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a b s t r a c t

Following the efficient technique of Bérenger in classical computational fluid dynamics
methods to avoid reflection of sound waves on the boundaries of the computational
domain, we propose a new LBE scheme that behaves like a Bérenger medium for absorbing
waves without reflection. This model is presented and its’ properties are discussed
using the method of ‘‘equivalent equations’’. We also proposed a general method to
introduce zero-order damping terms in Boltzmann schemes that are used to absorb the
waves propagating in the Bérenger medium. Results of the simulation are discussed with
theoretical interpretation in the case of waves incoming normal to the interface. We shall
also show that the reflection of sound waves can be reduced simply by changing the
‘‘advection step’’ of the lattice Boltzmann algorithm on the nodes close to the interface.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Physical wave phenomena often take place in unbounded domains. The numerical study of such phenomena requires to
create a finite computational region and thus to introduce artificial boundaries. The aim of these boundaries is to absorb all
the waves and reduce the reflection of waves within the computational domain as much as possible.
Among the classical absorbingmethodologies [1–3] we choose to simulate the perfectly matched layer method using the

Lattice Boltzmann method.
The perfectly matched layer (PML) methodwas introduced by Bérenger [3] in the context of electromagnetic wave prop-

agation by surrounding the truncated physical domain of interest with a buffer/sponge layer which has the property of ab-
sorbing all incomingwaveswithout reflection for any frequency and any incident angle (see Fig. 1). Hu applies in 1996 [4] the
PML approach to aeroacoustic problemmodeledwith the linearized Euler equation for the domain of interestΩ− (see Fig. 1):

∂ jx
∂t
+
∂ρ

∂x
= 0,

∂ jy
∂t
+
∂ρ

∂y
= 0,

∂ρ

∂t
+
∂ jx
∂x
+
∂ jy
∂y
= 0,

(1)

where ρ is the fluid density and jx, jy are the flux of velocity components.
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Fig. 1. Left: Domain of interestΩ and buffer/sponge domain (PML). Right: interface between the acoustics domainΩ− and the ‘‘PML’’ domainΩ+ .

In the PML bufferΩ+ (see Fig. 1) we use the non-physical equations [4]:

∂ jx
∂t
+ σ jx +

∂(ρx + ρy)

∂x
= 0,

∂ jy
∂t
+
∂(ρx + ρy)

∂y
= 0,

∂ρx

∂t
+
∂ jx
∂x
+ σρx = 0,

∂ρy

∂t
+
∂ jy
∂y
= 0,

(2)

where the coefficient σ is introduced for the absorption of waves in the PML. Wewill refer to it as zero-order damping term
in this work and it will be assumed to be non negative. We note that when σ = 0, we are left with the original acoustics
equations with: ρ = ρx + ρy.We notice here that the mass ρ is assumed to be continuous at the interface between the
domain of interestΩ− and the PMLΩ+.
Our work is structured as follows: We first construct a Bérenger Lattice Boltzmann (BLB) scheme to model an absorbing

medium without damping terms and we study the properties of this new model. Then we propose a method to simulate
damping terms by changing the advection step. In section three we show numerical tests of an interface between classical
D2Q9 medium and BLB medium. Finally, in section five we propose a method to reduce reflected waves in the simple case
of wave incident normal to the interface.

2. Bérenger lattice Boltzmann scheme

In this section,we construct the BLB schemewhichhas Eq. (2) as equivalentmacroscopic equations up to order 1 relatively
∆t (defined below). First we recall the classical D2Q9 [5] scheme.

2.1. Classical D2Q9 scheme

We consider the classical D2Q9 [6] model. Let L a regular lattice parametrized by a space step ∆x, composed by a set
L0 ≡ {xj ∈ (∆xZ)× (∆xZ)} of nodes or vertices.∆t is the time step of the evolution of LBE and λ ≡ ∆x

∆t is the elementary
celerity. We choose the velocities vi, i ∈ (1 . . . 9) such that vi ≡ ci ∆x∆t = ciλ, where the family of vectors {ci} is defined by:
c = (0, 0), (1, 0), (0, 1), (−1, 0), (0,−1), (1, 1), (−1, 1), (−1,−1), (1,−1). The LBE is a mesoscopic method and deals
with a small number of functions {fi} that can be interpreted as populations of fictitious ‘‘particles’’. The populations fi evolve
according to the LBE scheme which can be written as follows [7]:

fi(xj, t +∆t) = f ∗i (xj − vi∆t, t), 1 ≤ i ≤ 9, (3)

where the superscript ∗ denotes post-collision quantities. Therefore during each time increment ∆t there are two
fundamental steps: advection and collision.

