretization of the system (1.1), let #t be the time step such that
#t = T/Nt , where Nt is an integer and T > 0 is the final time (t ∈ [0, T ]). Then, we
define uk as the approximate solution of u at the time tk = k#t for k = 0, . . . , Nt .
Therefore, we define the time discretization of (1.1)1 as follows:

3un+1 − 4un + un−1

2#t
− ε#un+1+ 2ω × un −ω × un−1+ 2∇ pn −∇ pn−1 = f n+1.

(4.1)
Thanks to (4.1) we are able to compute the new velocity un+1.

Hence, to obtain the pressure, we take the divergence of (1.1)1 and use the incom-
pressibility condition (1.1)2 we find:

#p = div( f + ε#u − ω × u). (4.2)

Thus we discretize (4.2) as follows:

#pn+1 = div( f n+1 + ε#un+1 − 2ω × un + ω × un−1). (4.3)
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By replacing # by −∇ × ∇× (see [11] and [15]), we rewrite (4.3) as below:

#pn+1 = div( f n+1 − ε∇ × ∇ × un+1 − 2ω × un + ω × un−1). (4.4)

Now, by using the relation#un+1 = ∇divun+1−∇ ×∇ ×un+1, then (4.1) becomes:

f n+1 − ε∇ × ∇ × un+1 − 2ω × un + ω × un−1

= 3un+1 − 4un + un−1

2#t
− ε∇divun+1 + 2∇ pn − ∇ pn−1.

Hence, we deduce from (4.4) that

#pn+1 = div
(
3un+1 − 4un + un−1

2#t
− ε∇divun+1 + 2∇ pn − ∇ pn−1

)
. (4.5)

Thus, we obtain

#(pn+1 − 2pn + pn−1 + εdivun+1) = div
(
3un+1 − 4un + un−1

2#t

)
. (4.6)

Then we compute the pressure from

⎧
⎪⎪⎨

⎪⎪⎩

#ψn+1 = div
(
3un+1 − 4un + un−1

2#t

)
,

∂ψn+1

∂n
= 0,

(4.7)

and
pn+1 = ψn+1 + 2pn − pn−1 − εdivun+1. (4.8)

Concerning the boundary conditions, we have the periodicity in the x and y directions
and the Dirichlet boundary conditions in the z direction for un+1:

un+1
0, j,k = un+1

M, j,k, un+1
M+1, j,k = un+1

1, j,k,

un+1
i,0,k = un+1

i,N ,k, un+1
i,N+1,k = un+1

i,1,k,

un+1
i, j,L+1 + un+1

i, j,L

2
= 0,

un+1
i, j,0 + un+1

i, j,1

2
= 0.

The Neumann boundary conditions are imposed for ψn+1 in the z direction and the
periodicity in x and y directions. Thus, we have

ψn+1
0, j,k = ψn+1

M, j,k, ψn+1
M+1, j,k = ψn+1

1, j,k,
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ψn+1
i,0,k = ψn+1

i,N ,k, ψn+1
i,N+1,k = ψn+1

i,1,k,

ψn+1
i, j,L+1 = ψn+1

i, j,L , ψn+1
i, j,0 = ψn+1

i, j,1.

The periodicity in x and y for the pressure yields:

p0, j,k = pM, j,k, pM+1, j,k = p1, j,k,

pi,0,k = pi,N ,k, pi,N+1,k = pi,1,k,

and for the terms pi, j,0 and pi, j,L+1 we use the second order compact scheme to
compute them:

pi, j,0 =
5
2
pi, j,1 − 2pi, j,2 +

1
2
pi, j,3, pi, j,L+1 =

5
2
pi, j,L − 2pi, j,L−1 +

1
2
pi, j,L−2.

