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a b s t r a c t 

This paper uses the multiple relaxation times lattice Boltzmann method (LBM) to model acoustic wave 

propagation in water-filled conduits ( i.e. water hammer applications). The LBM scheme is validated by 

solving some classical water hammer (WH) numerical tests in one-dimensional and two-dimensional 

cases. In addition, this work discusses the accuracy, stability and robustness of LBM when solving high 

frequency ( i.e. radial modes are excited) acoustic waves in water-filled pipes. The results are compared 

with a high order finite volume scheme based on Riemann Solver. The results show that LBM is capable 

to model WH applications with high accuracy and performance at low frequency cases; however, it loses 

stability and performance for high frequency (HF) cases. It is discussed that this is due to the neglected 

high order terms of the equivalent macroscopic equations considered for LB numerical formulation. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Waves are used as diagnostic tools for imaging and defect de-

ection in a wide range of science and engineering applications

 e.g. medicine, oceanography, materials and many others. In par-

icular, acoustic waves are used in sonography (echography in

edicine) and ocean topography identification. Current work in

ydraulic (engineering) research uses acoustic waves for defect de-

ection in water supply systems (e.g. [10,21,26,28] ). More recently,

ttempts are being made to spatially locate and identify defects

t high resolution using high frequency waves (HFW). However,

he use of high frequency probing waves (HFW) excites radial

nd azimuthal wave modes in pipe systems, making classical one-

imensional water hammer (WH) theory incapable of solving the

ydraulic problem. 

To conserve the physical dispersion behavior of HFW, dispersive

umerical schemes (e.g. [23–25] ) should be avoided. Louati and

hidaoui [25] showed that a 2nd order FV scheme performs poorly

or modeling HFW and high order schemes are required to reduce

umerical dispersion effects. Louati and Ghidaoui [23,24] used a
fth order numerical scheme based on a Riemann solver with 
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ENO reconstruction to model and study the behavior of HFW in

 simple pipe system. However, because of complex boundary con-

itions needed in hydraulic engineering (e.g., pumps, pressure re-

ief valves, pressure reducing valves, and so on), it is best to avoid

he use of high order schemes due to the increased mathemati-

al and numerical difficulty of implementing the boundary condi-

ions. The lattice Boltzmann method (LBM) is a popular alternative

o high order schemes and is known for its excellent performance

n engineering applications. For this reason, this paper studies the

fficiency of the LBM to model water hammer flows and high fre-

uency waves. In fact, LBM makes it possible to simulate various

ypes of fluid flows with simple algorithms (see e.g. [5,9,20,31,32] ).

n simple cases, second order accuracy can be easily verified (see

.g. [19] ). As the LBM needs only nearest neighbor information to

chieve a solution, the algorithm is an ideal candidate for parallel

omputing. These features make the LBM increasingly popular for

ngineering applications. Currently, the LBM is a well-known com-

utational fluid dynamics method that models flow in a way that

s consistent with formal solutions of viscous and incompressible

avier-Stokes equations [29] . However, use of the LBM for acous-

ics (compressible flow) applications is fairly recent and its utility

nd performance characteristics are not yet well known. 

LBM was first used by Buick et al. [2] to simulate sound waves

at low frequency) in situations where fluid density variation is

mall compared with mean density. Dellar [8] studied the ability

f the LB scheme to model sound waves and investigated the influ-

nce on the numerical scheme of bulk viscosity and shear viscos-

https://doi.org/10.1016/j.compfluid.2018.09.001
http://www.ScienceDirect.com
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Fig. 1. Stencil for the D1Q3 lattice Boltzmann scheme. 

Fig. 2. Stencil for the D2Q9 lattice Boltzmann scheme. 
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ity. Course et al. [7] used LBM to investigate four canonical acous-

tic problems involving traveling and standing acoustic waves and

showed the capability of the LBM to reproduce fundamental acous-

tic wave phenomena. 

Recently Marié et al. [27] showed that dispersion error of

acoustic waves in lattice Boltzmann models is due to effects of

space and time discretization. They also studied dispersion and

dissipation errors of the LB scheme and compared the result to

various Navier-Stokes solvers. Their results highlighted the low dis-

sipative nature of lattice Boltzmann models compared with other

high order schemes. 

More recently, Budinski [1] investigated solving the 1-d water

hammer equation, with emphasis on models that configure the

computational grid independently of the wave speed. He proposed

to use LBM method for one-dimensional problems using the D1Q3

model with three discrete velocities. The governing equations are

modified using appropriate coordinate transformations to elimi-

nate grid limitations related to the method of characteristics. 

This paper addresses the following key issues: 

1. Modeling water hammer: In the field of hydraulic engineer-

ing and transient flows, LBM is not considered to be suitable

for modeling compressible flow, and generally the method is

avoided. The method of characteristics (MOC) is preferred for

modeling transient flows in 1-d and finite volume method or fi-

nite difference method are typically used for 2-d water hammer

flows. However, this paper shows that LBM is equally accurate

as MOC and, since LBM is computationally a very fast method,

it could be used to efficiently model 1-d transient flows. There-

fore, in the first part of this paper, classical 1-d water hammer

applications (e.g. Ghidaoui [15] , Chaudhry [4] ) are modeled us-

ing LBM and compared with MOC results to evaluate the accu-

racy and performance of LBM scheme relative to MOC. 

2. In the second part of this paper, the 2-d water hammer case is

modeled using LBM. Comparison with a 5th order finite volume
(FV) scheme shows that LBM suffers from dissipation and dis-

persion at sharp discontinuities and when simulating radial os-

cillations. Notice that the preservation of sharp and continuous

wavefronts in water hammer actually requires maintenance of

longitudinal waves at high frequency in the numerical scheme.

Although a sharper wavefront could be maintained in LBM by

mesh refinement, an alternative approach is considered in this

paper by investigating the dissipation effects in LBM consider-

ing smooth high frequency waves where the longitudinal (plane

wave) mode and radial modes propagate separately. 