• The advection step describes the motion of a particle which has collisioned in node xj − vi∆t having the velocity vj and
goes to the jth neighbouring node xj.
• Following d’Humières [5], the collision step is defined in the space of moments. The nine moments {m`} are obtained by
a linear transformation of vectors fj:

m` =
9∑
j=1

M` jfj, 1 ≤ ` ≤ 9,
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where the matrixM ≡ (M` j)1≤`,j≤9 is given by:

M =



0 λ 0 −λ 0 λ −λ −λ λ
0 0 λ 0 −λ λ λ −λ −λ
1 1 1 1 1 1 1 1 1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1
−4 −1 −1 −1 −1 2 2 2 2
4 −2 −2 −2 −2 1 1 1 1
0 −2 0 2 0 1 −1 −1 1
0 0 −2 0 2 1 1 −1 −1


. (4)

Themoments have an explicit physical significance [6]:m1 ≡ jx andm2 ≡ jy are x-momentum, y-momentum,m3 ≡ ρ is the
density (density),m4 andm5 are diagonal stress and off-diagonal stress,m6 is the energy,m7 is related to energy square, and
m8,m9 are x-heat flux and y-heat flux. Note that we have changed the usual order of moments to simplify the introduction
of the Bérenger Lattice Boltzmann scheme.
To simulate fluid problems, we conserve the flux momentum jx, jy and the density moment ρ in the collision step and

obtain three macroscopic scalar equation. The other quantities (non-conserved moments) are assumed to relax towards
equilibrium valuesmeq` following:

m∗` = (1− s`)m` + s`m
eq
` , 4 ≤ ` ≤ 9, (5)

where s` (s` > 0, for ` ≥ 4) are relaxation rates, not necessarily equal to a single value as in the so called BGK
case [8]. The equilibrium values meqi of the non conserved moments in Eq. (5) determine the macroscopic behavior of
the scheme (i.e. Eq. (3)). Indeed with the following choice of equilibrium values (neglecting non-linear contributions):
meq4 = 0, m

eq
5 = 0, m

eq
6 = −2ρ, m

eq
7 = ρ, meq8 = −jx and m

eq
9 = −jy and using Taylor expansion [7] we find the

acoustics equations up to order two in∆t:
∂ jα
∂t
+
λ2

3
∂ρ

∂xα
= λ2∆t

σ6

3
∂(divj)
∂xα

+ λ2∆t
σ4

3
4j+ O(∆t2),

∂ρ

∂t
+ divj = O(∆t2),

(6)

where σ` ≡
(
1
s`
−
1
2

)
, 4 ≤ ` ≤ 9, and in the case of s5 = s4. Values of the sound speed cs, bulk viscosity ζ and shear

viscosity ν are cs = λ
√
3
, ζ = c2s∆tσ6 and ν =

λ2∆t
3 σ4.

2.2. Bérenger Lattice Boltzmann scheme (BLB)

To have a perfectly matched layer for lattice Boltzmannmethod, we construct a Lattice Boltzmann schemewhichmodels
the buffer of Bérenger (BLB). At first we propose a schemewhich has the acoustic PML equations (2) asmacroscopic behavior
without zero-order damping term (i.e. σ = 0). Later, we change the advection step of the BLB scheme to add the terms
proportional to σ .
As there are four macroscopic equations (2) in the Bérenger scheme, we need to use four conserved quantities in the

collision step. For simplicity, we keep the classical D2Q9 velocity set (hopefully this will allow simple boundaries between
the LBE and BLB domains), and we replace the list of moments generated with matrix M , by those generated with a new
matrixMB given below.

MB =



0 λ 0 −λ 0 λ −λ −λ λ
0 0 λ 0 −λ λ λ −λ −λ
1 1 1 1 1 1 1 1 1
MB4 1 MB4 2 MB4 3 MB4 4 MB4 5 MB4 6 MB4 7 MB4 8 MB4 9
0 0 0 0 0 1 −1 1 −1
−4 −1 −1 −1 −1 2 2 2 2
4 −2 −2 −2 −2 1 1 1 1
0 −2 0 2 0 1 −1 −1 1
0 0 −2 0 2 1 1 −1 −1


, (7)

Note that M and MB differ only in the definition of the fourth moment, that we call m′4 and which will be conserved
in collision (i.e. s′4 = 0) to get a fourth macroscopic equation. Later we shall identify m3 to ρ ≡ ρx + ρy and m′4 to
ρx − ρy.
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To simplify later formula, we introduce coefficients γ1···9 such that
MB4 1 = γ3 − 4(γ5 − γ6)