4.2 Finite volume discretization

To compute the velocity un+1, we discretize (4.1) and we obtain:

#x#y#z
3un+1

i, j,k − 4uni, j,k + un−1
i, j,k

2#t
− ε

[

#x#y
un+1
i, j,k+1 − 2un+1

i, j,k + un−1
i, j,k−1

#z

+#y#z
un+1
i+1, j,k − 2un+1

i, j,k + un+1
i−1, j,k

#x
+ #x#z

un+1
i, j+1,k − 2un+1

i, j,k + un+1
i, j−1,k

#y

]

+ 2

⎛

⎜⎜⎜⎜⎝

#y#z
2

(pni+1, j,k − pni−1, j,k)

#x#z
2

(pni, j+1,k − pni, j−1,k)

#x#y
2

(pni, j,k+1 − pni−1, j,k−1)

⎞

⎟⎟⎟⎟⎠
−

⎛

⎜⎜⎜⎜⎝

#y#z
2

(pn−1
i+1, j,k − pn−1

i−1, j,k)

#x#z
2

(pn−1
i, j+1,k − pn−1

i, j−1,k)

#x#y
2

(pn−1
i, j,k+1 − pn−1

i−1, j,k−1)

⎞

⎟⎟⎟⎟⎠

+#x#y#z(ω × (2uni, j,k − un−1
i, j,k)) = #x#y#z f n+1

i, j,k . (4.9)

To compute the pressure we first compute ψn+1:

#x#y
ψn+1
i, j,k+1 − 2ψn+1

i, j,k + ψn+1
i, j,k−1

#z
+ #y#z

ψn+1
i+1, j,k − 2ψn+1

i, j,k + ψn+1
i−1, j,k

#x

+#x#z
ψn+1
i, j+1,k − 2ψn+1

i, j,k + ψn+1
i, j−1,k

#y
= 1

2#t

[

#y#z

[(

3Fun+1
i+ 1

2 , j,k
− 4Fun

i+ 1
2 , j,k

+ Fun−1
i+ 1

2 , j,k

)

−
(

3Fun+1
i− 1

2 , j,k
− 4Fun

i− 1
2 , j,k

+ Fun−1
i− 1

2 , j,k

)]

+ #x#z

[(

3Fvn+1
i, j+ 1

2 ,k
− 4Fvn

i, j+ 1
2 ,k

+ Fvn−1
i, j+ 1

2 ,k

)
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− (3Fvn+1
i, j− 1

2 ,k
− 4Fvn

i, j− 1
2 ,k

+ Fvn−1
i, j− 1

2 ,k
)

]

+ #x#y

[(

3Fwn+1
i, j,k+ 1

2

− 4Fwn
i, j,k+ 1

2

+ Fwn−1
i, j,k+ 1

2

)

−
(

3Fwn+1
i, j,k− 1

2

− 4Fwn
i, j,k− 1

2

+ Fwn−1
i, j,k− 1

2

)]]

.

Then, we easily obtain the pressure:

pn+1
i, j,k = ψn+1

i, j,k + 2pni, j,k − pn−1
i, j,k − ε

#x#y#z

[

#y#z

(

Fun+1
i+ 1

2 , j,k
− Fun+1

i− 1
2 , j,k

)

+#x#z

(

Fvn+1
i, j+ 1

2 ,k
− Fvn+1

i, j− 1
2 ,k

)

+ #x#y

(

Fwn+1
i, j,k+ 1

2

− Fwn+1
i, j,k− 1

2

)]

.

4.3 Computation of the fluxes

We recall here that the simplest method to compute the fluxes (linear interpolation)
does not work when the viscosity ε is small. Hence the authors in [11] considered a
modified interpolation method for the fluxes in two dimensional case. Now, since we
aim here to study the boundary layers at small viscosity, we need, on the one hand,
to adapt the discretization in [11] to the 3D dimensional case and, on the other hand,
to introduce the correctors in the finite volume discretization basis that is the MFVM.
Thus we first start by introducing the 3D fluxes inherited from [11]:

Fun+1
i+ 1

2 , j,k
=

un+1
i+1, j,k + un+1

i, j,k

2
+ θ

#y#z
4a

(pni+2, j,k − 2pni+1, j,k + pni, j,k)

− θ
#y#z
4a

(pni+1, j,k − 2pni, j,k + pni−1, j,k),

Fvn+1
i+ 1

2 , j,k
=

vn+1
i, j+1,k + vn+1

i, j,k

2
+ θ

#x#z
4a

(pni, j+2,k − 2pni, j+1,k + pni, j,k)

− θ
#x#z
4a

(pni, j+1,k − 2pni, j,k + pni, j−1,k),

Fwn+1
i, j,k+ 1

2

=
wn+1
i, j,k+1 + wn+1

i, j,k

2
+ θ

#x#y
4a

(pni, j,k+2 − 2pni, j,k+1 + pni, j,k)

