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Abstract
We consider the Petrov-Galerkin finite volumes based on dual Raviart-Tho-
mas basis functions and the least square method. We propose a numerical
scheme for various boundary conditions. First numerical tests indicates good
convergence properties.
Keywords: Poisson equation, mixed finite elements.

1 Petrov-Galerkin finite volumes

e The continuous problem

Let € be a bidimensional bounded domain in R? with a polygonal boundary
0 =TI'p UT'y. We consider the problem for the Laplace operator in 2 with
various Dirichlet and Neumann boundary conditions:

ou

(1) —Au=f in Q, u=g on I'p, 5, = on Iy .
n
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The datum f is supposed to belong to the Hilbert space L?(€2). Let us intro-
duce the momentum p = Vu and the Sobolev space H(div,,T'y) = {q €
(L2(2))?; div g € L*(Q), (¢.n) = 0 on 'y}, where n is normal direction ex-
ternal to 02 and (¢.n) the tangentiel trace considered in a weak sense [DL72].
Then the problem (1) can be written:

(2) —divp=finQ,

(3) p= Vuin Q,

(4) u= gonlp,
ou

(5) o von 'y .

By testing the relation (2) against an arbitrary vector valued function ¢ €
H(div,Q,T'y) and integrating by parts, it comes:

(p,q) + (u,div q) — /P g(gn)ds =0.

The integration of the relation (3) on the domain € after multiplying by a
scalar valued function v € L*(Q) yields: (div p,v) + (f,v) = 0. Then the
continuous problem (1) takes the following form :

u € L2(Q), P 6 H(div, Q)
(6) (p, q) + (u,div q) fr (gm)ds =0, Vqe H(div,Q,Ty)
(div p,v) + (f,v) =0, Yo € L?(Q) .

e Discretization

In what follows, we denote by 7" a mesh that is supposed to be a bidimensional
cellular complex in the sense of [Go71]| and composed by triangular elements.
We define the following components of the mesh 7: 7° the set of vertices
(components of the mesh 7 of dimension 0), 7 the set of edges (components
of the mesh 7 of dimension 1) and 7?2 the set of triangles (components of the
mesh 7 of dimension 2). Let us introduce the three following set of edges:

- The set of internal edges 7;! = {a € T1,aN 0N = &}.

- The set of “semi boundary” edges 7! = {a € T',a & Q) and a N IN #
@}, composed by edges whose one vertex belongs to the boundary and the
other one is internal.

- The set of boundary edges 7,! = {a € T',a C 9Q}. Let Ty = {a €
7,},a@ C 'y} the set of boundary edges associated with Neumann condition
and 73 = {a € T,);a C T'p} the set of boundary edges associated with
Dirichlet condition; we have 7,! = 73 U7} (see Figure 1).
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Figure 1. Exemples of edges: a € 7', b € T.! and c € T,

e Discrete variational formulation

We consider two classical finite dimensional spaces L2(Q) and H.(div, ).
A scalar valued function v € L?(€) is constant in each triangle K of the
mesh; a vector valued function p € H,(div,(?) is a linear combination of
Raviart-Thomas [RT77] basis functions ¢, for each edge a € 7.

e Petrov-Galerkin mixed finite element method
In this section, we use the variational problem (6). As p. € H,(div, (), we
first treat the Neumann condition (5). We introduce the flux v, = ﬁ J,7(s)ds

for each edge b € 7, and the entire lifting of the Neumann boundary condi-
tion: 7, = (Xpers Wis) € Hr(div, €2). Then we have