MB4 2 = λγ1 + γ3 + γ4 − γ6 − 2γ7 − 2γ8
MB4 3 = λγ2 + γ3 − γ4 − γ6 − 2γ7 − 2γ9
MB4 4 = −λγ1 + γ3 + γ4 − γ6 − 2γ7 + 2γ8
MB4 5 = −λγ2 + γ3 − γ4 − γ6 − 2γ7 + 2γ9
MB4 6 = λ(γ1 + γ2)+ γ3 + γ5 + 2γ6 + γ7 + γ8 + γ9
MB4 7 = λ(−γ1 + γ2)+ γ3 − γ5 + 2γ6 + γ7 − γ8 + γ9
MB4 8 = −λ(γ1 + γ2)+ γ3 + γ5 + 2γ6 + γ7 − γ8 − γ9
MB4 9 = λ(γ1 − γ2)+ γ3 − γ5 + 2γ6 + γ7 + γ8 − γ9.

We note that this corresponds toMB4• = (γ1, γ2, . . . , γ9).M . For the non conserved moments, we take new equilibrium
values, meq5 = 0, m

eq
6 = axρx + ayρy, m

eq
7 = cxρx + cyρy, m

eq
8 =

c1
λ
jx and m

eq
9 =

c2
λ
jy. We now determine the equivalent set

of equations of the model defined above at first order in ∆t and we try and identify these equations with the set of Eq. (2)
with no linear damping (σ = 0). In addition we impose that the matrixMB is invertible. Using a first order Taylor expansion
in∆t of the BLB scheme [7], we obtain

∂ jx
∂t
+ A1

∂ jx
∂x
+ A2

∂ jy
∂x
+ A3

∂ρ

∂x
+ A4

∂(ρx − ρy)

∂x
= O(∆t), (8)

∂ jy
∂t
+ B1

∂ jy
∂y
+ B2

∂ jx
∂y
+ B3

∂ρ

∂y
+ B4

∂(ρx − ρy)

∂y
= O(∆t), (9)

∂ρ

∂t
+
∂ jx
∂x
+
∂ jx
∂y
= O(∆t), (10)

∂(ρx − ρy)

∂t
+ C1

∂(ρx − ρy)

∂x
+ C2

∂(ρx − ρy)

∂y
+ C3

∂ρ

∂x
+ C4

∂ρ

∂y

+C5
∂ jx
∂x
+ C6

∂ jx
∂y
+ C7

∂ jy
∂x
+ C8

∂ jy
∂y
= O(∆t),

(11)

where

A1 =
−1
2γ4

(γ1 + c1γ8) , A2 =
−1
2γ4

(γ2 + c2γ9) ,

A3 =
2
3
−
γ3

2γ4
+
ax + ay
4

(
1
3
−
γ6

γ4

)
−
γ7(cx + cy)
4γ4

,

A4 =
1
2γ4
+
ax − ay
4

(
1
3
−
γ6

γ4

)
−
γ7(cx − cy)
4γ4

,

B1 =
1
2γ4

(γ2 + c2γ9) , B2 =
1
2γ4

(γ1 + c1γ8) ,

B3 =
2
3
+
γ3

2γ4
+
ax + ay
4

(
1
3
+
γ6

γ4

)
+
γ7(cx + cy)
4γ4

,

B4 =
−1
2γ4
+
ax − ay
4

(
1
3
+
γ6

γ4

)
+
γ7(cx − cy)
4γ4

,

C1 =
(ax − ay)
2

(
γ1

6
+
γ8

3
+
γ6

2γ4
(2γ8 − γ1)

)
+
cx − cy
2

(
γ8

3
+
γ7

2γ4
(2γ8 − γ1)

)
,

C2 =
(ax − ay)
2

(
γ2

6
+
γ9

3
+
γ6

2γ4
(γ2 − 2γ9)

)
+
cx − cy
2

(
γ9

3
+
γ7

2γ4
(γ2 − 2γ9)

)
,

C3 =
2γ1
3
+
γ3

2γ4
(2γ8 − γ1)+

ax + ay
2

(
γ8

3
+
γ1

6
+
γ6(2γ8 − γ1)

2γ4

)
+
cx + cy
2

(
γ8

3
+
γ7

2γ4
(2γ8 − γ1)

)
,

C4 =
2γ2
3
+
γ3

2γ4
(−2γ9 + γ2)+

ax + ay
2

(
γ9

3
+
γ2

6
+
γ6(−2γ9 + γ2)