− θ
#x#y
4a

(pni, j,k+1 − 2pni, j,k + pni, j,k−1),

∀ i = 0, . . . ,M,∀ j = 0, . . . , N ,∀ k = 0, . . . , L ,

where: θ is the relaxation coefficient and

a = 3#x#y#z
2#t

+ 2ε
#x#y

#z
+ 2ε

#y#z
#x

+ 2ε
#x#z
#y

.
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5 Modified finite volume discretization

In this section we introduce a modified finite volume scheme, that is we approximate
the solution of (1.1) by

uh =
∑

i, j=1

r i, j,0ϕ̂
0,ε

χi, j,0 +
∑

i, j=1

ri, j,L+1
ˆ̃ϕ
1,ε

χi, j,L+1 +
∑

i, j,k

ui, j,kχi, j,k, (5.1)

where

h = #z,

r i, j,0 = ui, j,0 + ui, j,1
2

,

r i, j,L+1 = ui, j,L+1 + ui, j,L
2

,

χi, j,0 = χ(x
i− 1

2
,x

i+ 1
2
)×(y

j− 1
2
,y

j+ 1
2
)×(0,h),

χi, j,L+1 = χ(x
i− 1

2
,x

i+ 1
2
)×(y

j− 1
2
,y

j+ 1
2
)×((L−1)h,Lh),

χi, j,k = χ(x
i− 1

2
,x

i+ 1
2
)×(y

j− 1
2
,y

j+ 1
2
)×(z

k− 1
2
,z
k+ 1

2
),

and

ϕ̂
0,ε
i = −

∫ t

0

1√
4π(t − τ )

z
2
√

ε(t − τ )
e

−z2
4ε(t−τ )

× {2τ cos(α(τ − t)) − 2τ sin(α(τ − t))}dτ, ∀ i = 1, 2,

ˆ̃ϕ1,ε
i = −

∫ t

0

1√
4π(t − τ )

1 − z
2
√

ε(t − τ )
e

−(1−z)2
4ε(t−τ )

× {2τ cos(α(τ − t)) − 2τ sin(α(τ − t))}dτ, ∀ i = 1, 2.

ϕ̂
0,ε
3 = ˆ̃ϕ1,ε

3 = 0.

Multiplying (1.1)1 by χi, j,k , integrating over $, and replacing uε by uh we find
that the equations are the same as the classical finite volume scheme (4.9). More-
over the correctors verify (2.2)1, hence they do not contribute to these equations. For

the numerical simulations we do not use the modified boundary layer ϕ̂
0,ε

and ˆ̃ϕ1,ε

directly. Instead we consider another approximate form which reads as follows:

ϕ̃
0,ε

(t, z) =
(

−exp
(−z2

4εt

)
,−exp

(−z2

4εt

)
, 0

)
.

Indeed, the approximation ϕ̃
0,ε

is much easier to be implemented numerically than
the theoretical corrector ϕ0 ,ε obtained in Sect. 2 as in (2.6) and (2.7) (see Fig. 1).
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Fig. 1 The corrector ϕ̂
0 ,ε
1 (asterisk) and its approximation ϕ̃

0,ε
1 (circles) at t = 1,α = 1, ε = 10−5, near

z = 0

Due to the nodes r i, j,0 and r i, j,L+1, the linear system associated with this scheme is
not closed. However, by adding the correctors, we are ensuring the closure of the linear
system corresponding to the MFVM considered here. In the following, we will show
how we handle this difficulty for the boundary layer at z = 0, that is the coefficient
r i, j,0, and we will skip the computations for the boundary layer at z = 1, that is the
coefficient r i, j,L+1, thanks to the symmetry. Hence, we multiply (4.1) by the corrector

ϕ̃
0,ε

and integrate over Ki, j,1, we find:
∫

Ki j1

3un+1 − 4un + un−1

2#t
ϕ̃
0,ε − ε

∫

Ki j1

#un+1ϕ̃
0,ε +

∫

Ki j1

ω × (2un − un−1)ϕ̃
0,ε

+ 2
∫

Ki j1

∇ pn ϕ̃0,ε −
∫

Ki j1

∇ pn−1ϕ̃
0,ε =

∫

Ki j1

f n+1ϕ̃
0,ε

. (5.2)

In the following we will calculate each term of (5.2). For the first term in the LHS
(left-hand side) of (5.2) we find:

∫

Ki j1

3un+1 − 4un + un−1

2#t
ϕ̃
0,ε

dxdydz =
3un+1

i, j,1 − 4uni, j,1 + un−1
i, j,1

2#t

∫

Ki j1

ϕ̃
0,ε

dxdydz.