Because radial and longitudinal wave modes may have different

issipation mechanisms, multi-relaxation time (MRT) LBM is used

n this study to allow separate treatment of the bulk and shear

iscosity terms. In fact, the results show that radial wave dissi-

ation is governed by the bulk viscosity whereas dissipation of

ongitudinal waves is dictated by shear viscosity. In addition, the

RT scheme has additional free parameters that have no analo-

ous physical interpretation but which do affect the stability of the

BM scheme and also affect accuracy of the boundary conditions

14] solutions. Other variants of the LBM scheme can also be used,

uch as two relaxation times (TRT) [17] , single relaxation time

SRT) [17] , or other LBM schemes using different collision operators

uch as entropic lattice Boltzmann (ELBM) [6] and cumulant lattice

oltzmann (CLBM) [16] . In fact, the ELBM scheme claims that it re-

pects the discrete H theorem while CLBM uses more general equi-

ibrium distributions than those of the MRT scheme. The choice to

se MRT LBM in this work is based on its simplicity and popular-

ty. Future work will examine in more depth the performance of

ther LBM schemes. 

. Lattice Boltzmann scheme for water hammer application 

.1. One-dimensional case 

This section describes the lattice Boltzmann scheme for one-

imensional water hammer application. The LB scheme uses three

iscrete velocities (D1Q3) as shown in Fig. 1 . Let L be a regular

attice parametrized by a space step �x (see Fig. 1 ), composed

y a set L 

0 ≡ { x j ∈ (�x Z ) } of nodes (or vertices); �t is the time

tep of the evolution of LB scheme and λ ≡ �x 
�t 

is the numeri-

al celerity. The discrete velocities v i , i ∈ (0, 1, 2) are chosen such

hat v i ≡ c i 
�x 
�t 

= c i λ, where the family of vectors { c i } is defined by:

 0 = 0 , c 1 = 1 and c 2 = −1 . The lattice Boltzmann scheme is given

s follows [11] : 

f i (x j , t + �t) = f ∗i (x j − v i �t , t ) , 0 ≤ i ≤ 2 , (1)

here f i is the discrete probability distribution function corre-

ponding to the i th discrete velocity v i , t denotes time, x j is the po-

ition of the j th node and the superscript ∗ denotes post-collision

uantities. Therefore, during each time increment �t there are two

undamental steps: advection and collision. The advection step de-

cribes the motion of the particles traveling from nodes x j − �x

nd x j + �x with velocities v 1 and v 2 , respectively, towards node

 j where the collision step occurs [18] . The collision process is de-

ned by the conservation of moments of order zero (mass) and of

rder one (momentum) from the pre-collision state to the post-

ollision state between advected particles and the local particle at

ode x j [18] . The three moments { m � , � ∈ (0, 1, 2)} are obtained by

 linear transformation from the space of discrete probability den-

ity functions. These moments are density m 0 ≡ ρ ≡ f 0 + f 1 + f 2 ,

omentum m 1 ≡ q ≡ ρu ≡ λ( f 1 − f 2 ) (where u is the fluid veloc-

ty) and energy m 2 ≡ ε ≡ λ2 

2 ( f 1 + f 2 ) . The linear transformation is

ummarized in matrix form as follows: 

(m 0 , m 1 , m 2 ) 
t = M ( f 0 , f 1 , f 2 ) 

t , (2)
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Fig. 3. Reservoir pipe valve system showing the velocity profile. 

Fig. 4. Reservoir pipe valve system. 

w

M

 

w

m  

w

i

m

T  

m  

t  

l  

a{
w

ν

i  

t

 

w  

c  

i  

u

 

l  

b  

t

m

t  ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
w

2

 

a  

n  

d  

b

i  
here 

 = 

( 

1 1 1 

0 λ −λ

0 

λ2 

2 
λ2 

2 

) 

. (3) 

The non-conserved moment (energy m 2 ) is assumed to relax to-

ards the equilibrium value ( m 

eq 
2 

) as follows [12] : 

 

∗
2 = (1 − s ) m 2 + s m 

eq 
2 

, (4)

here s ( s > 0) is the relaxation rate and the equilibrium value m 

eq 
2 

s defined as 

 

eq 
2 

= 

1 

2 

(
αλ2 ρ + ρ u 

2 
)
. (5) 

he above expression Eq. (5) is obtained from the second order

oment 
∫ 
R 

f 0 u 2 d u where f 0 is the Maxwellian distribution func-

ion. Consequently, using Taylor expansion at order 2 [12] , the fol-

owing two macroscopic equations are obtained from the advection

nd collision steps : 

∂ t ρ + ∂ x q = O(�t 2 ) , 
∂ t q + c 2 s ∂ x ρ + ∂ x (ρu 

2 ) − ν0 ∂ 
2 
x q = O(�t 2 ) , 

(6) 

here c s = λ
√ 

α is the equivalent sound speed and 

0 = λ2 �t(1 − α) 
(

1 

s 
− 1 

2 

)
(7) 

s the equivalent kinematic viscosity. The m 

eq 
2 

moment Eq. (5) de-

ermines the macroscopic behavior Eq. (6) of the scheme Eq. (1) . 

The state equation relating the pressure to the fluid density is

∂P 

∂ρ
= c 2 s , (8) 
here c s is the wave speed. Eq. (8) is for rigid pipe and in this case

 s is about 1440 m / s when the fluid is water. However, for simplic-

ty in this work, c s is taken equal to 10 0 0 m/s although Eq. (8) is

sed. 

Note that in this one-dimensional model, there is only one re-

axation parameter ( s ). Therefore, with the linear transformation

etween the { m � } and { f i } spaces, Eq. (2) and the equilibrium dis-

ribution in moment space: 

 0 = m 

eq 
0 

= ρ, m 1 = m 

eq 
1 

= q, m 

eq 
2 

= 

1 

2 

(
αλ2 ρ + ρu 

2 
)
, 

he following thermodynamic equilibrium is obtained (in f space):

 

 

 

 

 

 

 

 

 

 

 

 

 

f eq 
0 

= m 

eq 
0 

− 2 

λ2 
m 

eq 
2 

= (1 − α) ρ − ρ u 

2 

λ2 
, 

f eq 
1 

= 

1 

2 λ
m 

eq 
1 

+ 

1 

λ2 
m 

eq 
2 

= 

ρu 

2 λ
+ 

1 

2 

(
αρ + 

ρ u 

2 

λ2 

)
, 

f eq 
2 

= − 1 

2 λ
m 

eq 
1 

+ 

1 

λ2 
m 

eq 
2 

= −ρu 

2 λ
+ 

1 

2 

(
αρ + 

ρ u 

2 

λ2 

)
. 

