
Chapter 6
Taylor Expansion Method for Linear Lattice
Boltzmann Schemes with an External Force:
Application to Boundary Conditions

François Dubois, Pierre Lallemand, and Mohamed Mahdi Tekitek

Abstract In this contribution we show that it is possible to get the macroscopic
fluid equations of a lattice Boltzmann scheme with an external force using the
Taylor expansion method. We validate this general expansion by a detailed analysis
of the boundary conditions. We derive “quartic parameters” that enforce the
precision of the boundary scheme. We explicit and validate the corresponding
relations for a Poiseuille flow computed with the D2Q13 lattice Boltzmann scheme
(10 December 2013).

6.1 Introduction

The lattice Boltzmann scheme is a mesoscopic method. It deals with a small number
of functions that can be interpreted as populations of fictitious particles. It has been
developed more than 20 years ago by Qian et al. [19] and Succi et al. [20] among
others. This method can simulate various fluid dynamics problems. The dynamics
of those particles is such that time, space and momentum are discretized. They
move at successive discrete times between the nodes of a regular square lattice. The
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velocity space is discretized by a reduced set of discrete velocities. The unknown
is the distribution ffi g which is function of velocities, space location and discrete
time. In each time step there are two fundamental steps: advection and collision.
The advection step is linear and allows the connection of a given vertex with
its neighbors. It corresponds to the characteristic method with a Courant number
exactly equal to one. The collision step is nonlinear and local in space. The discrete
dynamics solve a system of differential equations that converge to an equilibrium
state for large time (see the details e.g. in [5]).

A theoretical analysis of the lattice Boltzmann scheme was proposed by Qian
et al. [19] and d’Humières [10] with a Chapmann Enskog expansion coming from
statistical physics. We refer to Asinari and Ohwada [1] for a method of analysis
based on the Grad moment system. A fruitful idea developed by Junk et al. [13] and
our team [5] is to use the so-called equivalent equation method derived by Lerat-
Peyret [15] and Warming-Hayett [21] in the context of classical finite difference
schemes. The time step is considered as an infinitesimal parameter and the finite
differences are expanded into a family of equivalent partial differential operators.
We observe that the emerging viscosity with the lattice Boltzmann method is in
some sense a discrepancy of the scheme that can explicited.

The main goal of this study is to extend the linearized analysis of a lattice
Boltzmann scheme using the Taylor expansion method [2, 5] to the case where
there is an external body force. In fact few methods [4, 9, 16–18] have been used
to incorporate external forces in lattice Boltzmann scheme. In this study, a fraction
! (with 0 ! ! ! 1) of the force term is added before the collision step and a fraction
.1 " !/ just after. Usually ! is equal to 1

2
: In this contribution we consider a given

external force variable in time and space.
Boundary conditions are performed to impose a given velocity (or a given

pressure) on a part of the physical boundary. These conditions have to be translated
in terms of the lattice Boltzmann scheme. When the scheme is completely defined
for internal vertices a numerical boundary conditions of bounce-back or anti-
bounce-back type (see e.g. Bouzidi et al. [3]) is equivalent to impose a zero value
for some combination of the particle distributions. With the help of the Taylor
expansion, it is possible to make in evidence the errors associated to several methods
for one dimensional thermal problems or two dimensional fluid problem. This
defines so-called “quartic parameters” (see [6]). For the general framework of this
kind of methodology, we refer to Ginzburg and Adler [7], Ginzburg et al. [8] and
Ginzburg and d’Humières [11]. Our approach is to extend our previous work [6]
to three representative examples. In particular a precise choice of relaxation rates
allows to spectacularly decrease the error associated to the scheme. In the case of
the Poiseuille flow the numerical evaluation of the analytical solution can even be
possible with this methodology.

In the first section, we precisely define our numerical scheme. In Sect. 6.3,
we extend the linearized analysis of a lattice Boltzmann scheme using the Taylor
expansion method [2]. In Sect. 6.4, we study a very simple one dimensional
thermal problem with a given temperature on the boundary. The existence of the
source term allows an experimental validation of our methodology applied to the
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boundary conditions. In Sect. 6.5, we study a two dimensional scheme with the
D2Q9 scheme in the context of the Poiseuille flow. This flow is considered with an
external force term instead of physical pressure term. Theoretical analysis allows to
propose quartic values for the relaxation coefficients and for the parameter ! . These
parameters are confronted to a numerical test for this model with 13 velocities in
Sect. 6.6. At our knowledge this kind of determination and validation has not been
proposed by other teams previously.