For the second term in the LHS of (5.2), we obtain:
∫

Ki j1

#un+1ϕ̃
0,ε

dxdydz = −
∫

Ki j1

∇un+1∇ϕ̃
0,ε

dxdydz +
∫

∂Ki j1

ϕ̃
0,ε ∂un+1

∂n
d',

= −
∫

Ki j1

∂un+1

∂z
∂ϕ̃

0,ε

∂z
dxdydz +

∫

∂Ki j1

ϕ̃
0,ε ∂un+1

∂n
d'.

(5.3)
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Now, we calculate the first term in the RHS of (5.3) and we find:

∫

Ki j1

∇un+1∇ϕ̃
0 ,ε

dxdydz =
∫

Ki j1

∂un+1

∂z
∂ϕ̃

0,ε

∂z
dxdydz

=
∫ xi+1/2

xi−1/2

∫ y j+1/2

y j−1/2

∫ h/2

0

∂un+1

∂z
∂ϕ̃

0,ε

∂z
dxdydz

+
∫ xi+1/2

xi−1/2

∫ y j+1/2

y j−1/2

∫ h

h/2

∂un+1

∂z
∂ϕ̃

0,ε

∂z
dxdydz

=
un+1
i, j,1 − rn+1

i, j,1
h
2

∫ xi+1/2

xi−1/2

∫ y j+1/2

y j−1/2

∫ h/2

0

∂ϕ̃
0,ε

∂z
dxdydz

+
un+1
i, j,2 − un+1

i, j,1

h

∫ xi+1/2

xi−1/2

∫ y j+1/2

y j−1/2

∫ h

h/2

∂ϕ̃
0,ε

∂z
dxdydz

= 2
h
(un+1

i j1 − rn+1
i j0 )#x#y

(
ϕ̃
0,ε

(
h
2

)
− ϕ̃

0,ε
(0)

)

+
un+1
i, j,2 − un+1

i, j,1

h
#x#y

(
ϕ̃
0,ε

(h) − ϕ̃
0,ε

(
h
2

))
.

For the second term in the RHS of (5.3) we have

∫

∂Ki j1

ϕ̃
0,ε ∂un+1

∂n
d' =

∫ xi+1/2

xi−1/2

∫ y j+1/2

y j−1/2

∫

z=0
ϕ̃
0,ε

(
−∂u

∂z

)
d'

+
∫ xi+1/2

xi−1/2

∫ y j+1/2

y j−1/2

∫

z=h
ϕ̃
0,ε

(
∂u
∂z

)
d'

+
∫ xi+1/2

xi−1/2

∫ h

0

∫

y=y j−1/2

ϕ̃
0,ε

(
−∂u

∂y

)
d'

+
∫ xi+1/2

xi−1/2

∫ h

0

∫

y=y j+1/2

ϕ̃
0,ε

(
∂u
∂y

)
d'

+
∫ y j+1/2

y j−1/2

∫ h

0

∫

x=xi−1/2

ϕ̃
0,ε

(
−∂u

∂x

)
d'

+
∫ y j+1/2

y j−1/2

∫ h

0

∫

x=xi+1/2

ϕ̃
0,ε

(
∂u
∂x

)
d'.

Now, the third term in the LHS of (5.2) can be rewritten as below:

∫

Ki j1

ω × (2un − un−1)ϕ̃
0,ε

dxdydz = ω × (2uni, j,1 − un−1
i, j,1)#x#y

∫ h

0
ϕ̃
0,ε

dxdydz.
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We calculate the first component of the fourth term in the LHS of (5.2) and we find:

∫

Ki j1

∂x pn+1ϕ̃
0,ε
1 dxdydz =

pn+1
i+1, j,1 − pn+1

i−1, j,1

2#x
#x#y

∫ h

0
ϕ̃
0,ε
1 dz.

