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a b s t r a c t 
We show that the asymptotic properties of the link-wise artificial compressibility method are not compat- 
ible with a correct approximation of fluid properties. We propose to adapt the previous method through 
a framework suggested by the Taylor expansion method and to replace first order terms in the expansion 
by appropriate three or five points finite differences and to add non linear terms. The “FD-LBM” scheme 
obtained by this method is tested in two dimensions for shear wave, Stokes modes and Poiseuille flow. 
The results are compared with the usual lattice Boltzmann method in the framework of multiple relax- 
ation times. 

1. Introduction 
Lattice Boltzmann models (LBM) make it possible to simu- 

late various types of fluid flows with simple algorithms (see e.g. 
[4,5,14,18,19] ). Usually one can observe (and in simple cases, prove) 
second order accuracy (see e.g. [13] ). These features make LBM 
approaches increasingly popular for engineering applications be- 
sides others. However, unlike standard simulation methods such 
as finite differences, lattice Boltzmann models are required to 
process more information than the primitive hydrodynamic vari- 
ables, which leads to higher memory consumption and larger data 
throughput per collocation point. 

On modern computers, especially when using massively parallel 
processors such as graphics processing units (GPUs), the computa- 
tional performance of the LBM is memory-bound, and therefore is 
directly linked to the size of the stencil associated to each collo- 
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cation point. Asinari et al. [1,15–17] proposed the link-wise artifi- 
cial compressibility method (LW-ACM) in which parts of the LBM 
algorithm are replaced by expressions deduced from finite differ- 
encing the primitive variables and gave some results that looked 
quite encouraging. Compared to standard three-dimensional LBM, 
the LW-ACM reduces memory consumption by a factor of 4.75 and 
increases performance of GPU implementations by approximately 
by a factor of 1.8 [15] . 

We present an analysis of some features of the link-wise artifi- 
cial compressibility method of Asinari et al., showing possible flaws 
and then propose alternative finite difference expressions that al- 
low a significant improvement of the resulting simulations. 
2. Definition of the models 

For the sake of simplicity, we start from the usual D2Q9 lattice 
Boltzmann model [14] that allows us to simulate weakly compress- 
ible Navier–Stokes flows. Using a planar square grid with colloca- 
tion points located at x i j = i δx, y i j = j δx, a fluid is represented 
by nine real quantities f n 

i j at each of these grid points. The LBM 
simulations involve two steps (collision and propagation) that we 
describe following d’Humières [11,12] . For the collision at each grid 
point, one makes a linear transformation of the quantities f to mo- 
ments m using an orthogonal matrix M which is shown below to- 
gether with a physical interpretation: 
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ρ 1 1 1 1 1 1 1 1 1 density 
J x 0 1 0 1 0 1 − 1 − 1 1 mass flux 
J y 0 0 1 0 1 1 1 − 1 − 1 mass flux 
E − 4 − 1 − 1 − 1 − 1 2 2 2 2 energy 
XX 0 1 − 1 1 − 1 0 0 0 0 diagonal stress 
XY 0 0 0 0 0 1 − 1 1 − 1 off-diagonal stress 
q x 0 − 2 0 2 0 1 − 1 − 1 1 energy flux 
q y 0 0 − 2 0 2 1 1 − 1 − 1 energy flux 
ϵ 4 − 2 − 2 − 2 − 2 1 1 1 1 square of energy 

Depending on the simulations to be done, we can conserve only 
the first moment to solve thermal-like problems or we can con- 
serve the three first moments to solve fluid problems for two- 
dimensional space. The others (non conserved) are assumed to 
evolve as 
m ∗k = m k + s k (m eq 

k − m k ) , (1) 
where m eq 

k is an equilibrium value that is a function of the con- 
served moments and s k a relaxation rate. Note that symmetry con- 
siderations are useful to propose expressions for these equilibrium 
values. 