(7) Pr = Z PaPat Z Moy = Tr+7, € HT<diV7 Q, PN)+HT<diV7 Q)
a€TIUTIUT) beTH

where H,(div, 2, I'y) = H,(div, Q)N H(div, 2, ['y). Our method is based on
the construction of a discrete functional space H*(div, €2, I'y) generated by
vectorial functions 7 , a € 7' that are conforming in the space H(div,(2)
and represent the dual basis of the family ¢y, b€ 7! with the L? scalar
product: (04, ¥;) = dap ,V a, b € T*. Then the Petrov-Galerkin mixed finite
element method consists in replacing the space H(div,),I'y) by the dual
space H*(div,Q,'y) for test functions in the first equation of the discrete
formulation (6). This method yields the so-called Petrov-Galerkin finite
volumes scheme:

Uy € Lz(Q) , € H.(div,Q,T'y) ,
(8) < (7mryq) + (ur, div q) fp g9(qn)ds — (7., q), Vg € HX(div,Q,T'y)
(div 7., v) = —(f,v) — (le’yT, V), Vo € L3(9Q) .

Now the key point is the construction of the so-called dual Raviart-Thomas
basis functions ¢*, Va € T1. For an internal edge a € 7;! see [Du02a] and
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for the case a € Ty it is usless to construct ¢’ hence the flux v, across I'y is
done by the Neumann boundary condition. For the cases a € 7! and a € T
we adapt the case the previous ideas.

2 First numerical tests

This section is dedicated to the construction of a dual Raviart-Thomas basis
¢y where b is an internal edge of the mesh 7. To seek simplicity we will
consider here a problem (1) with only an homogeneous Dirichlet boundary
condition (i.e. 90 =Tp, T,} = T3, T = @).

e Vicinity of an internal edge b € 7;

Let denote by b = (SN) an internal edge, by O the middle of SN and
by K, L the two triangles that compose the co-boundary (i.e. the edge b
is included in the boundaries of K and L). The normal n, is supposed to
be oriented from the element K towards the element L and there exist two
vertices W and E such that K = (S, N, W), L = (N, S, E). Let consider
the four edges (N, W), (W,S), (S, E), (E, N) that compose the boundary
of the union K U L and define four new triangles M, P, () and R and four
new vertices A, B, C and D in the mesh 7. So we define the vicinity of the
edge b = (SN) as: V(b) = (L, K, M, P,Q, R), as illustrated on Figure 2.

Figure 2. Vicinity V(b) for an internal edge b = (SN).

e Hypothesis for the dual Raviart-Thomas basis functions

We suppose that the Raviart-Thomas dual basis functions satisfy:
-Hypothesis (H1): ¢; € H (div,Q) , (pa, 9}) = 0w ,Va,b € T
-Hypothesis (H2): For each internal edge b = (SN), the support of the

dual Raviart-Thomas basis function ¢j is included in the vicinity V (b) =

V (SN), composed by the triangles K, L, M, P, Q et R.
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-Hypothesis (H3): The divergence field of ¢} is constant in each triangle:
div ¢} € L2 (Q).

e Normal gradient for internal edges

For b = (SN) let ¢; be a dual Raviart-Thomas basis function satisfying
the hypothesis (H2). Let introduce the following fluxes across the edges
SN, EN, NW, WS and SE: n = [¢yepnsy dy, a = [y e-nen d7,
B = fywehnaw dv v = [fpsernws dv, 6 = [opopnsp dy. As
. € H,(div,2), we can write: 7, = > _71 Do, against the basis gene-
rated by the family of functions {¢,},. This leads to:

/QWT‘SOde:Zpa/gs%'s@zdm:pb:/bWT-ndeZ/quT-nbds.

Moreover the equality 7, = Vu, can be written weakly with the help of (3)
with ¢ = ¢}

/m-sode:/VuT-sDde=— UK/ ey - ok ds,

where 0K is composed by the three edges of the triangle K (see Figure 2).
These two last expressions and with the help of different flux of leads to the
following formula for the gradient Vu, accross the edge b = (SN) [Du02a]:

Key

(9) /quT-ndeZn(uL—uK)+a(uM—uL)+
+0B(up —ug) + y(ug —ug) + 6(ug — ur).