For the second component of the fourth term in the LHS of (5.2) we have:

∫

Ki j1

∂y pn+1ϕ̃
0,ε
2 dxdydz =

pn+1
i, j+1,1 − pn+1

i, j−1,1

2#y
#x#y

∫ h

0
ϕ̃
0,ε
2 dz.

Concerning the first term on the RHS of (5.2), we obtain

∫

Ki j1

f n+1ϕ̃
0,ε

dxdydz = #x#y f n+1
i, j,1

∫ h

0
ϕ̃
0,ε

dz.

Hence, we infer that

3un+1
i, j,1 − 4uni, j,1 + un−1

i, j,1

2#t

∫ h

0
ϕ̃
0,ε

dz − ε

[
1
h

(
−3ϕ̃

0,ε
(
h
2

)
un+1
i, j,1

+ 2rn+1
i, j,0ϕ̃

0,ε
(
h
2

)
+ un+1

i, j,2ϕ̃
0,ε

(
h
2

))
−

(
1

(#x)2

(
un+1
i−1, j,1 − 2un+1

i, j,1 + un+1
i+1, j,1

)

+ 1
(#y)2

(
un+1
i, j−1,1 − 2un+1

i, j,1 + un+1
i, j+1,1

))∫ h

0
ϕ̃
0,ε

dz
]
+ ω × (2uni, j,1 − un−1

i, j,1)

∫ h

0
ϕ̃
0,ε

dz

+ 2

⎛

⎜⎜⎜⎜⎝

(
pni+1, j,1−pni−1, j,1

2#x

)∫ h
0 ϕ̃

0,ε
1 dz

(
pni, j+1,1−pni, j−1,1

2#y

)∫ h
0 ϕ̃

0,ε
2 dz

0

⎞

⎟⎟⎟⎟⎠
−

⎛

⎜⎜⎜⎜⎝

(
pn−1
i+1, j,1−pn−1

i−1, j,1
2#x

) ∫ h
0 ϕ̃

0,ε
1 dz

(
pn−1
i, j+1,1−pn−1

i, j−1,1
2#y

) ∫ h
0 ϕ̃

0,ε
2 dz

0

⎞

⎟⎟⎟⎟⎠

= f n+1
i, j,1

∫ h

0
ϕ̃
0,ε

dz.

6 Numerical results

In this section the error approximation is computed using the classical finite volume
method and the modified finite volume method. For that purpose, the test solution for
the pressure and the velocity are chosen as follows:

p(x, y, z, t) = t cos(2πx) cos(2πy)cos(π z),

uε
1(x, y, z, t) = t sin(2πy)

(
1 − e

−z√
ε cos

(
z√
ε

))(
1 − e

−(1−z)√
ε cos

(
1 − z√

ε

))
,
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Table 1 The L2 norm of the
velocity error with the CFVM
and the MFVM for different
values of ε at t = 1

N =M = L ε CFVM MFVM

10 0.03206 0.12836

20 10−2 0.00634 0.03893

30 0.00269 0.02553

10 0.09229 0.22647

20 10−3 0.03372 0.15753

30 0.01331 0.08020

10 1.61660 × 103 0.04487

20 10−5 0.08741 0.01030

30 0.11722 0.00460

10 1, 10612 × 1010 0.04490

20 10−6 4.42881 × 106 0.01032

30 1.12960 × 103 0.00442

10 5.26218 × 1062 0.04490

20 10−7 1.16428 × 1029 0.01032

30 6.72495 × 1017 0.00443

10 0.04490

20 10−10 The solution blows up 0.01032

30 0.00443

uε
2(x, y, z, t) = t sin(2πx)

(
1 − e

−z√
ε cos

(
z√
ε

)) (
1 − e

−(1−z)√
ε cos

(
1 − z√

ε

))
,

and

uε
3(x, y, z, t) = 0.

Note that the test solution given above satisfies the Eq. (1.1) with u0 ≡ 0, α = 11,
the periodicity condition in x and y with period 1 (instead of 2π for simplicity in
the numerical simulations), and the resulting source function f . More precisely, the
source function is chosen using the test solution given above.

Now, to obtain the spatial accuracy of the schemes, we choose the time step #t =
10−2 and solve the system (1.1) with the above consideration for the data using the two
methods (CFVM and MFVM) with different space step values #x = #y = #z =
1/10, 1/20, 1/30. Moreover, the final time t is equal to 1 and the Reynolds number is
taken in the range 102–1010.