The post-collision moments can also be modified by an exter- 
nal force (gravity, Coriolis, etc.), preferably following the splitting 
of Strang [6] : applying half of the perturbation before collision and 
half after. Once the new moments are known, applying M − 1 leads 
to post-collision f n ∗. Propagation is simply obtained through 
f n +1 
i 0 j 0 = f n ∗i j , (2) 

where i 0 and j 0 are indices of the neighboring grid point corre- 
sponding to the elementary velocity used to define the moments J x 
and J y . Thus, once a velocity set has been chosen, the “adjustable”
parameters of a LBM model are the expressions of the equilibrium 
values of the non-conserved moments and the values of the relax- 
ation rates. 

The analysis of a LBM simulation can be done in several 
ways. The most popular is a second order analysis based on the 
Chapman–Enskog development used in the kinetic theory of clas- 
sical gases (see e.g. [11] or [14] ). This allows to compute the kine- 
matic transport coefficients (diffusivity for just one conserved mo- 
ment, shear and bulk viscosities for 3 conserved moments). It also 
gives first order expressions for the non-conserved moments. More 
recently it was proposed to obtain equivalent equations through 
Taylor’s expansions [2,7,8] , which allow to study the effect of 
higher order space derivatives in a much simpler way than does 
the Chapman–Enskog development (which makes use of non com- 
muting matrix products). Finally using the dispersion equation al- 
lows to study the linear stability and gives all the information 
needed to evaluate the properties of a simulation model. 
Standard D2Q9. The standard D2Q9 [14] model for Navier–Stokes 
uses the following parameters 

Moment Equilibrium Rate 
E = − 2 ρ + 3(J 2 x + J 2 y ) /ρ s e 
XX = (J 2 x − J 2 y ) /ρ s xx 
XY = (J x J y ) /ρ s xx 
q x = − J x s q 
q y = − J y s q 
ϵ = ρ − 3(J 2 x + J 2 y ) /ρ s ϵ

This leads to the following properties: 
Speed of sound c s = √ 

1 
3 , 

Kinematic shear viscosity ν = 1 
3 ( 1 

s xx − 1 
2 ) , 

Kinematic bulk viscosity ζ = 1 
3 ( 1 s e − 1 

2 ) . 
The non linear terms lead to the correct advection of shear and 

acoustic waves. However, in advective acoustics framework where 
a uniform velocity V is given, the LBM method computes the de- 
viation from this given advection. A linear analysis show that low 

amplitude shear waves with wave vector parallel to V are damped 
with an effective kinematic shear viscosity 
νeff = ν (1 − 3 V 2 ) . 
The correction is significant as V may be as large as 0.2 that is typ- 
ically up to 0.35 times the sound speed c s . In the absence of a large 
velocity, one can easily get higher order terms in the equivalent 
equations which allows to determine a shear “hyperviscosity” from 
the attenuation rate of shear waves at order 4 in space deriva- 
tives. Previous work [2,9,10] showed which conditions allowed to 
get an isotropic hyperviscosity (no angular dependence in the ex- 
pressions) and the possibility to make it equal to zero. 
Link-wise artificial compressibility method. The new proposal of Asi- 
nari et al. [1,15–17] uses just the primitive variables: density ρ and 
velocity ⃗ u . From these quantities it reconstructs a set of f n on all 
grid points of the computation domain and then lets them evolve 
with the LBM rules. In its original formulation, the reconstruction 
rule is expressed through the equilibrium distribution f eq which 
is function of the sole primitive variables. Using the present no- 
tations, it can be written as: 
f n ∗i j = f eq (ρn 

i j , ⃗  u n i j ) + &(
f eo (ρn 

i 0 j 0 , ⃗  u n i 0 j 0 ) − f eo (ρn 
i j , ⃗  u n i j ) ) , (3) 

where f eo (ρ, ⃗  u ) is defined as: 
f eo (ρ, ⃗  u ) = 1 

2 ( f eq (ρ, ⃗  u ) − f eq (ρ, − ⃗ u ) ) , 
and & as: 
& = 1 − 2 ν

c 2 s = 1 − 6 ν . 
The properties of the proposed algorithm lies in the reconstitution. 
The work of Asinari et al. use what can be called “zeroth-order”
reconstitution as they just involve the expressions shown in the 
preceding table. 