(9) 

hich describes the classical BGK distribution (see [20] ). 

.2. Two-dimensional case 

In the two-dimensional case, the regular lattice L becomes

s shown in Fig. 2 comprising a set L 

0 ≡ { x i, j ∈ (�x Z , �y Z ) } of

odes (or vertices) with �x = �y . Similar to the previous one-

imensional case, the LB scheme in two-dimensions (2-d) is given

y: 

f i (x j , t + �t) = f ∗(x j − v i �t , t ) , 0 ≤ i ≤ 8 , (10)
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Fig. 5. 1-d LB solutions of the water hammer equation. Dimensionless pressure versus time at the pipe valve where α = 1 and ν0 = 0 . 

Fig. 6. 1-d LB solutions of the water hammer equation. Dimensionless pressure versus time at the pipe valve where α = 1 / 3 and ν0 = 10 −6 . 
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which in this case, uses nine discrete velocities v i = λ c i 
(D2Q9) (see Fig. 2 ) where c 0 = (0 , 0) , c 1 = (1 , 0) , c 2 = (0 , 1) , c 3 =
(−1 , 0) , c 4 = (0 , −1) , c 5 = (1 , 1) , c 6 = (−1 , 1) , c 7 = (−1 , −1) and

c 8 = (1 , −1) . Again, the scheme is based on the advection and

collision steps as described in the 1-d case. However, in the 2-

d case the scheme deals with nine moments { m k , k = 0 , . . . , 8 } .
These moments have an explicit physical meaning (see e.g. [20] ):

m 0 = ρ is the density, m 1 = j x and m 2 = j y are x −momentum,

y −momentum, m 3 is the energy, m 4 is proportional to energy

squared, m 5 and m 6 are x −energy and y −energy fluxes and m 7 , m 8 

are diagonal and off-diagonal stresses [20] . The same linear trans-

formation Eq. (2) is used to obtain the domain of moments from

the domain of distribution functions { f k , k = 0 , . . . , 8 } where the

matrix M is given in Eq. (A.1) . The equivalent Navier–Stokes equa-

tions are obtained by conserving three moments namely: m 0 = ρ
density, m 1 = j x = ρV x and m 2 = j y = ρV y the x −momentum and

y −momentum, respectively. The other non-conserved moments are
ssumed to relax towards equilibrium values ( m 

eq 
� 

) obeying the fol-

owing relaxation equation [18] : 

 

∗
� = (1 − s � ) m � + s � m 

eq 
� , 3 ≤ � ≤ 8 , (11)

here the equilibrium values are given by Eq. (A.2) and where s � 
0 < s � < 2, for � ∈ { 3 , 4 , . . . , 8 } ) are relaxation rates, not necessar-

ly equal to a single value as in the so-called BGK scheme [29] .

he coefficients α and β are tuning parameters which will be fixed

ater. 

Expanding Eq. (10) using Taylor series, the equivalent macro-

copic equations of order two are Eqs. (A .3) –(A .5) . 

Inserting j x = ρV x and j y = ρV y in the equivalent macroscopic

quations (see Eqs. (A .3) –(A .5) ), yields: 

∂ρ

∂t 
+ 

∂ρV x 

∂x 
+ 

∂ρV y 

∂y 
= 0 , (12)
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Fig. 7. 1-d LB solutions of the water hammer equation. Dimensionless pressure versus time at the pipe valve where α = 1 / 3 and s = 1 . 1 ( i.e. ν0 = 50 0 0 ). 
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∂ρV x 

∂t 
+ λ2 α + 4 

6 

∂ρ

∂x 
+ 

∂ 

∂x 
ρV 

2 
x + 

∂ 

∂y 
ρV x V y 

= 

λ2 

3 

�t 

[
−α

2 

(
1 

s 3 
− 1 

2 

)
ρ

∂ 

∂x 

(
∂V x 

∂x 
+ 

∂V y 

∂y 

)
+ 

(
1 

s 8 
− 1 

2 

)
ρ

(
∂ 2 

∂x 2 
+ 

∂ 2 

∂y 2 

)
V x 

]
+ 

{
−αλ2 

6 

�t 

(
1 

s 3 
− 1 

2 

)(
V x 

∂ 2 ρ

∂x 2 
+ 2 

∂ρ

∂x 

∂V x 

∂x 

+ V y 
∂ 2 ρ

∂ x∂ y 
+ 

∂ρ

∂x 

∂V y 

∂y 
+ 

∂ρ

∂y 

∂V y 

∂x 

)
+ 

λ2 

3 

�t 

(
1 

s 8 
− 1 

2 

)(
V x 

∂ 2 ρ

∂x 2 
+ 2 

∂ρ

∂x 

∂V x 

∂x 

+ V x 
∂ 2 ρ

∂y 2 
+ 2 

∂ρ

∂y 

∂V x 

∂y 

)}
, (13) 

∂ρV y 

∂t 
+ λ2 α + 4 

6 

∂ρ

∂y 
+ 

∂ 

∂x 
ρV x V y + 

∂ 

∂y 
ρV 

2 
y 

= 

λ2 

3 

�t 

[
−α

2 

(
1 

s 3 
− 1 

2 

)
ρ

∂ 

∂y 

(
∂V x 

∂x 
+ 

∂V y 

∂y 

)
+ 

(
1 

s 8 
− 1 

2 

)
ρ

(
∂ 2 

∂x 2 
+ 

∂ 2 

∂y 2 

)
V y 

]
+ 

{
−αλ2 

6 

�t 

(
1 

s 3 
− 1 

2 

)(
V y 

∂ 2 ρ

∂y 2 
+ 2 

∂ρ

∂y 

∂V y 

∂y 

+ V x 
∂ 2 ρ

∂ x∂ y 
+ 

∂ρ

∂x 

∂V x 

∂y 
+ 

∂ρ

∂y 

∂V x 

∂x 

)
+ 

λ2 

3 

�t 

(
1 

s 8 
− 1 

2 

)(
V y 

∂ 2 ρ

∂x 2 
+ 2 

∂ρ

∂x 

∂V y 

∂x 

+ V y 
∂ 2 ρ

∂y 2 
+ 2 

∂ρ

∂y 

∂V y 

∂y 

)}
(14) 
here V x and V y are the flow velocities along the x and y direc-

ions, respectively. Notice that the above equivalent macroscopic

quations contain additional terms (shown between curly brackets

n Eqs. (13) and (14) ) with respect to the Navier–Stokes equations.

t can be shown that these additional terms are negligible with re-

pect to the viscous terms. 