2γ4

)
+
cx + cy
2

(
γ9

3
+
γ7

2γ4
(−2γ9 + γ2)

)
,

C5 = γ3 + γ6 + c1(γ6 + γ7)+
γ4

3
(1− c1)+

γ8γ1

2γ4
(2− c1)+

2c1γ 28 − γ
2
1

2γ4
,
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C6 =
γ5(2+ c1)

3
+
1
2γ4

(c1γ8 + γ1)(γ2 − 2γ9),

C7 =
γ5(2+ c2)

3
−
1
2γ4

(c2γ9 + γ2)(γ1 − 2γ8),

C8 = γ3 + γ6 + c2(γ6 + γ7)−
γ4

3
(1− c2)−

γ9γ2

2γ4
(2− c1)−

2c2γ 29 − γ
2
2

2γ4
.

The identification between a suitable linear combination of equations (8), (9), (10), (11) and the PML system (2) where
σ = 0 leads to the following requirements:

γ1 = γ2 = γ8 = γ9 = 0, ax = −4+ 6c2s , ay = −4+ 6c2s ,

cx =
(4γ6 − 6γ6c2s − γ3 + 1)

γ7
, cy =

(4γ6 − 6γ6c2s − γ3 − 1)
γ7

− 4+ 6c2s ,

c1 =
(3γ3 + γ4 + 3γ6 − 3)
(γ4 − 3γ6 − 3γ7)

, c2 =
(−3γ3 + γ4 − 3γ6 − 3)
(γ4 + 3γ6 + 3γ7)

.

For γ3,4,5,6,7 we find two possible sets of solutions for γ3,4,5,6,7:

(i) γ3 = γ6 + 2γ7, γ4 = 1, (ii) γ5 = 0.

Note that there are some free parameters left (γ5,6,7 for the first case or γ3,4,6,7 for the second one). To have a stable scheme,
we have found that only the second is acceptable.

2.3. Dissipation properties of BLB scheme without damping terms

To study the dissipation properties of the BLB scheme without absorbing terms (i.e. σ = 0), we determine the
macroscopic equations up to order 2 relatively to∆t .

Proposition 1. In the case where s6 = s7, s8 = s9, cs = λ
√
3
and γ5 = 0, the BLB scheme models the following system of

macroscopic equations up to order two on∆t:

∂ jx
∂t
+
λ2

3
∂(ρx + ρy)

∂x
+ Axx

∂2jx
∂x2
+ Ayy

∂2jx
∂y2
+ Axy

∂2jy
∂xy
= O(∆t2),

∂ jy
∂t
+
λ2

3
∂(ρx + ρy)

∂y
+ Bxx

∂2jy
∂x2
+ Byy

∂2jy
∂y2
+ Bxy

∂2jx
∂xy
= O(∆t2),

∂ρx

∂t
+
∂ jx
∂x
+ Cxx

∂2ρx

∂x2
+ Cyy

∂2ρx

∂y2
+ Dxx

∂2ρy

∂x2
+ Dyy

∂2ρy

∂y2
= O(∆t2),

∂ρy

∂t
+
∂ jy
∂y
− Cxx

∂2ρx

∂x2
− Cyy

∂2ρx

∂y2
− Dxx

∂2ρy

∂x2
− Dyy

∂2ρy

∂y2
= O(∆t2),

where

Axx = −
λ2∆t(4γ4 − 1)

6γ4
σ6

Ayy = −
λ2∆t
3

(3(γ3 − γ6 − 2γ7 + γ4)− 1)
γ4 − 3(γ6 + γ7)

σ5

Axy = −
λ2∆t
3

[
3(γ6 + γ7)+ γ4(6(γ7 − γ3)+ 4γ4 − 1)

2γ4(γ4 + 3(γ6 + γ7))
σ6 +

3(γ6 − γ3 + 2γ7 + γ4)− 1
γ4 + 3(γ6 + γ7)

σ5

]
Bxx = −

λ2∆t
3

(3(−γ3 + γ6 + 3γ7 + γ4)− 1)
γ4 + 3(γ6 + γ7)

σ5

Byy = −
λ2∆t(2γ4 + 1)

3γ4
σ6

Bxy = −
λ2∆t
3

[
3(γ6 + γ7)+ γ4(3(γ3 − γ7)+ 2γ4 − 2)

γ4(γ4 − 3(γ6 + γ7))
σ6 +

3(γ3 − γ6 − 2γ7 + γ4)− 1
γ4 − 3(γ6 + γ7)

σ5

]
Cxx =

λ2∆t
18

σ8(3(γ6 + γ7)− γ4)(2(γ7 − γ6)+ γ3 − 1)
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Cyy =
λ2∆t
18

σ8(3(γ6 + γ7)+ γ4)(2(γ7 − γ6)+ γ3 − 1)

Dxx =
λ2∆t
18

σ8(3(γ6 + γ7)− γ4)(2(γ7 − γ6)+ γ3 + 1)

Dyy =
λ2∆t
18

σ8(3(γ6 + γ7)+ γ4)(2(γ7 − γ6)+ γ3 + 1).