To analyze it we use a classical Von Neumann stability anal- 
ysis in Fourier space (see [14] ). So we proceed in the following 
way. Starting either from the equations to be simulated or from 
the computer code derived from them we prepare a series of in- 
structions for a computer algebra system. We then consider a grid 
with the following initial conditions: a plane wave of small ampli- 
tude and wave vector k x , k y , uniform density plus possibly a uni- 
form velocity V = (V x , V y ) . This means we take the following initial 
state: f = f 0 + δ f, where f 0 = ( f 0 , . . . , f 8 ) represents the uniform 
equilibrium state specified by uniform and steady density ρ and 
velocity V = (V x , V y ) and δ f = (δ f 0 , . . . , δ f 8 ) is the fluctuation. We 
then apply one time step in the Fourier space and linearize the re- 
sults in terms of the parameters of the plane wave (amplitude and 
phase factors). 

We define space phase factors p = e i k x and q = e i k y and time 
factor z = e − ' ( i is unit imaginary number and ' being the atten- 
uation rate) in units such that δx = 1 and the duration of one time 
step equals to unity. So the initial conditions in moment space are 
δρ( j, l) = A p j q l , δJ x ( j, l) = B p j q l , δJ y ( j, l) = C p j q l . 
In consequence we have classical relation of the type 
δρ( j + 1 , l) = e ik x δρ( j, l) = p δρ( j, l) , 
δρ( j, l + 1) = e ik y δρ( j, l) = q δρ( j, l) , 
and analogous relations for two others fields δJ x and δJ y . We intro- 
duce the state vector ( = ( A, B, C ) t , after one time step the vector 
( is multiplied by the amplification matrix H : 
(n +1 = H (n . (4) 
We note here that the amplification matrix H is determined 
by the collision step and the advection step. In particular the 
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coefficients: V, c s , s k , p and q (see for details the original reference 
[14] ). ( = (δρ, δJ x , δJ y )t 

We search the modes associated to the 
iteration (4) . In that case the vector ( is solution of 
z ( = H ( , (5) 
from which we get the dispersion equation 
F (p, q, z) = det (H − z Id) , (6) 
where Id is the unit matrix. Literal expressions of F are then solved 
to get z by successive approximations in powers of the wave vec- 
tor components. In other terms we search the eigenvalues z and 
eigenvectors R as powers of the wave vector ( k x , k y ). So that the 
attenuation rate (possibly complex for propagating waves) is ob- 
tained as an expansion in wave vector components with ' = log z. 
As the general expressions are quite cumbersome, we only give in- 
formation on the terms up to power 2 in wave vector components. 
In addition we assume that the uniform velocity is parallel to the 
wave vector with amplitude v ( i.e. V = (V x , V y ) and v = | V | ) and we 
apply a rotation of the axis so that the wave vector is parallel to 
Ox (rotated axis) with amplitude k . We replace the spatial phase 
factor p and q by their expansion at second order in in k . We then 
get the matrix H ( k ): 
H(k ) = 

⎛  
⎜  ⎝  1 − 6 i v kν − 1 

6 k 2 (1 + 3 v 2 ) − 6 i νk − v k 2 0 
− 1 

3 i k (1 + 3 v 2 ) + v (1 − 3 v k 2 ) 1 − 2 i k v − 3 νk 2 0 
0 0 1 − i k v − νk 2 

⎞  
⎟  ⎠  . 

Note that no angle appears, so the model is isotropic at order 2 in 
wave vector. The previous matrix shows decoupling of one shear 
mode and two longitudinal modes. 

From the roots of the dispersion equation in the case v = 0 , one 
obtains the kinematic shear viscosity ν , related to the relaxation 
rate s xx by 
ν = 1 

3 
(

1 
s xx − 1 

2 
)

, 
and the speed of sound and its damping 
c s = √ 

2 ν, 's = ν
2 + 1 

12 . 
Note that the result for the damping of sound can be interpreted 
with a kinematic bulk viscosity independent of the parameters of 
the model. 