.3. 2-d classical water hammer test case 

This section considers the case of viscous-laminar flow as

hown in Fig. 3 . Notice that in this case y represents the radial

oordinate and V y is the radial velocity. The initial conditions are

onstant initial velocity and pressure along the pipe given as fol-

ows: 
 

 

 

 

 

V x (y ) = 2 V 

0 
x 

(
1 − y 2 

R 

2 

)
, 0 ≤ y ≤ R, 

P (x ) = p 0 − 32 ρ0 V 

0 
x ν

D 

2 
x, 0 ≤ x ≤ L. 

(15) 

here ν = kinematic viscosity in water ( ν = 10 −6 m 

2 /s); D = 2 R =
ipe diameter (D = 0 . 4) m with R the pipe radius; V 0 x = constant

ean velocity; ρ0 = initial density ( ρ0 = 10 0 0 kg/m 

3 ); p 0 = con-

tant initial gauge pressure in the pipe. It is important to note that,

n a cylindrical coordinate system, additional geometrical terms are

dded to the 2-d Navier–Stokes equations which are given below:

∂ρ

∂t 
+ 

∂ρV y 

∂y 
+ 

∂ρV x 

∂x 
= −ρV y 

y ︸ ︷︷ ︸ 
Term due toradial coordinates system 

(16) 

∂ρV y 

∂t 
+ c 2 s 

∂ρ

∂y 
+ 

∂ 

∂r 
ρV 

2 
y + 

∂ 

∂x 
ρV y V x 

= 

[
(μ + λ) 

∂ 

∂y 

(
∂V y 

∂y 
+ 

∂V x 

∂x 

)
+ μ�V y 

]
+ 

2 μ + λ

y 

(
∂V y 

∂y 
− V y 

y 

)
− ρ

y 
V 

2 
y ︸ ︷︷ ︸ 

Terms due to radial coordinates system 

, (17) 
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Fig. 8. 2-d LB solutions of the water hammer equation. Dimensionless pressure versus time at the pipe valve at the pipe centerline where s 3 = 1 . 75 , s 8 = 1 . 4 ( i.e. ν0 = 0 . 49 ) 

and N y = 100 . 

Fig. 9. 2-d LB solutions of the water hammer equation. Dimensionless pressure versus time at the pipe valve at the pipe centerline where s 3 = 1 . 1 , s 8 = 1 . 99965 ( i.e. 

ν0 = 10 −3 ) and N y = 20 . 
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t  

d

2

 

c  

s  
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a  
∂ρV x 

∂t 
+ c 2 s 

∂ρ

∂x 
+ 

∂ 

∂y 
ρV y V x + 

∂ 

∂x 
ρV 

2 
x 

= 

[
(μ + λ) 

∂ 

∂x 

(
∂V y 

∂y 
+ 

∂V x 

∂x 

)
+ μ�V x 

]
+ 

μ + λ

y 

∂V x 

∂x 
+ 

μ

y 

∂V x 

∂y 
− ρ

y 
V y V x ︸ ︷︷ ︸ 

Terms due to radial coordinates system 

, (18)

where V x is the x −velocity and V y is the y −velocity. The D2Q9

scheme introduced in the above section is used to solve Eqs. (16) –

(18) . Note that by using LBM, the equivalent equations are slightly
ifferent from the continuous problem. The additional geometrical

erms are added to the LBM scheme using operator splitting of or-

er 2. 

.4. Boundary conditions 

The boundary conditions are essentially to impose a non slip

ondition on the wall or to impose a given pressure/velocity in up-

tream/downstream boundaries. To perform these boundary condi-

ions, anti-bounce back [17] scheme and bounce back [14] scheme

re used to impose a given pressure and a given velocity, respec-
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Fig. 10. 2-d LB solutions of the water hammer equation. Dimensionless pressure versus time at the pipe valve at the pipe centerline where s 3 = 1 . 45 , s 8 = 1 . 99965 ( i.e. 

ν0 = 10 −3 ) and N y = 20 . 

Fig. 11. 2-d LB solutions of the water hammer equation. Dimensionless pressure versus time at the pipe valve at the pipe centerline where s 3 = 1 . 45 , s 8 = 1 . 9965 ( i.e. 

ν0 = 10 −2 ) and N y = 20 . 
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ively. The detail of bounce back and anti-bounce back schemes are

iven in next section. 

. Numerical results and discussion 

.1. 1-d classical water hammer test case 

The 1-d water hammer test case consists of sudden closure of

 downstream valve in a reservoir-pipe-valve (RPV) system with

n initial non-zero flow [33] (see Fig. 4 ). The boundary conditions

equire pressure to be constant at the upstream (reservoir) for all

ime, and the velocity to be zero at the downstream ( V x = 0 ). These

oundary conditions are imposed as follows: 
• Upstream boundary P (x = 0) = p 0 : To impose pressure on the

nlet, anti-bounce back [3] boundary condition is performed: 

f 1 (x 1 ) = − f ∗2 (x 1 ) + αρ0 , (19)

here ρ0 = 

p 0 
c 2 s 

is given by the boundary condition and x 1 is the

rst fluid node. 

emark. The above anti-bounce back condition is obtained by tak-

ng the distribution f 1 and f 2 at equilibrium (see Eq. (9) ) at the

oundary. 

• Downstream boundary V x (x = L ) = 0 : To model V x = u 0 = 0 on

he outlet bounce back boundary condition is performed: 

f 2 (x N ) = f ∗1 (x N ) + 

ρu 0 
, (20)
λ
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Fig. 12. Convergence test. 

Fig. 13. Dimensionless pressure versus time at the valve and at the pipe centerline using Riemann Solver 3rd/5th order (RS) with N y = 20 and using LBM s 3 = 1 . 45 , s 8 = 

1 . 99965 ( i.e. ν0 = 10 −3 ) and different mesh sizes : (a) N y = 160 , (b) N y = 80 , (c) N y = 40 and (d) N y = 20 . 
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√
 

where u 0 = 0 is given by boundary condition and x N is the last

fluid node. 