We note that this model is not isotropic.

Proof. To obtain themacroscopic equationswe can use the usual Chapman–Enskog analysis [9] or Taylor expansion [7]. The
details are given in [10]. In general the second order space derivatives in the preceding equations are not isotropic. To obtain
isotropy, the following conditions have to be met: Axx = Byy, Ayy = Bxx, Axy = Bxy and Axx − Axy = Ayy, where Axx,yy,xy and
Bxx,yy,xy are the coefficients appearing in the equivalent equations of the model BLB (see Proposition 1). This can be satisfied
only for s5 = 0. This fact introduces a new conservation law which is incompatible with the Bérenger model. Therefore our
model is not isotropic. �

2.4. Stability analysis

We study numerically the stability of the BLB scheme by using the Von Neumann analysis. It consists in considering the
solution of the scheme for a plane wave fj(xi, t) = φjei(ωt−k.xi) and by using the Fourier transform of the Eq. (3). We obtain
the following equation:

f (xi, t +∆t) = G(p, q)f (xi, t), (12)

where p = eikx∆x, q = eiky∆x, (kx, ky) = k and G(p, q) = A(p, q)M−1B CMB. The advection operator A(p, q) can be written as

follows: A = diag
(
1, p, q, 1p ,

1
q , pq,

q
p ,

1
pq ,

p
q

)
, the moments matrixMB is given by (7) and the collision matrix is given by:

C =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1− s5 0 0 0 0

axs6
ax − ay
2

s6 0 0 0 1− s6 0 0 0

cxs7
cx − cy
2

s7 0 0 0 0 1− s7 0 0

0 0
c1
λ
s8 0 0 0 0 1− s8 0

0 0 0
c2
λ
s9 0 0 0 0 1− s9


.

Let introduce z = eiω∆t , then Eq. (12) becomes:

zf (xi, t) = G(p, q)f (xi, t).

So the stability relies on the eigenvalue problem for the operator G. Therefore, we compute numerically the eigenvalues
zα and the stability occurs when Re(ln zα) < 0 (i.e. |zα| < 1) for all wave vector k.
For the case where sound speed cs = λ

√
3
we find that the BLB scheme is not stable for the first choice: γ5 6= 0,

γ3 = γ6 + 2γ7 and γ4 = 1. So we take the second choice (i.e. γ5 = 0). We find that the BLB algorithm is stable for the
following configuration: γ4 = 1, γ3 = γ6 + 2γ7, γ6 ∈ [0.88, 3.22], γ7 ∈ [0.77, 2.22], s5 ∈]0, 1.6[, s6,7 ∈]0, 1.66[ and
s8,9 ∈]0, 1.8[. Fig. 2(a), (b), (c) and (d) show the real part of logarithm of the eigenvalues as function of wave vector k. We
see that for this choice of the parameters the BLB algorithm is stable. We note that we have not find situations where the
attenuation is less 10−2 typically (i.e. one order of magnitude greater than the classical D2Q9).

2.5. BLB with damping terms

Until now we studied the case of BLB without absorbing terms (i.e. σ = 0 in the system of Eq. (2)) to represent only the
non-reflecting property of the BLB scheme. To model the zero-order damping terms we propose to change the advection
step of the BLB scheme as follows:

Proposition 2. If we modify the advection step of the BLB scheme as follows:

fj(xi, t +∆t) = f ∗j
(
xi − vj∆t, t

)
−

9∑
`=1

σ̃ B`,jf
∗

` (xi − v`∆t, t) , 1 ≤ j ≤ 9.
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Fig. 2. Real part of logarithmic eigenvalues of the BLB model versus |k|. The value of the parameters are γ3 = 7, γ6 = 3, γ7 = 2, γ4 = 1 and cs = 1
√
3
. The

relaxation parameters are s5 = 1.4, s6 = 1.6, s7 = 1.65, s8 = 1.3 and s9 = 1.8. (a) For θ = 0 angle of wave vector k (i.e. k is parallel to Ox). (b) For θ = π
12 .