When v is not zero, since the transport coefficients can be ob- 
tained through a perturbation analysis, we shall use the following 
series expansion in k of the roots [14] . One can verify that the roots 
contain a linear dependence in v (term in ikv linked to linear ad- 
vection) and the shear viscosity becomes 
ν(v ) = ν − 1 

2 v 2 . 
This last result means that if v > √ 

2 ν = c s , shear waves grow 
exponentially and thus the model is unstable so it is not recom- 
mended to use this model for simulations at fairly large Reynolds 
number. Actual simulations allow to verify the previous results (see 
Section 4 -a) 
3. New proposition 

We propose to use the same basic idea (reconstruction of the f 
from primitive variables: density, components of the velocity), but 
with improved formulae. 

In the Taylor expansion analysis leading to the equivalent equa- 
tions [7] , it was shown that the non conserved moments m k can 
be expanded in powers of the size of the elementary step of the 
algorithm. Beyond the order 0, presented above, the second order 
has been expressed in terms of θ k that involve space derivatives 

and non linear terms. In fact, as described in [7] , we have the fol- 
lowing development of non-equilibrium moments at second order 
on *t : 
m ∗k = m eq 

k + *t (1 
2 − σk )θk + O(*t 2 ) , k ≥ 2 . (7) 

where σk ≡(
1 
s k − 1 

2 ) and θ k is the defect of conservation defined by: 
θk ≡ ∂ t m eq 

k + -ℓ 
k α∂ αm k ℓ , k > N, (8) 

where N is the number of the conserved moments and -ℓ 
k α = 

∑ 
j v αj v βj (M − 1 ) jk , k = 0 . . . 8 , α = 1 . . . 2 and β = 1 . . . 2 . 
Remark In the case of the N = 3 ( i.e. 3 conserved moment 

to model fluid-like problems), we get the following macroscopic 
equations: 
∂ t m k + -ℓ 

k α ∂ αm eq 
ℓ − σℓ *t -ℓ 

k α ∂ αθℓ = O(*t) 2 , k = 0 , 1 , 2 . 
We note here that for k = 1 , 2 at the order one we have a term 
1 
3 ∇ρ which gives the sound speed c s = 1 √ 

3 . At the order two 
(terms having *t as coefficient) we obtain the viscous terms func- 
tion of σ ℓ . For more details see [7] . 

As many individual terms are found to play no role in the be- 
havior of the shear and acoustic modes, we give only the relevant 
terms of the defect of conservation θ k (8) for the case where the 
density is close to 1: 
⎧ 
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

θ3 ≡ θE = (2 + 6 (v 2 x + v 2 y )) (∂ x v x + ∂ y v y ) − 2 (v x ∂ x ρ + v y ∂ y ρ) , 
θ4 ≡ θXX = 2 

3 (∂ x v x − ∂ y v y ) − 2 
3 (v x ∂ x ρ − v y ∂ y ρ) 

− 2(v x (∂ x v 2 x + ∂ y v x v y ) − v y (∂ x v x v y + ∂ y v 2 y ) , 
θ5 ≡ θXY = 1 

3 (∂ x v y − ∂ y v x ) − 1 
3 (v x ∂ y ρ + v y ∂ x ρ) 

− v x (∂ x v x v y + ∂ y v y 2 ) − v y (∂ x v 2 x + ∂ y v x v y ) . 
The partial derivatives are then estimated by finite difference. 

To sum up, the neighboring f are obtained (see Eq. (7) ) using the 
non-conserved moments: 
⎧ 
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

E = − 2 ρ + 3(v 2 x + v 2 y ) /ρ + (1 − 1 
s e ) θE , 

X X = (J 2 x − J 2 y ) /ρ + (1 − 1 
s xx ) θXX , 

X Y = (J x J y ) /ρ + (1 − 1 
s xx ) θXY , 

q x = − J x , 
q y = − J y , 
ϵ = ρ − 3(v 2 x + v 2 y ) /ρ. 
With these expressions, the acoustic waves propagate with 

speed 1 / √ 
3 (as for standard D2Q9), advection by a mean velocity 

V is correct and the viscosities are now: 
shear = 1 

3 
(

1 
s xx − 1 

2 
)

(1 − 3 V 2 ) and bulk 
= 1 

3 ( 1 
s e − 1 

2 ) (1 − 3 V 2 ) , 
as is known for D2Q9. 