In what follows we will give some interpretations of the results obtained in Table
1 and Table 2. Let us start first by the velocity error stated in Table 1. By increasing

1 Since we consider here a moderate rotation, we are not concerned with large values of α which ranges
in this article between 1 and 50. Indeed, the case where α is large enough corresponds to the study of fast
rotating fluids which are not the objective of this work, see e.g. [14,22,23].
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Table 2 The L2 norm of the
pressure error with the CFVM
and the MFVM for different
values of ε at t = 1

N =M = L ε CFVM MFVM

10 0.02493 0.03178

20 10−2 0.00511 0.00920

30 0.00224 0.00533

10 0.02684 0.02771

20 10−3 0.00553 0.00907

30 0.00238 0.00590

10 1.48996 × 102 0.02602

20 10−5 0.00774 0.00539

30 0.00655 0.00238

10 1.01953 × 1016 0.02601

20 10−6 2.83861 × 105 0.00539

30 58.98117 0.00238

10 4.85027 × 1061 0.02601

20 10−7 7.46273 × 1027 0.00539

30 3.51186 × 1016 0.00238

10 0.02601

20 10−10 The solution blows up 0.00539

30 0.00238

10−110−3

10−2

10−1

100

log(∆ z)

lo
g(

er
ro

r)

Fig. 2 The space discretization error on the velocity with CFVM (asterisk) and MFVM (circles) (Re =
100, t = 1)

the value of the Reynolds number, which is equivalent to decreasing ε, we can see
that the MFVM attains better accuracy than the CFVM for Re ! 105, where x ! y
(respect. x " y) means x ≥ O(y) (respect. x ≤ O(y)), whereas the CFVM does
so when Re " 103. However, we noticed that, for Re ! 105, the CFVM becomes
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10−110−3

10−2

10−1

log(∆ z)

lo
g(

er
ro

r)

Fig. 3 The space discretization error on the pressure with CFVM (asterisk) and MFVM (circles) (Re =
100, t = 1)

10−110−3

10−2

10−1

100

101

102

103

104

log(∆ z)

lo
g(

er
ro

r)

Fig. 4 The space discretization error on the velocity with CFVM (asterisk) and MFVM (circles)(Re =
105, t = 1)

highly unstable and the MFVM does not. But, it is worth noting that the MFVM is
less accurate than the CFVM when Re " 103 which is somehow natural because our
new scheme MFVM is more designed for boundary layers, that is for high Reynolds
number.

For the pressure error, asweobserved for the velocity, the same conclusions deduced
from Table 1 remain valid for Table 2.

Moreover, in Figs. 2 and 4 (respect. Figs. 3 and 5), we show the L2-error on the
velocity (respect. on the pressure) for both methods CFVM and MFVM at different
values of the Reynolds number. More precisely, these errors are obtained for the

123

Author's personal copy



MFVM for rotating channel flows. . .

10−110−3

10−2

10−1

100

101

102

103

log(∆ z)

lo
g(

er
ro

r)

Fig. 5 The space discretization error on the pressure with CFVM (asterisk) and MFVM (circles) (Re =
105, t = 1)

velocity (respect. for the pressure) at Re = 102 in Fig. 2 (respect. Fig. 3), and in Fig. 4
(respect. Fig. 5) at Re = 105. According to Figs. 4 and 5, where we set the Reynolds
number Re = 105, we observe that the errors values obtained from the MFVM are
much smaller than the ones acquired from the CFVM, for both the velocity and the
pressure.

7 Conclusion and future work

In this paper we have compared two different finite volume methods CFVM and
MFVM when the viscosity is considered small and more precisely in the range of
10−2–10−10. To this end, we derived an approximate solution of the time-dependent
rotating fluid in 3D channel using the splitting methods for the time discretization and
colocated space discretization. One of the novelties of this article is that we propose
a new numerical approach to treat the pressure and the incompressibility condition
by introducing correctors which solve the boundary layers. We also showed that the
MFVM is more performing than the CFVM when the viscosity is small, otherwise
we showed that our MFVM still perform for very large Reynolds number. To the best
of our knowledge, this is the first work which gives a modified finite volume scheme
taking into account boundary layer without mesh refinement for the linearized Navier–
Stokes equations. Note that the consideration of a physical viscosity in the numerical
codes introduced in this article does not make the computations expensive (about tow
hours when we consider N = 30 and ε = 10−10). The method developed here may
apply to many other problems and domains. This will be the subject of subsequent
works.