Remark. To keep the stability of the scheme, the parameter

α must be in the interval [0,1] because the term (1 − α) in

Eq. (6) must be positive. 

For all cases, the length of the pipe is L = 10 0 0 m and the mesh

size is N x = 101 . Thus, the space step is �x = L/N x and the numer-
cal wave speed is c s = 

�x 
�t 

√ 

α. The time step and relaxation pa-

ameter are given by: �t = 

√ 

α
�x 

c s 
and s = 

(
ν0 

λ�x (1 − α) 
+ 

1 

2 

)−1 

,

espectively. Only the parameter α remains unfixed. In fact this

arameter represents the Courant–Friedrichs–Lewy (CFL) number,

hich is defined by: 

 

α = c s 
�t 

. (21)

�x 
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Fig. 14. Zoomed version of Fig. 13 in the time interval [0, L / c s ]. 
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ote that for the case α = 1 the equivalent kinematic viscosity ( ν0 )

see Eq. (7) ) becomes zero, and therefore the LB macroscopic equa-

ions (see Eq. (6) ) are equivalent to the inviscid 1-d water hammer

quations [15] . 

Three test cases are considered for different values of α and s :

1. α = 1 , in this case the numerical viscosity ( ν0 ) is zero for any

s value. Therefore the flow is inviscid. 

2. α = 1 / 3 and s is such that ν0 = 10 −6 m 

2 /s which is equal to the

actual kinematic viscosity value for water. 

3. α = 1 / 3 and s = 1 . 1 . 

Figs. 5–7 give dimensionless pressure variations with time mea-

ured at the valve. The pressure is normalized by the Joukowsky

ressure ( P Jou = ρ0 V 
0 
x c s ) for cases 1, 2 and 3, respectively. Case 1

 α = 1 ) is depicted in Fig. 5 , which shows that LBM gives the ex-

ct solution of water hammer pressure variation for a RPV system

ith inviscid flow. The exact solution is known from the method of

haracteristics (MOC) solution and can be found in [33] . This result

s interesting because LBM usually solves viscous flows. 

In addition the LB scheme (in the case α = 1 and s = 1 ) is

quivalent to the following finite difference scheme: 

ρn +1 
j 

= 

1 
2 

(
ρn 

j+1 
+ ρn 

j−1 

)
+ 

1 
2 λ

(
q n 

j+1 
− q n 

j−1 

)
, 

q n +1 
j 

= 

1 
2 

(
q n 

j+1 
+ q n 

j−1 

)
− λ

2 

(
ρn 

j+1 
− ρn 

j−1 

)
, 

(22) 

hich is the solution of the density and momentum obtained by

he method of characteristics; where n denotes the n th time step

nd j is the position of the j thnode. 

In case 2, viscous flow is considered, and viscosity is cho-

en to be equal to the actual kinematic viscosity value for wa-

er ( ν = 10 −6 m 

2 / s ). In this case, Fig. 6 shows that the scheme
0 
eaches its limit of stability. This is because the parameter s gov-

rns the viscous term in Eq. (6 ) and becomes almost 2 ( s =
 . 999999999650126 ) whereas s must be strictly less than 2 for the

cheme to remain stable. 

In case 3, typical values of α and s are taken ( α = 1 / 3 and s =
 . 1 ). For these values, the numerical kinematic viscosity is about

0 = 50 0 0 m 

2 / s . However, Fig. 7 shows that the signal is slightly

amped. Therefore, the numerical viscosity does accurately rep-

esent the actual flow viscosity. This may be due to higher or-

er terms neglected when deriving the macroscopic equations (see

q. (6) ). 

.2. 2-d classical water hammer test case 

This section considers the problem described in the section

.3, and solves the macroscopic equations Eqs. (12) –(14) using LB.

onsider the domain � = [0 , L ] × [0 , H] and the regular mesh (lat-

ice) L 

0 = { x i, j ∈ �x Z × �y Z , 1 ≤ i ≤ N x , 1 ≤ j ≤ N y } parametrized

y the space step �x = �y. The boundary conditions are like those

n the previous section with the additional constraints of zero ra-

ial velocity and no slip condition at the pipe walls. In more detail,

he boundary conditions are as follows: 

• Upstream boundary ( P (x = 0) = p 0 ): To impose p 0 , anti-bounce

back is performed as follows: ⎧ ⎪ ⎨ ⎪ ⎩ 

f 1 (x (1 , j) ) = − f 3 (x (0 , j) ) + 

4 −α−2 β
18 

p 0 
c 2 s 

, 

f 5 (x (1 , j) ) = − f 7 (x (0 , j−1) ) + 

4+2 α+ β
18 

p 0 
c 2 s 

, 

f 8 (x (1 , j) ) = − f 6 (x (0 , j+1) ) + 

4+2 α+ β
18 

p 0 
c 2 s 

(23) 

where p 0 is given by the boundary condition and 1 ≤ j ≤ N y . 
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Fig. 15. Zoomed version of Fig. 13 in the time interval [4 L / c s , 6 L / c s ]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Validation of the order of accuracy of 

the scheme using mesh refinement; the 

pressure data considered is taken up 

to 0.95 L / c s seconds in time which ex- 

cludes any pressure jump where r m = 

log (E m /E 20 ) 
log (m/ 20) 

. 

m � 1 � 2 

40 1.1272 0.9280 

80 1.2350 0.9810 

160 1.3748 1.0947 

 

E  

S  

t  

I  

p  

f  

b

1  

a  

m  
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I  
• Downstream boundary ( V x (x = L ) = 0 ): To impose V x = 0 ,

bounce back is performed as follows: { 

f 3 (x (N x , j) ) = f 1 (x (N x +1 , j) ) , 
f 6 (x (N x , j) ) = f 8 (x (N x +1 , j+1) ) , 
f 7 (x (N x , j) ) = f 5 (x (N x +1 , j−1) ) 

(24)

where 1 ≤ j ≤ N y . 
• Pipe wall boundary ( V y (y = R ) = 0 ): To impose V y = 0 , bounce

back is performed as follow: Bounce back for x i , 1 and x i,N y 
where 1 ≤ i ≤ N x : { 

f 4 (x (i, 1) ) = f 2 (x (i, 0) ) , 
f 5 (x (i, 1) ) = f 7 (x (i −1 , 0) ) , 
f 6 (x (i, 1) ) = f 8 (x (i +1 , 0) ) . 