For the particular case with V = 0 , one can determine higher 
order contributions to the damping of the hydrodynamic modes. 
We first expand the dispersion equation (6) , then we replace spa- 
tial phase factors p and q by their expansions up to the fourth or- 
der in k and solve the resulting expression by successive approxi- 
mation in k . This leads to eigenvalues z i , i = 1 .. 3 and then we get 
the development of the damping coefficient 'i = − log (z i ) . We in- 
terpret one of these roots as 
'i = ν0 k 2 + ν2 k 4 . 
Which allows to define a k dependent kinematic shear viscosity: 
ν(k ) = ν0 + ν2 k 2 , 

Please cite this article as: F. Dubois et al., Lattice Boltzmann model approximated with finite difference expressions, Computers and 
Fluids (2016), http://dx.doi.org/10.1016/j.compfluid.2016.04.013 

http://dx.doi.org/10.1016/j.compfluid.2016.04.013


4 F. Dubois et al. / Computers and Fluids 0 0 0 (2016) 1–6 
ARTICLE IN PRESS 

JID: CAF [m5G; May 2, 2016;8:46 ] 
We define the coefficient ν2 as “hyperviscosity”. The expressions 
for this hyperviscosity depend on the way space derivatives are es- 
timated using finite difference. 

We have considered three cases. 
Three points stencil such that 

∂ x • ≃ 1 
2 ( • (i + 1 , j) − •(i − 1 , j) ) . 

Then the shear hyperviscosity is 
ν2 = 1 

72 (2 σxx − 3)(2 σxx − 1) − 8 σxx − 3 
36 ( cos φ2 − cos φ4 ) , 

where σxx = 1 /s xx − 1 / 2 and φ is the angle between the Ox axis 
and the wave vector. This contribution is anisotropic. It becomes 
larger than the usual viscous term for k > 0( √ 

σxx ) which will pre- 
vent from doing significant simulations at small viscosity. 

Five points stencil such that 
∂ x • ≃ 3 

4 ( • (i + 1 , j) − •(i − 1 , j) ) − 1 
8 ( • (i + 2 , j) − •(i − 2 , j) ) . 

This leads to a shear hyperviscosity 
1 

36 σxx (2 σxx − 1) − σxx 
18 ( cos φ2 − cos φ4 ) . 

This is still anisotropic but removes the small viscosity limitation. 
Nine points stencil based on the D2Q9 geometry, we can 

use 
∂ x • ≃ •(i + 1 , j) − •(i − 1 , j) 

− 1 
4 [ • (i + 1 , j + 1) − •(i − 1 , j + 1) 

− • (i − 1 , j − 1) + •(i + 1 , j − 1) ]
and similar expression for ∂ y . This leads to the following shear hy- 
perviscosity: 

1 
24 σxx (3 − 2 σxx )(2 σxx − 1) − 20 σxx − 9 

12 σxx ( cos φ2 − cos φ4 ) 
which is still anisotropic and does not solve the limitation indi- 
cated for the three point stencil. 

For all three stencils, the full dispersion equation (cubic equa- 
tion in time factor z ) can be obtained numerically for k up to π in 
order to predict the linear stability. 
4. Results of some simulations 
Shear wave. Elementary tests have been performed in a square do- 
main (size N 2 ) with periodic boundary conditions. The initial con- 
dition is a shear wave of wave vector k x , k y (of modulus k ) with in 
some cases a uniform velocity parallel to the wave vector. In fact 
we take the following initial conditions: 
⎧ 
⎪ ⎨ 
⎪ ⎩ 

ρ(t = 0) = 1 , 
j x (t = 0) = − A (0) k y 

k cos (k x x + k x y ) + k x 
k V, 

j y (t = 0) = A (0) k x 
k cos (k x x + k x y ) + k y 

k V, 
The exact solution admits the same algebraic form, except that A 
is replaced by a function of time A ( t ) ; then A = A (0) . At each time 
step we measure the correlation function A ( t )/ A (0) of the velocity 
field with its initial state. For V = 0 , A ( t ) decays exponentially, oth- 
erwise it is e (− 't) ( cos ωt ). 