Acknowledgements The authors are very grateful to Sylvain Faure with whom we had many fruitful
discussions and especially for providing us the 2D Matlab codes corresponding to the scheme introduced
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in Sect. 4. The authors would like to thank the PDE Lab at the Faculty of Sciences of Tunis for its financial
support during this work.

Appendix A

In this appendix, we give a sketch of the proof of the existence and regularity of the
solution of the limit problem (1.2). For a complete study of the existence of solution of
systems similar to (1.2) we refer the reader to [18], see also [5] and [16]. We first want
to apply theHille–Phillips–Yosida Theorem [28] to prove the existence and uniqueness
of the solution of (1.2). Thus we start by introducing the adequate function spaces:

H = {v ∈ (L2($))3; divv = 0, v3(z = 0) = v3(z = h) = 0,

and v is 2π periodic in the x and y directions}.

D(A) = {v ∈ H ; ∃ p ∈ D′($), such that ω × v + ∇ p ∈ H},
that we endow with the norm

∥v∥D(A) = (∥v∥2H + ∥ω × v + ∇ p∥2H )1/2. (A.1)

Then for v ∈ D(A) we set Av = ω × v + ∇ p, thus we define an unbounded linear
operator A which maps D(A) ⊂ H onto H . Here,A denotes the differential operator
associated with A.

Hence, we aim to apply the Hille–Phillips–Yosida Theorem for the system (1.2)
which involves the operator A defined above. Here, we recall this well-known theorem.

Theorem A.1 (Hille–Phillips–Yosida Theorem) Let H be a Hilbert space and let
B : D(B) → H a linear unboundedoperator,with domain D(B) ⊂ H such that D(B)
is dense in H and (−B) is m-dissipative. Then (−B) is the infinitesimal generator of
a contraction semigroup {S(t)}t>0 in H, and the solution of the following system:

{ dv
dt

+ Bv = f ,

v|t=0 = v0,
(A.2)

satisfies the following properties:
(P1) If v0 and f ∈ L1(0, T ; H) then v ∈ C0([0, T ]; H),∀ T > 0.
(P2) If v0 ∈ D(B) and f ′ ∈ L1(0, T ; H) then

v ∈ C1([0, T ]; H) ∩ C0([0, T ]; D(B)) and
dv
dt

∈ L∞([0, T ]; H),∀ T > 0.

The reader is referred to [28] and [2] for more details about the above result. Before
proving that the operator A satisfies all the hypotheses of Theorem A.1, we first recall
the definitions of dissipative and m-dissipative operators, see e.g. [8, Def. 3.13] and
[6].
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Definition A.1 A linear operator A : D(A) → H is called dissipative in H if and
only if

∀u ∈ D(A),∀λ > 0, ∥u − λAu∥ ≥ ∥u∥.

Definition A.2 A linear operator A : D(A) → H is called m-dissipative if A is
dissipative and

∀ f ∈ H,∀ λ > 0, ∃u ∈ D(A), u − λAu = f .

Now, we can state and prove the existence result for the (1.2) as below.

Corollary A.1 For given f ∈ C1([0, T ]; H) and u0 ∈ D(A), there exists a unique
solution (u0, p0) to the system (1.2 ) with

⎧
⎪⎪⎨

⎪⎪⎩

u0 ∈ C1([0, T ]; H) ∩ C0([0, T ]; D(A)),
du0

dt
∈ C0([0, T ]; H), ∀ T > 0,

∇ p0 ∈ C0([0, T ]; H), ∀ T > 0.

(A.3)

Note that the pressure p0 is unique up to an additive constant.