The present finite volume approach is obtained by the representation of the
normal interface gradient fb Vu, - nyds as a function of six neighbouring va-
lues. If we consider only the two triangles K and L of the co-boundary to
define the scheme (i. e. @« = 8 = v = § = 0), we found a more simple
expression for normal flux (see e.g. [BMO96|, [EGH2k]|). We can found also
more elaborate expression in the same spirit, see [No64] and [CVV99].

e Necessary conditions for normal gradient

Therefore the explicit representation of the normal gradient of Vu, accross
the edge b = (SN) requieres the determination of the coefficients 1, «, 3, v
and 0 as the fluxes of the dual basis function ¢y, although we do not have an
explicit knowledge of the dual basis function ;. The orthogonality relations
between the Raviart-Thomas basis functions ¢, and the dual basis function
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¢, allow to express necessary conditions on these coefficients to determine.
So there are three scalar constraints (see [Du02b]):

(10) nKL+aLM+3KP+vKQ+0LR =|SN|ngy |

) { «LM.WA+BKP.EB +~7KQ.EC+SLRWD =

— _3|SN|nsy(OL + OK).

The constraints (10) express that the relation (9) is exact if the filed Vu,
is an affine function.

e Least square finite volumes scheme

The coefficients 1, o, 3,y and d appear in the flux expression of Vu, across
the edge b = (SN). In order to test this method, we must determine these
coefficients under the necessary conditions. For this we use a least squares
method. We find 1 by minimizing the functional:

SN ? SN ?
I(n) = (%nSN — ﬁ) + (3%7151\7.(—1)) + (7[?)) :
To get a, 3,~ and ¢, we minimize the functional:

e 3\ 2 2 5\ 2
rosn0=(5) +(5) + (3) <)
n n n n
under the conditions (10) and (11) [Bo02].
We have chosen this method to compute o, 3, v and 9, so that we minimize

the extra-diagonal term of the global matrix, and maximize the diagonal one
in order to increase the chance of stability.

e  First numerical results with fictitious surrounding elements

Figure 3. Global mesh composed by the internal mesh 7 of the inside
domain €2 and by a fictitious mesh outside.
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We will use the fictitious mesh method [Le02]. That consists to surround
the domain by an extra layer of elemets and we impose the u,(K) =
ﬁ [ 9(x) dz for K triangle of this extra layer (see Figure 3). Thus all the

edges of the mesh 7 can be considered as internal (i.e. 71 = T;!).
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Figure 5. The ¢* errors, for affine exact solution u(z,y) = 2z + v,
computed with two methods.

We have tested the previous method for a square domain 2 =|0,1[*> and
we have also used a family of unstructured meshes (see Figure 4). At first,
we have tested the scheme for the problem (1) with an exact solution gi-
ven by u(z,y) = 2z + y. This problem corresponds to non homogeneous
Dirichlet boundary conditions and we used the fictitious mesh methodology.
The Figure 5 schows the ¢? relative errors between the exact affine solu-
tion u(z,y) = 2x + y and the solution calculated with the Petrov-Galerkin
scheme. The curve shows that we can obtain as a relative error the order
of the machine precision. That was predicted by the fact that the scheme
is exact for affine solution u. We have also tested the scheme for a poly-
nomial function u(z,y) = z(1 — x)y(1 — y) and product of sinus fonctions
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u(z,y) = sin(mz) sin(my), that are exact solutions of the problem (1), with
homogeneous Dirichlet boundary conditions.

In(error)

+——a error 12 with fictitious mesh
+——= error |12 with Dirichlet
linear regression

In(1/h)

In(error)

~——a error |2 fictitious mesh
+——= error |12 with Dirichlet
—————— linear regression

In(1/h)

Figure 6. Comparison of the ¢? relative errors v.s. Log(+), between ficti-
tious mesh method and Dirichlet boundary scheme: left for polynomial fonc-
tion u(x,y) = z(1 — x)y(1 — y), right product of sinus fonction u(z,y) =
sin(7z) sin(my).