(25)

{ 

f 4 (x (i,N y ) ) = f 2 (x (i,N y +1) ) , 

f 7 (x (i,N y ) ) = f 5 (x (i −1 ,N y +1) ) , 

f 8 (x (i,N y ) ) = f 6 (x (i +1 ,N y +1) ) . 
(26)

The following length scales L = 10 0 0 m, D = 0 . 4 m and mesh

size N y = 20 , 160 and 500, N x = 

N y L 
D are considered. The CFL num-

ber is given by C 0 = c s 
�t 
�x 

= 

c s 
λ

, where c s = λ

√ 

α+4 
6 = 10 0 0 m/s is

the wave speed. Therefore the CFL number is C 0 = 

√ 

α+4 
6 . Thus,

the LB parameters are fixed as follows: α = 6 C 2 0 − 4 , �t = 

�x 
c s 

C 0 ,

α = −2 , and β = 1 . The time step �t and space step �x are fixed

to have wave speed c s = 10 0 0 m/s. The other LB relaxation (sta-

bility) parameters are fixed by identification between equations

Eqs. (13) , (14) and Eqs. (17) , (18) as follows: 

μ0 = 

λ2 

3 

�t 

(
1 

s 8 
− 1 

2 

)
ρ = ν0 × ρ ⇒ s 8 = 

1 

3 ν0 + 

1 
, (27)
λ�x 2 t  
μ0 

3 

= 

−αλ2 

6 

�t 

(
1 

s 3 
− 1 

2 

)
ρ ⇒ s 3 = 

1 

1 
2 

− 2 
3 α

(
1 
s 8 

− 1 
2 

) . 
(28)

q. (27) satisfies the kinematic viscosity, and Eq. (28) satisfies

tokes relation. For water hammer problem, where ν0 = 10 −6 m 

2 /s,

he stability parameters are s 3 = 1 . 99999953 and s 8 = 1 . 99999986 .

n this case the LB scheme is unstable because s 3 and s 8 ap-

roach the limit of stability ( s 3 < 2, s 8 < 2). In what follows, dif-

erent tests are conducted to find the appropriate relaxation (sta-

ility) parameters for the 2-d water hammer application. Figs. 8–

1 give the dimensionless pressure variation with time measured

t the valve and at the pipe centerline where the pressure is nor-

alized by the Joukowsky pressure ( P Jou = ρ0 V 
0 
x c s ) for the differ-

nt cases. Fig. 8 shows the case for the maximum s 8 value to give

 stable scheme while the Stokes relation Eq. (28) is maintained.

n this case, the scheme is extremely dissipative, and maintaining

he Stokes relation is no longer possible. Fig. 9 depicts the case
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Fig. 16. Zoomed version of Fig. 13 in the time interval [4.2 L / c s , 5.2 L / c s ]. 

Table 2 

Validation of the order of accuracy of 

the scheme using mesh refinement; the 

pressure data considered is taken up 

to 6 L / c s seconds in time which in- 

cludes the pressure jumps where r m = 

log (E m /E 20 ) 
log (m/ 20) 

. 

m � 1 � 2 

40 0.8331 0.7228 

80 1.0914 0.8368 

160 1.2740 1.0034 
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here s 8 = 1 . 99965 which is chosen such that ν0 = 10 −3 m 

2 /s and

 3 is given a typical value of 1.1. In this case the signal becomes

uch less dissipative and gives satisfactory results. Note that the

scillations observed in Figs. 8 and 9 are physical, and are due

o radial waves (see [22–24] ). These radial waves are excited by

he idealized (instantaneous) valve closure and propagate along

he pipe. However, Fig. 9 shows that these waves are dissipated

uickly. Fig. 10 gives the case where s 8 is kept the same but s 3 
s increased to its maximum value ( s 3 = 1 . 45 ) while maintaining

 stable scheme. In this case, Fig. 10 shows that the radial waves

ndergo less dissipation while the axial wave dissipation is un-

hanged. Fig. 11 depicts the case where s 3 is kept to its maximum

alue 1.45 while s 8 is reduced to s 8 = 1 . 9965 ( ν0 = 10 −2 m 

2 / s ). In

his case, Fig. 11 shows that radial wave dissipation remains un-

hanged while the axial waves become more dissipated than in

he previous two cases. This shows that s 3 , which relates to the

ulk viscosity, governs the dissipation mechanism of radial waves;

hereas s 8 governs the dissipation mechanism of axial waves. The

alues of s 3 = 1 . 45 and s 8 = 1 . 99965 are used for the rest of this

aper. 
Before continuing further discussion and comparison of the LB

cheme with other numerical approaches, it is incumbent to con-

uct a convergence test using mesh refinement with the fixed re-

axation parameters ( s 3 , s 8 ). In fact, this is important because s 8 
epends on the mesh size (see Eq. (27) ). The next subsection gives

etails of the convergence test and the order of accuracy using

esh refinement with the fixed s 3 and s 8 parameters. The conver-

ence is discussed by comparison with a high order finite volume

umerical scheme based on Riemann solver [22,25] . 

.3. Order of accuracy and convergence of the scheme using grid 

efinement 

Although the order of accuracy of classical D2Q9 [20] is known

o be of order 2 in momentum and of order 1 in pressure (den-

ity), this section provides a validation of such order through con-

ergence test. Unfortunately, to the authors’ knowledge, there is

o available analytical solution for the multi-dimensional water-

ammer case. Therefore, the validation of the order of accuracy

s conducted by mesh refinement taking a “converged” solution

s reference (assumed “exact”). The reference solution is consid-

red for the cases where the mesh is refined to N y = 320 and

 x = 80 0 , 0 0 0 . This reference solution is chosen because the er-

or in this case becomes very small (at order 10 −7 ) and the con-

ergence slope remains consistent with the expected order of ac-

uracy. Therefore, the computational mesh is refined where N y 

s increased from 20 to 320 and N x is increased from 50,0 0 0 to

0 0,0 0 0, respectively (maintaining �x = �y ). The � 1 and � 2 norms

re used to obtain the following errors E 1 m 

= ‖ p m 

− p re f ‖ 1 and

 

2 
m 

= ‖ p m 

− p re f ‖ 2 , where m = { 20 , 40 , 80 , 160 } is the mesh size,

 m 

is the pressure solution, and p ref is a reference (assumed exact)

olution which is for the case where N y = 320 and N x = 80 0 , 0 0 0 .
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Fig. 17. Sketch of unbounded pipe system. 