6.2 Lattice Boltzmann Scheme with a Forcing Drift

In the following, the notation “DdQq” denotes a lattice Boltzmann scheme with
d space dimensions and q velocities. Space is discretized by a regular lattice L
parametrized by a spatial scale "x. The time step is denoted by "t . A numerical
celerity # is naturally defined by # # "x

"t
. The q discrete velocities can be written

as vj D # ej for 0 ! j ! q " 1. A classical example is given by the D2Q9 scheme
illustrated on the Fig. 6.1.

The lattice Boltzmann scheme is formulated in both spaces of particles and
momentsmk, as proposed by d’Humières [10]. We introduce an invertible matrix

M D .Mk j /; 0 ! k; j ! q " 1:

Then the moments mk for 0 ! k ! q " 1 are defined by linearity:

mk #
q!1X

jD 0
Mkj fj :

The moment vectorm 2 Rq can be written as

m D
!
V

Y

"
; (6.1)

with two kinds of quantities: conserved moments V 2 RN and slave moments Y 2
Rq!N . The conserved momentsV are not affected by the collision step when there is
no forcing term. IfN D 1 there is exactly one scalar partial differential equation and
whenN > 1we obtain an underlying system ofN partial differential equations. The
family of slave moments Y relax during the collision step towards an equilibrium
distribution. An elementary time evolution of a lattice Boltzmann scheme with a
force is composed by four steps (see Guo et al. [9]): computation of the dynamical
variables, collision (through simple relaxation), forcing of the conserved moments
and advection.

The computation of the dynamical variables W from the first component V of
the moments (6.1), is given by:
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Fig. 6.1 Stencil for the D2Q9 lattice Boltzmann scheme

W D V C ! "t F ; (6.2)

where ! is a fixed scalar in Œ0; 1$ and F 2 RN is a given force term. Remark that the
post-processing is obtained from the knowledge of these dynamical variables.

The collision and relaxation step is a redistribution of the populations ffi g at
each node x. The N first moments W are not affected by the relaxation.The other
“non-conserved” moments relax with a time constant %k towards the equilibrium
values meq

k . In this contribution the equilibrium values are a linear function of
the dynamical variables W . We suppose that the equilibrium values Y eq of the
non-conserved moments are linear function of dynamical variables. We have

Y eq D E W ; (6.3)

where E is a fixed matrix with q " N lines and N columns. Thus the relaxation is
simply described by an ordinary differential equation:

d
dt
.mk "m

eq
k /C

1

%k
.mk "m

eq
k / D 0; for k $ N:

Using an explicit first order Euler scheme, we obtain the algorithm:

m"
k D .1 " sk/mk C sk m

eq
k ; (6.4)

where the superscript % indicates “post-collision” state. The relaxation rates sk # "t
%k

have to satisfy 0 < sk < 2 in order to maintain stability of the scheme. With the
notation (6.1) the relaxation step is performed in the moment space as follows:

Y " D .Id " S/ Y C S Y eq ; (6.5)
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where S is the diagonal matrix of the relaxation times sk for k $ N . We remark
that this collision step is local in space.

Due to the force term, the conserved moments during the collision step evolve
according to

V " D V C"t F D W C .1 " !/"t F: (6.6)

If . /t denotes the transpose of the matrix . /; the moments m" # .V "; Y "/t

after collision are determined by the relations (6.5) and (6.6). After the forcing and
collision steps, the particle distribution f "

j is recovered by the inversion of a linear
system of small size:

f "
j D

q!1X

kD 0
M!1

jk m"
k ; 0 ! j ! q " 1: (6.7)

The advection step corresponds to a method of characteristics with a Courant
number equal to 1 for the advection with velocity vj . We assume here that for each
node x and each velocity vj , the vertex x " vj"t is also a node of the lattice. The
particles moves from a lattice node x to either itself (for v0 D 0) or one of the q" 1
neighbors xj D x C vj "t for velocities vj 6D 0 as presented in the Fig. 6.1. So a
time step of a lattice Boltzmann scheme can be written as:

fi .x; t C"t/ D f "
i .x " vi"t; t/ ; 0 ! i ! q " 1 ; x 2 L ; (6.8)

where f "
i denotes the post-collision population of particles evaluated at the end

(6.7) of the previous step.