In(error)

A—a error Linf with ficitious mesh
=——= error Linf with Dirichlet
ffffff linear regression

In(1/h)

In(error)

4—a error Linf with fictitious mesh
+——e erreur Linf avec Dirichlet
fffff linear regression

In(1/h)

Figure 7. Comparison of the L™ relative errors v.s. Log(; ), between ficti-
tious mesh method and Dirichlet boundary scheme for previously described

test cases.

The figures 6 and 7 show, respectively, the ¢? and L relative errors bet-
ween the exact solutions and the solution calculated with the Petrov-Galerkin
scheme wversus Log(%), where h = h; = maxger2(hg), with hg is diame-
ter of a triangle K. For the case of polynomial fonction,we have an order
of convergence equal to 1.7 for £ and 1.5 for L norms (Figure 6). Finally,
for the product of sinus functions, Figure 6 show the order of convergence
1.8 and 1.7, respectively, in the sense of £2 and L> norms. We conclude here
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that the scheme with fictitious mesh methodology has good convergence pro-
perties. In consequence the internal finite volumes scheme has succeeded for
numerical test.

3 Dirichlet boundary condition

Until here, we have considered a scheme for the flux p, (see (7)), for internal
edges, now we propose a scheme for all edges a € 7*'. So, this section is
dedicated to the construction of a dual Raviart-Thomas basis ¢; when the
edge b = (SN) is a semi boundary (i.e. b € T') or strictly included in the
boundary of the mesh 7 (i.e. b € T3). We consider the problem (1) with
Dirichlet boundary conditions (i.e. I'y = ). We still suppose that the hy-
potheses (H1), (H2) and (H3) satisfied for the dual basis functions ;.

e Asb=(SN) e 7! UT], the vicinity V(b) of Figure 2 does not exist
anymore. In all cases, one triangle that composes the vicinity is at least
missing. Moreover, if we denote by dV(b) the boundary edges of the vici-
nity V(b) (see Figure 8), the dual function ¢} is a priori not null any more
on the edges a € dV(b) N T4. Thus, to calculate the boundary quantities
fae vy Ur @y - ngds, we need to adapt the dual fonction ¢j.

We set the
-Hypothesis (H4): Let s be the curvilinear coordinate equal to zero in
the middle of the edge a. We suppose [ ¢rngsds =0, a € TpNoV(b).

S ANNES N

Figure 8. Different cases of the vicinity V(b) of the edge
b= (SN) € 7! N TJ. For example in case on the right (SN € 99),
dV(b) = {SN, BN, BW,CW,CS).

In that way, under the following affine approximation of the solution u on the
edge a € OV(b) N Tp: ur(s) = Uy + sVu-(0) + O(s?), we get [ urp).nqds =
U [, ¢;-nads+O(|al*), with @, = ﬁ [, 9(s) ds. This mean value 7, is now a
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natural degree of freedom for the edge a € 7} associated with the imposed
Dirichlet condition.

e Normal gradient for non-internal edges
The expression of the flux of the normal gradient across the edge b = (SN)
is slightly modified. We have the following Theorem [Bo02].

Theorem 1 (Normal flux).

/VUT nyds = Z / ©p - Ngds — Z uK/ @y - nds.

acdV(b)NT} KeV(b

Moreover, we estimate the number of necessary cond1t10ns on the fluxes 7,
a, 3, v and ¢ for boundary edges. We count the number of orthogonality
relations that we can write between the dual basis function ¢; and the basis
functions {p,}, where the a’s are the edges of the vicinity of V(b). For those
non-internal edges, we have the following result [Bo02].