(c) For θ = π
6 . (d) For θ =

π
4 .

where the matrix σ̃B ≡ (σ̃ B`,j)1≤`,j≤9, is given by:

σ̃ B2,• =
σ∆t
4
(1+ a1, 4, 0, 0, 0, a2 + 3, a2 − 1, a2 − 1, a2 + 3),

σ̃ B4,• =
σ∆t
4
(1+ a1, 0, 0, 4, 0, a2 − 1, a2 + 3, a2 + 3, a2 − 1),

and σ̃ B`,j = 0 for ` 6= (2, 4), 1 ≤ j ≤ 9, with

a1 = γ3 − 4(γ6 − γ7), a2 = γ3 + 2γ6 + γ7.

We simulate the terms of damping proportional to σ in the PML system of equations (2). We note here that we give the matrix σ̃
only for the case where the BLB scheme is stable.

Proof. We use here the Taylor expansion [7] for the above equation to find themacroscopic equivalent equations (2). So we
write the Taylor expansion up to order 2 on∆t of the BLB scheme equation (see Proposition 2):

fj(xi, t)+∆t∂t fj(xi, t) =
(
f ∗j (xi, t)−∆tvj∇f

∗

j (xi, t)
)
−

9∑
`=1

σ̃ Bj,`
(
f ∗` (xi, t)−∆tv`∇f

∗

` (xi, t)
)
+ O(∆t2),

With the help of the moment matrixMB, using the fact f ∗j = f
eq
j + O(∆t) and neglecting the terms in (∆t

2), we obtain:

m` +∆t ∂tm` = m∗` −∆t
∑
j=1,9

MB`,jv
β

j ∂β f
eq
j −

9∑
j=1

MB`,j
9∑
p=1

σ̃ Bj,pf
eq
p (x, t)+ O(∆t

2).

We rewrite the above equation as follows:

m∗` −m` = ∆t ∂tm` +∆t
∑
j=1,9

MB`,jv
β

j ∂β f
eq
j +

9∑
j=1

Ψ`,jf
eq
j (x, t)+ O(∆t

2), (13)
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Fig. 3. Interface test in the case of normal incidence between classical D2Q9 acoustic medium and BLB without absorption medium. (a) jtestx vs Nx wave
transmission betweenΩ− (D2Q9 medium) andΩ+ (BLB without absorption medium) at time T = 6000. (b) jtestx − j

ref
x vs Nx , difference between the test

and reference cases.

where the matrix (Ψ`,j)1≤`,j,≤9 = MB.σ̃B is the product of matrix MB and σ̃B. So with the help of the matrix Ψ we calculate
the terms:

∑9
j=1 Ψ`,jf

eq
j (x, t), for ` = 1..9 which is equal to: σ∆tjx for ` = 1, 0 for ` = 2, σ∆t

ρ+(ρx−ρy)
2 = σ∆tρx for ` = 3

and σ∆t ρ+(ρx−ρy)2 = σ∆tρx for ` = 4. Now we write Eq. (13) for the four conserved moments (i.e. ` = {1, 2, 3, 4}) and
with the help ofm∗` = m` we obtain the PML system (2) with absorption. �

3. Numerical test of interfaces

In this section, we present numerical simulations for acoustic waves normally incident to an interface between a classical
D2Q9medium (on the left) and various situations on the right: first a BLB without absorption then BLB with absorption and
finally classical D2Q9 with absorption. Because we have chosen the same velocity set for both media the scheme (3) is used
at all points, including those at the interface.

3.1. Classical D2Q9/BLB without absorption

So letΩ = [0, l] × [0, h], where l = 4000 and h = 5 be composed byΩ− = [0, l2 ] × [0, h] andΩ+ = [
l
2 , l] × [0, h].

• In Ω−, we use the classical D2Q9 scheme with the following relaxation rates: s4 = s5 = 1.95, s6 = 1.97, s7 = 1.9 and
s8 = s9 = 1.7.
• In Ω+, we use the BLB scheme without absorption and we take the following configuration for different parameters:
γ3 = 7, γ4 = 1, γ6 = 3, γ7 = 2, cs = 1

√
3
, s5 = 1.8, s6 = 1.6, s7 = 1.6 and s8 = s9 = 1.7.