We show in Fig. 1 the results for the initial ACM model (no θ
in our proposal) for 5 values of the mean velocity V . Clearly the 
velocity square dependence of the damping is unacceptable. 

We then perform a series of measurements at V = 0 for several 
values of the wave vector and compare ( Table 1 ) the measured re- 
laxation rate ' to the development in terms of hyperviscosity and 

Fig. 1. Time evolution of the correlation function A ( t )/ A (0) versus discrete time be- 
tween an initial transverse wave (of vector (3 k 0 , 2 k 0 ) where k 0 = 2 π

191 ) and its later 
state for five different values of the mean velocity V . Square of 191 × 191 nodes 
and periodic boundary conditions. When V grows, the dissipation of the waves is 
reduced. 

Fig. 2. Relative shear viscosity (normalized by ν0 ) for the three point stencil versus 
wave vector modulus k . Solid curves from dispersion equation, thin solid curves 
from hyperviscosity, discrete points from actual simulation. Top curves for wave 
vector along X axis {1,0}, middle curves for wave vector along {2,1} direction and 
lower curves for wave vector along the {1,1} direction. 
the numerical root of the dispersion equation (that which corre- 
sponds to the transverse mode). Figs. 2 –4 illustrate the results for 
the three, five and nine points stencil respectively. These figures 
have been obtained for a long wave length kinematic shear vis- 
cosity ν0 = 0 . 01 . In the case of the nine point stencil, the model 
is unstable in the {1,1} direction so no simulation could be per- 
formed. In fact in Table 3 we study the equivalent hyperviscosity 
for the ACM scheme for different stencils. We show that the hyper- 
viscosity is relatively high and negative for an angle equal to 45 o 
for the nine point stencil. This is directly correlated to instability 
in the {1,1} direction. 
Stokes modes. We give some partial results of simulations of sit- 
uations less elementary that simple plane waves. To take solid 
boundaries into account we propose to consider the lattice nodes 
just outside the fluid region and to estimate the state of the virtual 
fluid in those points by linear extrapolation using the fact that the 
velocity is 0 on the boundary. As in the scheme of Bouzidi et al. 
[3] stability is obtained by using different expressions depending 
on the location of the intersection of the boundary with the link 
that goes from the last fluid point to the first solid point. 
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Fig. 3. Relative shear viscosity (normalized by ν0 ) for the five point stencil versus 
wave vector modulus k . Solid curves from dispersion equation, thin solid curves 
from hyperviscosity, discrete points from actual simulation. Top curves for wave 
vector along X axis {1,0}, middle curves for wave vector along {2,1} direction and 
lower curves for wave vector along the {1,1} direction. 

Fig. 4. Relative shear viscosity (normalized by ν0 ) for the nine point stencil versus 
wave vector modulus k . Solid curves from dispersion equation, thin solid curves 
from hyperviscosity, squares from actual simulation. Top curves for wave vector 
along X axis, middle curves for wave vector along {2,1} direction and lower curves 
for wave vector along the {1,1} direction. No experimental data due to linear insta- 
bility at least in the {1,1} direction. 

Table 1 
Numerical study of the hyperviscosity for different 
stencils of ACM scheme vs. angle of the wave vector 
k . All simulations are performed with the same value 
s xx = 1 . 85 . 

Angle Three-point Five-point Nine-point 
0 .00 0 .03725 − 0 .00103 0 .03725 

26 .60 0 .02534 − 0 .0 0 067 0 .0 0 079 
45 .00 0 .01867 − 0 .0 0 047 − 0 .0196 

We then compute the relaxation rate of the Stokes modes inside 
a circle of radius R = 29 . 9 lattice units. The flow field is obtained 
from the stream function 
ψ (r, θ , t) = e − (' t )

cos (m θ ) J n (r/R ) , (9) 
with singlets for m = 0 and doublets for m > 0 and 
' = ν

R 2 a 2 l , (10) 