Fig. 18. Probing wave from ( ̃  β = 40 π ). (a) time domain; (b) frequency domain. 

Fig. 19. Dimensionless pressure variation with time at the pipe centerline ( x = 25 m, y = 0 ) where D s = 0 . 2 D . (a) obtained using FVRS scheme. (b) obtained using LBM with 

s 3 = 1 . 45 , s 8 = 1 . 99965 . 
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ig. 12 gives the errors in logarithmic scale and shows that the

lopes of error are 1.2457 of � 1 norm and 1.0012 for � 2 norm which

s consistent with the expected order of accuracy of the used LB

cheme. 

In classical water hammer application, the transient wave is

enerated by a sudden closure. The pressure rise due to this sud-

en closure is represented by a vertical line (pressure jump). Such

ump can only be (at most) at first order of accuracy even if the

cheme is at much higher order. Therefore, for classical water ham-

er test case, the convergence validation through mesh refinement

s done i) using data that excludes the pressure jump (therefore

esting the order of the scheme as shown in Table 1 and Fig. 12 ); ii)

sing data that includes the pressure jump to see how the scheme

atches such jump at order 1 (as shown in Table 2 ). For example,

f a high order FV scheme is used, then a slope limiter must be

dopted to reduce the scheme order to 1 at the pressure jump (or

ydraulic jump). 

The 2-d LB scheme is compared with a 2-d 5th order finite vol-

me numerical scheme based on an approximate Riemann solver

FVRS) [22,25] . The results are shown graphically in Fig. 13 . In fact,

ig. 13 (a)–(d) show a comparison between the FVRS with N y fixed

t 20 and the LB scheme with N y = 160 , N y = 80 , N y = 40 and

 y = 20 , respectively. For clarity, different zoomed areas of these

gures at different time intervals are shown. Fig. 14 gives pres-

ure variation up to L / c s seconds and shows that the LB schemes

onverges as the mesh is refined. This is mainly because the

umerical viscosity of the LB scheme reduces as the mesh be-

omes refined (see Eq. (27) ). The results of radial wave varia-

ions in Fig. 14 (a) become identical between both schemes with

he refined mesh. Fig. 15 shows the radial wave variation in the

ime interval [4.2 L / c s , 5.2 L / c s ] seconds. Again, convergence of the

B scheme is observed in the numerical test results with overall

ood agreement between the two schemes when N y = 160 for the

B scheme ( Fig. 15 (a)). However, Fig. 15 (a) shows that besides

he slight difference in amplitude between results from the two

chemes, the result from the LB scheme is also slightly shifted to

he right. This is a dispersion effect. In fact, Fig. 16 shows clearly

hat the LB scheme suffers from a dispersion effect especially at

ow mesh size, where the jump location is shifted from its original

ocation ( t = 4 L/c s ). Therefore, if the LB scheme is used to model

igh modes (radial and azimuthal waves modes), which are disper-

ive in nature, care should be taken to account for the dispersion

ffect. In this case, a very fine mesh needs to be used to ensure

ccuracy in modeling the behaviour of dispersive high frequency

ave. The next section discusses a particular test case in which

ispersive waves of the first high radial mode (M1) are excited and

ropagate along an infinite pipe system. 

.4. Discussion on the performance of 2nd order LB scheme when 

odeling dispersive high frequency waves 

In this section, a specific numerical test case is designed. This

est considers the pipe system shown in Fig. 17 with the following

nitial conditions: 
 

 

 

 

 

 

 

 

 

ρ = ρ0 = 10 0 0 kg/m 

3 
, 

P = p 0 = ρ0 g H 0 = 10 0 0 × 9 . 81 × 10 = 9 . 81 × 10 

4 Pa , 
V y = 0 , V x = 0 , 

D = 0 . 4 m, L = 100 m , 

c s = 10 0 0 m/s . 

(29) 

he pipe is assumed infinite, and the downstream boundary is lo-

ated sufficiently far away so that no reflections will interfere with

he measured signals. The tests utilize a source located at the up-

tream boundary ( x = 0 ). An acoustic wave is generated from the

ource and only the right-going wave is considered. The generated

aveform at the source is shown in Fig. 18 . This form is chosen
ecause it is smooth and allows the modeler to select the desired

requency bandwidth (FBW). Its mathematical form is: 

 

 

 

 

 

P f (t) = P s exp 

[ 

−4 

w c ˜ β2 
log (10) 

(
t −

˜ β

w c 

)2 
] 

sin 

[
w c (t −

˜ β

w c 
) 

]
where 0 ≤ t ≤ t wa v e = 

˜ β
w c 

, 

(30) 

here w c = 2 π f c is the angular central frequency (in rad/s) with

 c being the central frequency (in Hz); P f is the pressure at the

ource; P s = 0 . 1 p 0 is the maximum pressure at the source with p 0 
eing the initial pressure in the pipe; t wave is the duration of the

ave generated at the source; and 

˜ β is a coefficient that controls

he FBW. In this work ˜ β = 80 π . The source is considered circular

n shape with a given diameter D s and is located at the pipe cen-

erline. Initially at time t = 0 s, the fluid is at rest. The boundary

onditions at the source (the inlet) are 

 

 

 

 

 

 

 

 

 

 

 

 

 

P (r) = 

{ 

p 0 + P f for 0 < r < 

D s 

2 

, 

p 0 otherwise. 

V y = 0 , 

∂V x 

∂x 
= 0 . 

(31) 

ipe wall boundary conditions are similar to the previous 2-d WH

est. Because of the dispersive effect of the LB scheme, the LB

esh is refined so that N y × N x = 500 × 62500 . This mesh refine-

ent should ensure that the scheme is free from dispersion effects.

arallel computation for the LB scheme is conducted on 30 cores

o reduce computational time. Fig. 19 (a) and (b) show the pressure

ariations ( x = 25 m, y = 0 ) obtained from the FVRS and LB com-

utational schemes, respectively. The two waveforms observed in

ig. 19 correspond to the separated plane wave mode and the first

adial mode [22,23] . Fig. 19 shows that, although using a highly

efined mesh, the LB scheme still suffers from large dissipative ef-

ects. In comparison with the 5th order FVRS, the LB scheme is in-

fficient at 2nd order accuracy. In fact, even with the advantage of

B scheme having optimized parallelization feature, the 5thorder

VRS running on a single core requires less computational time

9h4min versus 10h20min for the LB scheme). This demonstrates

he importance of using the high order accuracy of the scheme

hen modeling high frequency (dispersive) waves. The effect of

igh order terms in LB formulations would need further investiga-

ion to determine whether better performance might be achieved

hen modeling HFWs. This work will be discussed in subsequent

aper. 