Here we take periodic boundary conditions for the y direction and a simple bounce back in the outer edges in xi = l. In
the inlet edges at xi = 0 we impose an harmonic wave jx = sin(ω∆t) where ω = 2π

100 (implemented by bounce-back and
application of 2jx with appropriate weight factors for the velocities incoming in the computational domain). We take a fluid
at rest for initial conditions and the total duration T = n∆t of the simulations is chosen such that waves have not reached
the outlet (see Fig. 3(a)). We note here that the acoustic wave is more absorbed for xi > 2000 Fig. 3(a), and this is due to the
change of viscosity in the BLB medium.
To determine the reflected wave, we perform another simulation in the domain ΩR = [0, l] × [0, h]. In this domain

we take the same configuration as in the domain Ω− with the same boundary conditions for the inlet edges at xi = 0.
This simulation gives us the reference solution. To see the reflected wave and the Knudsen modes that are generated at the
interface we draw the difference between the flux jtestx inΩ (the test case) and the flux jrefx inΩR (the reference case) for the
same number of time steps = 6000. It should be noted here that we have a small reflected wave between classical D2Q9
acoustic medium and BLB without absorption medium. So in Fig. 3(b) (for xi ∈ (1, 2, . . . .2000)) we see a reflected acoustic
wave which has an amplitude of the order 3.10−3.
This reflected acoustic wave is generated by the change in the viscosity between the two media. As indicated above, the

BLB scheme is anisotropic and is not stable for parameters corresponding to a viscosity as small as that can be obtained with
D2Q9 (for more details see [11]).

3.2. Classical D2Q9/BLB with absorption

To test this interface we make the same simulation as above, but now we only change the Ω+ medium. Indeed in
Ω+ we use the BLB scheme with absorption (i.e. changing the advection step as described in Proposition 2). We take the
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Fig. 4. Interface test in the case of normal incidence between classical D2Q9 acoustic medium and BLB with absorption medium. (a) jtestx vs Nx wave
transmission betweenΩ− (D2Q9medium) andΩ+ (BLBwith absorptionmedium) at xi = 2000 and time T = 6000. (b) jtestx − j

ref
x vs Nx , difference between

the test and reference cases.

following parameters: γ3 = 7, γ4 = 1, γ6 = 3, γ7 = 2, cs = 1
√
3
, s5 = 1.8, s6 = 1.6, s7 = 1.6, s8 = s9 = 1.7 and

σ(xi) = 10−7(xi − 2000)2.
Fig. 4(a) shows that the transmitted acoustic wave is absorbed (for xi > 2000) in the BLB with absorption medium.

We note also that the reflected acoustic wave (see Fig. 4(b)) in the D2Q9 medium has the same amplitude as in the case
D2Q9/BLB without absorption.

3.3. Classical D2Q9/ Classical D2Q9 with absorption

Now to test the classical D2Q9/classical D2Q9with absorption we only change themediumΩ+. So we take the following
D2Q9 scheme where we have only changed the advection step inΩ+:

fj(xi, t +∆t) = (Id− σ̃ )f ∗j
(
xi − vj∆t, t

)
, 1 ≤ j ≤ 9,

where the matrix σ̃ ≡ (σ̃`,j)1≤`,j≤9 is given by:
σ̃2,• =

σ∆t
2
(1, 2, 1, 0, 1, 2, 0, 0, 2)

σ̃4,• =
σ∆t
2
(1, 0, 1, 2, 1, 0, 2, 2, 0)

σ̃`,j = 0 for ` 6= (2, 4), 1 ≤ j ≤ 9 .
This scheme has the following macroscopic equation up to order 1 in∆t:

∂tρ + σρ + ∂xjx + ∂yjy = O(∆t),
∂t jx + σ jx + c2s ∂xρ = O(∆t),

∂t jy + c2s ∂yρ = O(∆t).

In Ω+ we take the following conditions: m
eq
4 = m

eq
5 = 0, m

eq
6 = −2ρ, m

eq
7 = ρ, m

eq
8 = −jx, m

eq
9 = −jy, s4 = s5 = 1.9,

s6 = 1.8, s7 = 1.75, s8 = s9 = 1.7, and σ(xi) = 10−7 (xi−2000)2. Fig. 5(a) shows that the transmittedwave is absorbed (for
xi > 2000) in the D2Q9with absorptionmedium.We note here that this interface generates a very small reflectedwave (see
Fig. 5(b)) in normal incidencewhich is due to the change of the speed of sound in the twomedia (formore details see [10,11]).

3.4. Comparison between numerical interfaces

The BLB without absorption scheme generates an undesired reflected acoustic wave in the domain of interest. The BLB
with absorption scheme is stable and does not generate any additional reflected wave. Finally the classical D2Q9 scheme
with absorption is more efficient but it generates a small reflected wave for normal incidence. Thus we propose a new
method to cancel reflected wave.