Table 2 
Numerical study of the Stokes modes in a disk. All simulations are per- 
formed with the same value ν0 = 0 . 05 . The second column gives the the- 
oretical values and the other the error between the numerical scheme and 
the theoretical value. The third column uses the present FD-LBM scheme 
with a three-point stencil for the evaluation of the gradients, the fourth 
column the present FD-LBM scheme with a five-point stencil, the fifth col- 
umn the standard diagonal BGK with ν0 = 0 . 05 , the sixth column MRT 
LBM scheme with the quartic condition (11) realized. 

l Bessel FD-LBM-3 FD-LBM-5 BGK LBE-q 
Singlets 

1 14 .68200 0 .00729 0 .0 0 0 03 0 .0 0 053 − 0 .0 0 010 
2 49 .21850 0 .02191 − 0 .00141 0 .00179 − 0 .00114 
3 103 .49950 0 .04663 − 0 .00313 0 .00382 − 0 .00276 
4 177 .52080 0 .07969 − 0 .0 040 0 0 .00672 − 0 .00489 
5 271 .28171 0 .12335 − 0 .00358 0 .01071 − 0 .00752 
6 384 .78189 0 .17778 − 0 .0 0 099 0 .01623 − 0 .01053 

Doublets 
1 26 .37460 0 .01324 − 0 .0 0 090 0 .00106 − 0 .0 0 042 
2 40 .70650 0 .02078 − 0 .00103 0 .00164 − 0 .0 0 087 
3 57 .58290 0 .02959 − 0 .00147 0 .00236 − 0 .00133 
4 76 .93890 0 .03966 − 0 .00186 0 .00323 − 0 .00183 
5 98 .72630 0 .05060 − 0 .00231 0 .00424 − 0 .00236 
6 122 .90760 0 .06241 − 0 .00254 0 .00538 − 0 .00293 
7 149 .45290 0 .07545 − 0 .00275 0 .00667 − 0 .00354 
8 178 .33730 0 .08948 − 0 .00267 0 .00809 − 0 .00419 
9 209 .54010 0 .10418 − 0 .00230 0 .00965 − 0 .00488 
10 243 .04340 0 .12003 − 0 .00175 0 .01138 − 0 .00563 
11 278 .83160 0 .13682 − 0 .0 0 099 0 .01328 − 0 .00643 

Table 3 
Numerical study of the Stokes modes in a disk. All simulations are performed with 
the same value ν0 = 1 / √ 

108 . The second column gives the theoretical values and 
the other the error between the numerical scheme and the theoretical value. The 
third column uses the present FD-LBM scheme with a three-point stencil for the 
evaluation of the gradients, the fourth column the present FD-LBM scheme with a 
five-point stencil, the fifth column the standard diagonal BGK with ν0 = 1 / √ 

108 , 
the sixth column the MRT-LBM scheme with the quartic condition (11) not real- 
ized and the seventh column the quartic version of the MRT-LBM scheme when the 
condition (11) is realized. 

l Bessel FD3-108 FD5-108 BGK-108 LB-108 LB-108-q 
Singlets 

1 14 .68200 0 .00165 − 0 .0 0 052 0 .0 0 069 0 .0 0 070 0 .0 0 035 
2 49 .21850 0 .00628 − 0 .00104 0 .00179 0 .00189 0 .0 0 010 
3 103 .49950 0 .01382 − 0 .00175 0 .00355 0 .00377 − 0 .0 0 028 
4 177 .52080 0 .02399 − 0 .00230 0 .00599 0 .00640 − 0 .0 0 078 
5 271 .28171 0 .03665 − 0 .00244 0 .00923 0 .00989 − 0 .00138 
6 384 .78189 0 .05198 − 0 .00202 0 .01341 0 .01442 − 0 .00204 