Theorem 2 (Necessary conditions).
— — — — —

where A\, = 1 if the edge a appears in the set of edges of the vicinity V(b),
0 elsewhere.

e Numerical tests

We have tested the scheme for the same set of exact solutions of the problem
(1), but we did not use the method of fictitious mesh (see [Te03]). So, the
Dirichlet boundary conditions are now taken into account by the scheme
described in this section. Again, we use the least square method to determine
the fluxes n, o, 3, and ¢. Figures 5, 6 and 7 show that the method with
boundary conditions has similar results of precision and convergence, as the
one for the fictitious mesh method. Thus, our scheme is valid for boundary
Dirichlet conditions without loss of exacteness property of the scheme for
affine solution wu.

4 Mixed Dirichlet and Neumann boundary conditions

In this section we consider the problem (1) with both Dirichlet and Neumann
boundary conditions, of which the variational formulation is given by (8). For
b € Ty, it is useless to construct ¢y, hence the flux p, = ~; is imposed by
the Neumann boundary conditions. So, we just have to construct ¢; for all
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be {TIUT}L bNTL # @}. For these edges we have a poor stencil, but there
is more information given by the Neumann conditions on the boundary edge.

So we suppose for ;-

- Hypothesis (H'1): (¢4, 9}) = 0ap ,Va € T+ \ Ty
We remark that the scalar producut (¢, ¢;) is a priori not nul for a7y N
0V (b). Thus the decomposition (7) of p, € H(div, 2, I'y), leads to:

( )/pT Spbdx_ Z pa/% bdx—pb‘f‘ Z /goa gpbdx

a€T\ T} a€TLNOV(b

We still suppose hypotheses (H2) and (H3). Hypothesis (H4) is realised if
OV(b) N T3 # @. Like in the case of the Dirichlet boundary condition, the
dual fonction ¢} is a priori not nul on the edges a € 9V(b) N7, So, we have
to calculate the quantities fae V)T Ur ¢y - ngds, but we do not have any

information about u, on the edges a € 9V(b) N 7. Thus we suppose
-Hypothesis (H5): ¢} - n, =0, Va € T,.

Then the quantity / ur @y, - ngds is null, and ¢; belongs to the
a€dV(b)NT

space H*(div,Q,T'y).

e Normal gradient

The equality p = Vu, can be developed as follows:

)
/VUT-gode = /uTgob Ng ds+
(13) < b acdV(b)nTL
/uT ©p Mg ds — Z / u, divipy, d
\ acdV(b)NTL ¢ Kev(b

According to expressions (12), (13) and hypotheses (H4) and (H5), we obtain
the following result [Te03|:

Theorem 3 (Normal flux for Dirichlet-Neumann boundary conditions)

/VUT nyds = Z / ©p - N ds
(14) < ae@V ﬂTl a
Z%/gpa dx—z uK/ @y - nds.
acdV(b)NTL KeVv(b

\

The normal flux is a linear function of the degree of freedom of u, in the
vicinity of the edge b, as first proposed in [Du92|. For necessary conditions
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between the differents flux of ¢; and fQ Yo - i dz,a € OV(b) N Ty, we study
the following particular case (see [Te03] for the study of all cases):

B A

w E
/777 rD/s/ r/ /177

Figure 9. Treatment of a general boundary conditions.

let b = (SN) € 7!, where the vertex N is internal to the domain and the
vertex S belongs to 0€). Let the edge (ES) € 7, and the edge (W S) € T3
(see Figure 9). In this case two triangles composing the vicinity V(b) are lost.
Then we obtain the following expression for the normal flux:

/VUT.nb ds = n(ur — ug) + a(upy —up) +
(15) b -
+B(up — ug) +y(@ws — ux) — Vs

where 6 = [ eEs - ©5y dz and Yps = g5 [, 7(s) ds. Then the four fluxes

n, a, 3,7~ and the unknow coefficient ¢ satisty the following two scalar cons-
traints [Te03]:

Theorem 4 (Necessary conditions).
SN 2|k
SN SN
—
S SN> .,

e 0 a1 7 70 ] (-5,

We have proven that these constraints express that the relation (15) is exact
if the field ., is affine.

— — —_— —
(nKL +aLM + BKP + 7KQ>
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