6.3 Taylor Expansion Method for the Equivalent Equations

In this contribution, we extend the “Berliner version” [2] of the Taylor expansion
method in order to derive macroscopic equivalent equations when an external
forcing term is present. We suppose on one hand that the dynamical variables W
satisfy a partial differential equation:

@tW D ˛1 W C"t ˛2 W C"t2 ˛3 W C & & & C &0F C"t &1F C : : : (6.9)

and on the other hand that the non conserved moments Y follow a dynamical
expansion of the type

Y D EW C"t ˇ1 W C"t2 ˇ2 W C & & & C"t '0F C"t2 '1 F C : : : (6.10)

In the Eqs. (6.9) and (6.10), ˛j , &j , ˇj and 'j are space derivative operators
of order j . Moreover ˛j and &j are N ' N matrices and ˇj and 'j are .q "
N/ ' N matrices. Note here that the Eq. (6.9) is a system of N partial differential
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equations that represent the evolution of the conserved variables. It gives the
macroscopic (equivalent) equation of the physical problem. The Eq. (6.10) describes
the expansion of the “slave variables” Y in terms of the conserved quantities. Due
to (6.5), we first write the collision step as follows:

Y " D .Id " S/ Y C S Y eq D .Id " S/ Y C S E W

due to (6.3). Then, according to the relation (6.2), we have

Y " D .Id " S/ Y C S E .V C"t ! F / D S E V C .Id " S/Y C"t ! S E F:

Then the moments m" after forcing and relaxation can be presented as follows:

m" D
!
V "

Y "

"
D
!
I 0

SE I " S

"!
V

Y

"
C "t

!
I

!SE

"
F : (6.11)

Secondly, we rewrite the scheme (6.8) in moment space:

!
V

Y

"

k

.x; t C"t/ D mk.x; t C"t/ D
X

j;l

Mk;j M
!1
j;l m

"
l .x " vj"t; t/

then

!
V

Y

"

k

.x; t C"t/ D
X

j;l;(

Mk;j M
!1
j;l ."vj /(

"t j(j

(Š
@(m

"
l .x; t/: (6.12)

In the previous relation @( is a space derivation of order( D .(1;(2; : : : ;(d / 2 Nd
and (Š D (1Š : : : (N Š. The length j(j of the multi-index ( is equal to

P
j (j . We

inject the value (6.11) of m" in the previous expression. We arrange the previous
formal series as increasing powers of "t . We obtain the following equation:

!
V

Y

"
.t C"t/ D

X

n#0
"tn

!
An Bn
Cn Dn

"!
V

Y

"
.t/C

X

n#0
"tnC 1

!
Gn
Hn

"
F: (6.13)

In (6.13), the matrices An, Bn, Cn, Dn, Gn and Hn are space derivation operators
of order n. They are easy to identify with the help of the right hand side of the
Eq. (6.12). The order zero of the development (6.13) relative to "t is deduced from
(6.11) by identification:

!
A0 B0
C0 D0

"
D
!
I 0

S E I " S

"
;

!
G0
H0

"
D
!