Doublets 
1 26 .37460 0 .00410 − 0 .0 0 027 0 .00143 0 .00147 0 .0 0 058 
2 40 .70650 0 .00662 − 0 .0 0 029 0 .00189 0 .00197 0 .0 0 044 
3 57 .58290 0 .00943 − 0 .0 0 053 0 .00249 0 .00262 0 .0 0 035 
4 76 .93890 0 .01251 − 0 .0 0 066 0 .00321 0 .00339 0 .0 0 029 
5 98 .72630 0 .01601 − 0 .0 0 086 0 .00404 0 .00428 0 .0 0 025 
6 122 .90760 0 .01979 − 0 .00101 0 .00498 0 .00530 0 .0 0 023 
7 149 .45290 0 .02380 − 0 .00115 0 .00603 0 .00643 0 .0 0 021 
8 178 .33730 0 .02814 − 0 .00121 0 .00720 0 .00768 0 .0 0 022 
9 209 .54010 0 .03281 − 0 .00126 0 .00846 0 .00905 0 .0 0 023 
10 243 .04340 0 .03766 − 0 .00123 0 .00983 0 .01053 0 .0 0 022 
11 278 .83160 0 .04274 − 0 .00118 0 .01133 0 .01215 0 .0 0 022 

where a l is a l th zero of the Bessel functions J m (a l ) = 0 . We give 
in the following Tables 2 and 3 some values of the relative dif- 
ference between measured values and the theoretical values for 
three cases: present FD-LBM with the three-point stencil, opti- 
mized LBM-D2Q9 ( ν = 1 / √ 

108 ) and 
(

1 
s xx − 1 

2 
) (

1 
s q − 1 

2 
)

= 1 
6 , (11) 

required to yield an isotropic hyperviscosity), and a non-optimized 
D2Q9-LBM (same value of ν , but s q = 1 . 3 instead of 0.9282. It is 
clear that FD-LBM does not match the accuracy of optimized LBM- 
D2Q9 (see [9] ). 
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Fig. 5. Relative shear viscosity for the D2Q9 lattice Boltzmann model versus wave 
vector modulus k for three orientations of the wave vector (top {1,0}, middle {2,1}, 
bottom {1,1}). We observe that the maximal error (8 %) is very much reduced com- 
pared to the FD-LBM scheme presented at Figs. 2 –4 . 

Fig. 6. Boundary conditions for a Poiseuille flow. Numerical location of the zero of 
velocity versus the imposed value ξ of the boundary. In the transverse direction, the 
computational domain is composed by the interval [1 − ξ , 15 + ξ ] where ξ is the 
abscissa of the figure. The result is the location of the zero velocity value measured 
from a least square fit of the velocity profile. The result with the five-points differ- 
ence scheme is of good quality, comparable to what is obtained with the classical 
D2Q9 usual LBM scheme with first order extrapolation with the Bouzidi et al. al- 
gorithm. Observe that with a simple “bounce-back” boundary conditions, the result 
would be a horizontal line at y = 0 . 5 . 
Poiseuille flow. Some simulations of Poiseuille flow have been per- 
formed to estimate the efficiency of the boundary conditions. We 
consider a channel with solid boundaries parallel to the Ox axis 
and periodic boundary conditions at the open ends. We adapt the 
boundary conditions to impose v = 0 at y 1 = 1 − ξ and y 2 = N + ξ . 
A uniform body force parallel to Ox drives the flow. After enough 
time steps the stationary flow is least square fit to a parabolic flow 
allowing to define “experimental” boundaries where the parabola 

goes to 0 at y m 1 = 1 − ξm and y m 2 = N + ξm . We show in Fig. 6 the 
measured ξm vs. the imposed ξ ( Table 2 ). 
5. Conclusion 

We have shown that the ACM proposal can be improved in two 
ways: reducing the velocity dependence of the shear viscosity and 
diminishing the hyperviscosity with the use of a stencil with more 
points. However when identical values of the long wave length 
shear and bulk viscosities are chosen for the D2Q9 lattice Boltz- 
mann model, the hyperviscosity is much smaller as can be seen 
in Fig. 5 . An analogous analysis has also been performed for the 
three-dimensional model D3Q19. 

The present work needs to be complemented with detailed 
testing of situations where nonlinear terms dominate to see the 
quality of simulations. This will help decide how many grid points 
in FD-LBM are needed to get comparable accuracy to what is given 
by a LBE-D2Q9 calculation. 
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