Proof First, using the operator A corresponding to (1.2) and introduced just before
Theorem A.1, it is easy to see that the system (1.2) can be written in a similar setting
as (A.2). Second, we now show that the operator (−A) is m-dissipative. Hence, it is
necessary to prove that the following system:

⎧
⎨

⎩

λω × u + λ∇ p + u = f ,
div u = 0,
u3 = 0, en z = 0, 1,

(A.4)

has a unique solution in D(A) for all f ∈ H and λ > 0, and in addition the solution
of (A.4) satisfies the following estimate:

∥u∥H ≤ ∥ f ∥H , ∀ f ∈ H. (A.5)

For the existence issue, we will use the Lax–Milgram Theorem which necessitates
the variational formulation of (A.4). Hence, we multiply (A.4) by v ∈ H and integrate
over $, we find:

λ

∫

$
(ω × u) · v d$ + λ

∫

$
∇ p · vd$ +

∫

$
u · v d$ =

∫

$
f v d$.

Thanks to the fact that v ∈ H , we have
∫

$
∇ pv d$ = −

∫

$
p divv d$ +

∫

∂$
p v · n d' = 0.
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Then, we set

a(u, v) = λ

∫

$
(ω × u) · v d$ +

∫

$
u · v d$,

and

F(v) =
∫

$
f v d$.

Here a is a continuous and coercive bilinear form in H × H . In fact we have:

|a(u, v)| ≤ λ|u|H |v|H + |u|H |v|H ,
≤ k(λ)|u|H |v|H ,

and

|a(u, u)| = |u|2H .

Also F(v) is a continuous linear form:

∫

$
f v d$ ≤ | f ||v|.

Hence, according to the Lax–Milgram Theorem, there exists a unique u ∈ H such
that:

λAu + u = f ,

that is,

λω × u + λ∇ p + u = f .

Multiplying the above equation by u and integrating over $, we find:

λ

∫

$
(ω × u)u d$ + λ

∫

$
∇ pu d$ +

∫

$
uu d$ =

∫

$
f u d$,

then the solution u satisfies the estimate:

∥u∥H ≤ ∥ f ∥H .

Also we have:

∥u∥D(A) = (∥u∥2H + ∥ω × u + ∇ p∥2H )1/2,
≤ ∥u∥H + ∥ω × u + ∇ p∥H ,
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≤ k(λ)∥ f ∥H .

Hence (-A) is a m-dissipative operator. Moreover we have u0 ∈ H , then according to
the Hille–Yosida theorem the system (1.2) has a unique solution u ∈ C([0,∞[, H).

Furthermore, we have:

∥∇ p∥H−1 ≤ 1
λ

∥ f ∥H−1 + 1
λ

∥u∥H−1 + ∥ω × u∥H−1

≤ k(λ)∥ f ∥H .

Then, we obtain
∥p∥L2($) ≤ k(λ)∥ f ∥H .

⊓/

Now, we end this appendix by stating and proving some regularity results for the
solution of (1.2) which are straightforward obtained as a consequence of Theorem
A.1. More precisely, we have the following.

Proposition A.1 Let f ∈ C1([0, T ]; H ∩ Hk($)), k ≥ 1 and u0 ∈ D(A) ∩ Hk($).
Then, the solution of (1.2 ) belongs to C0([0, T ]; D(A) ∩ Hk($)).

Proof First, we observe that, since the rotation is assumed to be parallel to the z−
direction, the Coriolis term vanishes in the normal direction, i.e. (ω × u0) · e3 = 0.
Second, we deduce the equation of the pressure p0 by simply applying the divergence
operator to (1.2)1 and using (1.2)2. Hence, we obtain

#p0 = div( f − ω × u0). (A.6)

Thanks to (A.3) and the regularity hypothesis on f as stated in Proposition A.1,
we infer that p0 ∈ C1([0, T ]; H1($)). Since f x , f y ∈ C1([0, T ]; H), k ≥ 1 and
u0x ,u0y ∈ D(A) and using the invariance of the system (1.2) under differentiation in
x and y, then Corollary A.1 implies that p0x , p

0
y ∈ C1([0, T ]; H1($)).

Third, we use the equation (1.2)1 projected in the normal direction z and we infer
that p0z ∈ C0([0, T ]; H1($)). Hence, we have p0 ∈ C0([0, T ]; H2($)).

Using the two first equations in (1.2)1 we deduce that u0 ∈ C0([0, T ]; D(A) ∩
H1($)).

This mechanism allows us to prove a higher regularity for u0 since nowwe consider
again Eq. (A.6) and we repeat the above steps.

This concludes the proof of Proposition A.1. ⊓/
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