I
! S E

"
: (6.14)
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Proposition 1 (Taylor expansion at order 1). The equivalent equations and the
non conserved moments for linear lattice Boltzmann scheme with external force up
to first order are given by the relations

@tW D ˛1 W C &0 F C O."t/ ; Y D EW C"t
#
ˇ1 W C '0 F

$
C O."t2/

(6.15)

with

%
˛1 D A1 C B1 E ; ˇ1 D S!1 .C1 CD1 E "E ˛1/ ;
&0 D G0 D I ; '0 D S!1 .H0 " E &0 " ! S E/ : (6.16)

Proof. We have from (6.13):

V.t C"t/ D V C"t @tV C O."t2/

D V C"t .A1V C B1Y /C "t G0 F C O."t2/

and due to (6.14),

Y.t C"t/ D Y C"t @tY C O."t2/

D .Id " S/ Y C S E V C"t .C1V CD1 Y /C"t H0 F C O."t2/:

Using the relation (6.2) we have

V D W " !"tF

and the development at equilibrium (order zero)

Y D EW C O."t/;

we obtain on one hand

@tW D .A1 C B1E/W CG0F C O."t/

and on the other hand

Y D EWC"t S!1 ŒC1CD1E"E .A1CB1E/W $C.H0"E&0"! S E/FCO."t2/:

By identification of the previous relations with the ansatz (6.9) and (6.10), we obtain
the relations (6.15) at first order with the coefficients ˛1, ˇ1, &0 and '0 explicited in
the relations (6.16). ut
Proposition 2 (Taylor expansion at order 2). The equivalent equations for linear
lattice Boltzmann scheme with external force, as described in first section, up to
second order, are:
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8
<

:

@tW D ˛1 W C &0 F C"t
#
˛2 W C &1 F

$
C O."t2/

Y D EW C"t
#
ˇ1 W C '0 F

$
C"t2

#
ˇ2 W C '1 F

$
C O."t3/

(6.17)

with coefficients ˛1, ˇ1, &0 and '0 proposed in (6.16) and

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

˛2 D B1 ˇ1 C A2 C B2 E " 1
2
˛21

&1 D B1 '0 CG1 " ! A1 " 1
2

&
˛1 &0 C .&0 " 2!/ @t

'

ˇ2 D S!1 &D1 ˇ1 " E ˛2 " ˇ1 ˛1 " E
˛21
2
C C2 CD2 E

'

'1 D S!1 &D1'0 CH1 " E&1 " ˇ1 &0 " 1
2
E˛1 &0

" 1
2
E &0 @t " '0 @t " ! C1

'
:

(6.18)

Proof. We first differentiate relative to time the first relation of (6.15):

@2t W D @t
#
˛1 W C F

$
C O."t/ D ˛1

#
˛1 W C F

$
C @tF C O."t/

D ˛21 W C .˛1 C @t / F C O."t/:

We can therefore develop the dynamical variables W at time t C "t up to second
order. Due to the definition (6.2), we have:

W.t C"t/ D V.t C"t/C ! "t F .t C"t/

D V.t/C"t
#
A1 V.t/C B1 Y.t/

$
C"t2

#
A2 V.t/CB2 Y.t/

$

C! "t F .t C"t/C O."t3/

D W.t/ " ! "t F .t/C ! "t F .t C"t/ C "t
#
A1 .W " ! "t F /

CB1 .E W C"t ˇ1 W C"t '0 F /
$

C"t2
#
A2 W C B2 E W

$
C O."t3/ :

Then taking into account the Taylor formula at second order accuracy and the
expression of @2t W :

W C"t @tW C "t2

2

&
˛21 W C .˛1 C @t / F

'
C O."t3/

D W C ! "t2 @t F C "t
#
A1 W C B1 E W

$

C"t2
#

""t F CB1 ˇ1 W C B1 '0 F C A2 W C B2 E W
$
C O."t3/:
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After dividing by "t :

@tW D .A1 C B1 E/W C F C"t
&
A2 C B2 E C B1 ˇ1 " 1

2
˛21
'
W

C"t
&
G1 C B1 '0 " ! A1 " 1

2
˛1 C .! " 1

2
/ @t

'
F C O."t2/

and the expressions of ˛2 and &1 in (6.18) are established.
To get the second relation of (6.17), we first look to the derivation relative to time

of the non-conserved moments Y . We have

@tY D @t
&
EW C"t

#
ˇ1 W C '0 F

$'
C O."t2/

D E
&
˛1 W C F C"t .˛2 W C &1 F /C O."t2/

'

C"t ˇ1
#
˛1 W C F

$
C"t '0 @t F C O."t2/

D E.˛1 W CF /C"t Œ.E ˛2Cˇ1 ˛1/W C .E &1Cˇ1C '1 @t /F $CO."t2/:

We differentiate relative to time at second order:

@2t Y D @t
&
E
#
˛1 W C F

$'
C O."t/ D E ˛1

#
˛1 W C F /C E @t F C O."t/

D E ˛21 W C .E ˛1 C E @t / F C O."t/:

Then we have

S Y.t/ D S E V "
#
Y.t C"t/ " Y.t/

$
C"t .C1 V CD1 Y C ! S E F /

C"t2 .C2 V CD2 Y CH1 F /C O."t3/

D S E .W " ! "t F /

""t
&
E
#
˛1 W CF

$
C"t

&
.E ˛2Cˇ1 ˛1/W C .E &1Cˇ1C '1 @t /F

''

""t 2

2

&
E ˛21 W C .E ˛1 C E @t / F

'

C"t
&
C1.W " ! "t F /CD1.E W C"t ˇ1 W C"t '0 F /C ! S E F

'

C"t2 .C2 W CD2 E W CH1 F /C O."t3/

D S
&
EW C"t ˇ1 W C"t '0 F

'

C"t2
&#
C2 CD2 E CD1 ˇ1 " 1

2
E ˛21 " .E ˛2 C ˇ1 ˛1/

$
W

C
#
H1 CD1 '0 " ! C1 " 1

2
.E ˛1 C E @t /" .E &1 C ˇ1 C '0 @t /

$
F
'

CO."t3/

and the expressions of ˇ2 and '1 proposed at the second line of the relations (6.18)
are established because &0 is the identity matrix. ut
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2

x + ∆x      xx      x− ∆

10

Fig. 6.2 Stencil of the lattice Boltzmann scheme D1Q3

6.4 Boundary Conditions for D1Q3 Thermal Problems

In general there is a difference between the assumed wall position and the
“measured” one, where the numerical solution vanishes. For some particular lattice
Boltzmann parameters, this difference is null up to order two on"x. In this section,
we study the impact of the knowledge given in the relations (6.17) and (6.18) on the
analysis of the boundary conditions for the lattice Boltzmann schemes. In general,
the incoming particles are given as a simple function of the outgoing ones through
specular reflection (bounce-back) [3] or specular “anti-reflection” (anti-bounce-
back) that are detailed in the corpus of the text. We first focus on the D1Q3 scheme
for a scalar problem.

We introduce the following moment matrixM for the D1Q3 (see Fig. 6.2) lattice
Boltzmann scheme:

M D

0

@
1 1 1

0 # "#
"2#2 #2 #2

1

A : (6.19)

We consider only one conservation law (N D 1) and we set ' D W D f0 C
f1 C f2 : The equilibrium values Y eq of the two non conserved moments are given
according to

Y eq D

0

@
0

#2

*

1

A ' # E ': (6.20)

Proposition 3 (Diffusion model with the D1Q3 lattice Boltzmann scheme).
With the previous lattice Boltzmann D1Q3 scheme, described by relations (6.2),
(6.6), (6.8 ), (6.19 ) and (6.20 ), we have the equivalent equation

@'

@t
" +

@2'

@x2
" F D O."t2/

at second order for a stationary force F , with the thermal diffusivity

+ D 2C *

3
"t #2 ,1 with ,1 # 1

s1
" 1

2
:
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f2 Ω
∆x

∆ q

= ??f1

xi

xb
xe

Fig. 6.3 “Anti-bounce-back” numerical boundary condition for the D1Q3 lattice Boltzmann
scheme. The boundary node xb is located at the distance "q of the theoretical boundary. The
incoming particles f1.xb/ are determined from the knowledge of the outgoing density of particles
f2.xb/

Proof. There is only one scalar conservation and W # ': According to the
Proposition 2, we have the equivalent equation up to order two:

@tW D ˛1 W C F C"t
#
˛2 W C &1 F

$
C O."t2/:

The associated coefficients can be computed easily: ˛1 D 0, ˛2 D #2,1
*C 2
3

, &0 D 1

and &1 D .! " 1
2
/ @t . We have in consequence &1 F D 0 if @t F D 0 and the

equivalent equation is established. ut
We consider the elementary one-dimensional Poisson problem with homogeneous
Dirichlet boundary conditions:

" 4 u.x/ D c for 0 < x < 1 ; u.0/ D u.1/ D 0: (6.21)

The solution of the problem (6.21) is quadratic. A uniform body force F is
considered to take into account the source term c in the right hand side of the Poisson
equation. We denote by xb the first node at the left in the domain $0; 1Œ and by xe
a fictitious outside node (see Fig. 6.3). The node xb is supposed to be located at a
distance "q of the solid wall position xi (see Fig. 6.3). We implement a so-called
“anti-bounce-back” boundary condition to take into account the Dirichlet boundary
conditions:

f1.xb; t C"t/ D "f "
2 .xb; t/C ˚ (6.22)

where ˚ is a given boundary term directly related to the boundary data. Observe
that this term is null if we consider e.g. homogenous Dirichlet boundary conditions.

Proposition 4 (Quartic treatment of a D1Q3 boundary condition). For the
above D1Q3 lattice Boltzmann scheme, we define
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- # "3C 8,1,2 " 8,1 .1 " 2!/:

The numerical solution of the Poisson problem (6.21) vanishes at third order formal
accuracy for the position "q D "x

2
if the condition - D 0 is satisfied.

Proof. Using the Eq. (6.10) on the non conserved moment, we have

Y D EW C"t ˇ1W C"t2 ˇ2W C"t '0 F C"t2 '1 F:

Then we perform a collision step to get

Y " D .I " S/ Y C S E Y C"t ! S E F:

With the help of the inverse moments matrixM!1, we deduce:

f "
1 D 1

2#2
Œ2m"

2 C #m"
1 $ and f "

2 D 1

2#2
Œ2m"

2 " #m"
1 $:

We impose the anti-bounce-back condition on the boundary:

f1.xb; t C"t/ D "f2.xe; t C"t/C ˚:

Due to the fundamental time iteration of a lattice Boltzmann scheme (6.8), we can
write this relation under the form

f "
1 .xe; t/ D "f "

2 .xb; t/C ˚:

Using a Taylor development of the moments, we obtain:

f "
1 .xe/C f "

2 .xb/ D .2C */
3
'.xi /C

C "t2#2 .2C */
72

&
" 3C 8,1,2 " 8,1.1 " 2!/

' @2'
@x2
.xi /C O."t3/:

We can precise that

˚ D .2C */

3
'.xi /

in the right hand side of (6.22). Then the conclusion holds if we give a null value
for the second order term in the previous relation. ut
Remark. We have extended our result [6] for a general values of the parameter !
(Figs. 6.4 and 6.5).
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6.5 D2Q9 for a Linear Acoustic Type Fluid

This scheme is described and analyzed in [14]. The matrix M is now 9 ' 9. For
a fluid model, we have N D 3 conserved quantities: density m0 # ' and the two
componentsm1 # Jx andm2 # Jy of the momentum. The non conserved moments
mk for k $ 3 are detailed in [14]. Their equilibrium values are classical:

m
eq
3 D "2'; m

eq
4 D '; m

eq
5 D "Jx

#
; m

eq
6 D "Jy

#
; m

eq
7 D m

eq
8 D 0:

The relaxation rates are labelled from s3 to s8 with the two constraints s5 D s6 and
s7 D s8 to recover an isotropic model compatible with the physics. The particle
directions are represented on the Fig. 6.1. With a forcing term of the type F D
.0; Fx; 0/, the partial equivalent equations at the order 2 are given by

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

@'

@t
C @Jx

@x
C @Jy

@y
D O."t2/ ;

@Jx

@t
C c2s

@'

@x
" * @

@x

h@Jx
@x

C @Jy

@y

i
" . "Jx " Fx D O."t2/ ;

@Jy

@t
C c2s

@'

@y
" *

@

@y

h@Jx
@x

C @Jy

@y

i
" . "Jy D O."t2/;

(6.23)

where sound speed cs , the shear viscosity . and the bulk viscosity * satisfy
respectively c2s D #

3
; . D "t ,7

#2

3
and * D "t ,3

#2

3
for the D2Q9 scheme.