.5. Conclusion 

The lattice Boltzmann method with multiple relaxation times

s used to model 1-d and 2-d water hammer test cases. For the

-d case, it is shown that LBM gives the exact solution of pres-

ure variation for inviscid flow. This is important since, in the lit-

rature and common usage, LBM are typically employed to solve

nly viscous flow and become unstable for inviscid flow test cases.

n fact, the inviscid flow problem can be handled by choosing the

uning parameter ( α) to be 1, and it is found that this parameter

 

√ 

α) represents the CFL number. For the 2-d case, the LB scheme

s compared with a 5th order FV scheme based on Riemann solver.

irst the classical water hammer test is considered with laminar

ow. It is found that the relaxation parameter s 3 , which relates

o the bulk viscosity, governs the dissipation mechanism of radial

aves. On the other hand, the relaxation parameter s 8 , which re-

ates to the shear viscosity, governs the dissipation mechanism of
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axial waves. Overall, the results show that the LB scheme is ca-

pable of modeling water hammer applications with good accuracy

and performance for low frequency cases. Second, a specific high

frequency test case is considered where high frequency smooth

waves are injected into an infinite single pipe with a narrow fre-

quency bandwidth such that the plane wave mode (M0) and the

first radial mode (M1) are excited and become separated as they

propagate. The results of this numerical investigation show that

the LB scheme becomes unstable and its performance when mod-

eling high frequency waves is significantly impaired. It is presumed

that deterioration in stability and accuracy may be due to neglect-

ing high order terms of the equivalent macroscopic equations con-

sidered during the LB numerical formulation. A more detailed anal-

ysis of the dissipation mechanism of the LB scheme when model-

ing high frequency acoustic waves will be discussed in a subse-

quent paper. 
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Appendix A. LBM scheme 

The moment matrix for the D2Q9 scheme is: 

M = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

1 1 1 1 1 1 1 1 1 

0 λ 0 −λ 0 λ −λ −λ λ
0 0 λ 0 −λ λ λ −λ −λ

−4 −1 −1 −1 −1 2 2 2 2 

4 −2 −2 −2 −2 1 1 1 1 

0 −2 0 2 0 1 −1 −1 1 

0 0 −2 0 2 1 −1 −1 1 

0 1 −1 1 −1 0 0 0 0 

0 0 0 0 0 1 −1 1 −1 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

.

(A.1)

The equilibrium values are given by: ⎧ ⎨ ⎩ 

m 

eq 
3 

= αρ + 

3 
λ2 ρ

( j 2 x + j 2 y ) , m 

eq 
4 

= βρ − 3 
λ2 ρ

( j 2 x + j 2 y ) , 

m 

eq 
5 

= − j x 
λ

, m 

eq 
6 

= − j y 
λ

, 

m 

eq 
7 

= 

j 2 x − j 2 y 

λ2 ρ
, m 

eq 
8 

= 

j x j y 
λ2 ρ

. 

(A.2)

The equivalent macroscopic equations [11] at order two are: 

∂ρ

∂t 
+ 

∂ j x 

∂x 
+ 

∂ j y 

∂y 
= O(�t 2 ) , (A.3)

∂ j x 

∂t 
+ λ2 α + 4 

6 

∂ρ

∂x 
+ 

∂ 

∂x 

j 2 x 

ρ
+ 

∂ 

∂y 

j x j y 

ρ

= λ2 �t 

[
−α

6 

(
1 

s 3 
− 1 

2 

)
∂ 

∂x 

(
∂ j x 

∂x 
+ 

∂ j y 

∂y 

)
+ 

1 

3 

(
1 

s 8 
− 1 

2 

)
� j x 

]
+ O(�t 2 ) , (A.4)

∂ j y 

∂t 
+ λ2 α + 4 

6 

∂ρ

∂y 
+ 

∂ 

∂x 

j x j y 

ρ
+ 

∂ 

∂y 

j 2 y 

ρ

= λ2 �t 

[
−α

6 

(
1 

s 3 
− 1 

2 

)
∂ 

∂y 

(
∂ j x 

∂x 
+ 

∂ j y 

∂y 

)
+ 

1 

3 

(
1 

s 8 
− 1 

2 

)
� j y 

]
+ O(�t 2 ) , (A.5)
here �f is the Laplacian operator in space of the function f .

he parameter α is linked to the sound speed c s = λ

√ 

α + 4 

6 
.

he relaxation parameters s 3 and s 8 are related to the bulk ζ 0 

nd kinematic ν0 viscosities such as ζ0 = 

−αλ2 �t 
6 ( 1 s 3 

− 1 
2 ) and ν0 =

λ2 �t 
3 ( 1 s 8 

− 1 
2 ) , respectively (e.g. see [20] ). To ensure the isotropicity

f the dissipation process ( ν0 ), s 7 and s 8 are taken equal. At sec-

nd order accuracy, the coefficient β and the relaxation rates s 4 ,

 5 and s 6 play no role in the hydrodynamic behavior of the model,

owever, they are relevant for the stability and the accuracy of the

cheme [13] . 

emark. Using the inverse of moment matrix M (see Eq. (A.1) ), the

quilibrium distribution given by Eq. (A.2) becomes in the f space:

f eq 
i 

= ω i 

[ 
ρ + 

(
3 V .c i + 

9 

2 

(V .c i ) 
2 − 3 

2 

| V | 2 
)] 

, i = 0 , . . . 8 , (A.6)

here weights ω i are some fixed numbers such that 
∑ 8 

i =0 ω i = 1

nd ρ , V = (V x , V y ) are respectively the density and velocity of the

uid. The truncated equilibrium Eq. (A.6) , which approximate the

axwell distribution, is used because the velocity space is dis-

retized. This approximation comes naturally from Hermite poly-

omial expansion [30] . 
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