4. Towards cancellation of reflected waves

Let Ω−, Ω+ be two one dimensional acoustic domains simulated by D1Q3 scheme with sound velocity, relaxation rate
and viscosity (cs, s, ν) and (̃cs, s̃, ν̃) respectively (e.g. ν = ∆t c2s (

1
s −

1
2 )). Sowe have the following reflection coefficient [11]:

r =
p+ − p̃+
1− p+p̃+

=
cs − c̃s
cs + c̃s

+
i(ν c̃2s − ν̃ c

2
s )

cs̃cs(cs + c̃s)2
ω + O(ω2), (14)
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Fig. 5. Interface test in the case of normal incidence between D2Q9 acoustic medium and D2Q9 with absorption medium. (a) jtestx vs Nx wave transmission
between Ω− (D2Q9 medium) and Ω+ (D2Q9 with absorption medium) at time T = 6000. (b) jtestx − j

ref
x vs Nx , difference between the test and reference

cases.

Fig. 6. Connection at interface.

where p+ = e(ik
+∆x), p̃+ = e(ĩk

+∆x), ω is the frequency of incident wave and k+, k̃+ are the progressive wave vectors inΩ−
andΩ+ respectively.
In order to cancel the reflected wave we propose to change the advection step at the interface. Thus the new f1 in node

xr = ∆x
2 is a linear combination of f

∗

1 in node xl = −
∆x
2 and f

∗

1 in node xl − ∆x (see Fig. 6). Whereas we keep the same
advection step for f2 which goes in the opposite direction. Thus we propose the following scheme at the interface:

f1(t +∆t, xi) = δ1f ∗1 (t, xi −∆x)+ δ2f
∗

1 (t, xi − 2∆x) in xi =
∆x
2
,

f2(t +∆t, xi) = f ∗2 (t, xi +∆x) in xi = −
∆x
2
,

where δ1 and δ2 are two scalar coefficients which are fixed in order to cancel the reflected wave.

Proposition 3. For D1Q3monodimensional acoustic interface, we find coefficients δ1 and δ2 in cancelling terms of order 0 and1 in
ω of the reflection coefficient given in Eq. (14). We have:

δ1 =
ν

∆t
(λ+ c̃s)

(λ− c̃s)(λ+ cs)2
−

ν̃

∆t
cs(λ− cs)

c̃s(λ+ cs)(λ− c̃s)2
+
(λ+ c̃s)(λ− cs)
(λ− c̃s)(λ+ cs)

,

δ2 =
ν̃

∆t
cs(λ− cs)

c̃s(λ+ cs)(λ− c̃s)2
−

ν

∆t
(λ+ c̃s)

(λ− c̃s)(λ+ cs)2
.

Proof. To find coefficients δ1 and δ2 we calculate the theoretical expression of the reflection coefficient taking into account
the new advection step at interface. Then we resolve the equation r = O(ω2) (for more details see [10]). �

• Numerical test: Let Ω− = {xi, i = 1..1000} and Ω− = {xi, i = 1001..2000} with sound velocity and viscosity
(cs = 0.577, ν = 0.001) and (̃cs = 0.479, ν̃ = 0.2). Fig. 7(a) shows that there is a reflectedwavewhich has an amplitude
of the order 10−1. By using the new proposedmethod (see Proposition 3) we have reduced the reflectedwave. In Fig. 7(b)
the reflected wave has an amplitude about 10−4.

5. Conclusion

Wehave proposed a new scheme called BLB tomodel the perfectlymatched layer of Bérenger. Unfortunately this scheme
generates a reflected wave in the domain of interest and this is due to the non isotropic property of BLB. The method used
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Fig. 7. jtestx − j
ref
x vs Nx: difference between test and reference cases at T = 1500, (a) without changing the advection step at interface and (b) with

interpolation of the advection step at the interface.

here to obtain a fourth macroscopic equation (as in the Bérenger scheme) needs to be tested for more complicated schemes
thanD2Q9 in order tomodel first order equationswithout obtaining unsatisfactory second order equations (by thiswemean
anisotropic viscous terms). We have also proposed a method to model the zero-order damping terms. This method consists
of changing the advection scheme. This method is stable and does not generate a reflected wave.
We have proposed a new method to cancel the reflected wave for normal incidence based on a local modification of

the propagation rules near the interface. Future work could be the extension of this method for two and three dimensional
interface and for any incidence angle.
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