We consider the two-dimensional Poiseuille flow with the D2Q9 lattice Boltz-
mann scheme. We model this classical problem with the help of an imposed volumic
force. Let ˝ D Œ1; Nx $' Œ1; Ny $: We enforce periodic condition at the inlet (i D 1)
and at the outlet (i D Nx). A “bounce-back” boundary condition is imposed on
the walls to take into account the null velocity Jx D 0 on the upper and lower
boundary. A uniform body force Fx is applied to model the pressure gradient. We
observe that for stationary problems, a lot of time iterations are necessary in order
to obtain correct converged results. In that case the lattice Boltzmann method is not
the most efficient taking in to account the fact that due the exact advection of the
lattice the resolution of the stationary problem is not a simple task.

Proposition 5 (Precise position of the Poiseuille boundary with D2Q9). With
the above choices for the lattice Boltzmann scheme, the solid wall is located at
"q D "x

2
up to third order when the parameter

- # "3C 8,8,5 " 8,8.1" 2!/

is equal to zero.

The proof of the above Proposition is elementary with traditional algebraic methods
(see e.g. [6]) but quite long to develop. We have implemented it without difficulty
with a formal computer software. In order to convince the reader, we test the
resulting condition - D 0 with appropriate numerical experiments presented in
Figs. 6.6 and 6.7. These experiments extend the ones presented in [6].
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6.6 D2Q13 for a Linearized Fluid

To construct the scheme D2Q13, we add four more velocities to the previous scheme
D2Q9 (see the Fig. 6.8). The details can be found e.g. in Higuera et al. [12]. Nine
moments are analogous to those proposed previously. The equilibrium values are
parameterized according to

8
<

:

m
eq
3 D a1 '; m

eq
4 D m

eq
5 D 0; m

eq
6 D c1

#
Jx; m

eq
7 D c1

#
Jy;

m
eq
8 D " 65C 63 c1

24#
Jx; m

eq
9 D " 65C 63 c1

24#
Jy; m

eq
10 D a2 '; m

eq
11 D a3 '; m

eq
12 D 0:

In order to simulate isotropic models, the relaxation rates s3 to s12 satisfy the
following relations: s4 D s5, s6 D s7 and s8 D s9 as proposed e.g. in [2]. With the
previous choices, with a forcing term F D .0; Fx; 0/ analogous to the one proposed
previously for the D2Q9 scheme, the partial equivalent equations take the form
(6.23). In this case the sound speed cs , the shear viscosity . and the bulk viscosity
* satisfy respectively c2s D 28C a1

26
#, . D "t ,5

#2

2
and * D ""t ,3 2C a126

#2. In our
computation we set a1 D "12. Then * > 0. We study a Poiseuille flow with the
D2Q13 lattice Boltzmann scheme in the framework of an imposed source term. The
general choices are analogous to the ones we did with the D2Q9 lattice Boltzmann
scheme.

Proposition 6 (Precise position of the Poiseuille boundary with D2Q13). When
the parameter

- # "7C 40,5 ,7 " 8,5 .1 " 2!/

is null and with the above choices for the lattice Boltzmann scheme, the solid wall
is located at "q D "x

2
at third order accuracy if and only if - D 0.
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This proposition has been solved with the help of formal calculus. We did
various experiments analogous to those presented for the D2Q9 scheme. They are
summarized in the captions of Figs. 6.9 and 6.10.

6.7 Conclusion

In this contribution, we have extended the “Berliner version” [2] of the formal Taylor
expansion method for linear lattice Boltzmann scheme to the case of a possible
external force. We have established that the quartic parameters to enforce the
precision of the lattice Boltzmann scheme depend not only on the relaxation rates
but also on the choice of the parameter ! for the time integration (6.2) of the source
term. We have derived quartic parameters for the D2Q13 model for a Poiseuille
flow. Our numerical results validate the formal Taylor development. Nevertheless,
a rigorous numerical analysis is still an open question. In future work, we wish to
extend the quest of quartic parameters for more general physical problems, study
time dependent boundary conditions and give general boundary conditions for any
position of the wall relative to the lattice.

Acknowledgements The authors thanks the referee for helpful questions after the first draft of
this contribution.
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