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This document was entirely written using LATEX.



Foreword

(×2)

Olynth (Greek city destroyed by Philip II, father of Alexander the Great)
Silver tetradrachm dated circa 392 before Christ

Obverse: head of Apollo, god of music
Reverse: lyre with 7 strings

Apollo was said to accompany the choir of the Muses on the lyre.

This 2400-year-old silver coin is one of the very first to represent a musical instrument. Furthermore
this coin is not only related to music, but also to sound analysis: In order to check if the metal was
really silver, people were used to recognize the timbre of the sound produced when the coin was

dropped on a marble slab. That is the reason why silver coins were later called “espèces sonnantes”
in French, that is “resonating coins”.
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Introduction

Computer music is by nature a pluridisciplinary research field as it involves not only music and com-
puter science, but also mathematics (arithmetic, trigonometry, etc.), physics (acoustics) or cognitive
sciences (psychoacoustics). When computer music aims at transforming sounds, it also deals with
signal processing. By definition, signals are functions conveying information. Consequently, signal
processing involves both physics (signal) and computer science (processing), since computer science
is basically the science for the automatic processing of information.

The present work has been carried out in the context of the SCRIME. The SCRIME is an orga-
nization for scientific researchers in computer science at the University and music composers of the
Conservatory to collaborate. Projects of the SCRIME should not only be scientifically valid, but also
musically relevant. Research projects of this structure are mainly situated in the field of the assis-
tance for composition of electro-acoustic music. We observe and try to understand actual practices of
composers of electro-acoustic music in order to provide our research in sound and music modeling
with new elements. An important motivation is the study of sound timbre from a perceptual and mu-
sical point of view, in close collaboration with psycho-acousticians. Another motivation is to provide
composers with tools in harmony with their actual needs.

Sound / Music Dichotomy. Since the very beginning of the research in the field of computer music
[Moo90, Roa96], two main trends are developing simultaneously but separately. The first trend deals
with symbolic musical structures and is based on the intentions of the composer in order to allow
always more sophisticated musical abstractions. This research on symbolic modeling of music is
issued from the work of Hiller [HI59] on automatic composition. Musical pieces are defined using
atoms (notes) organized into musical structures. However the power of the numerous software tools
in this symbolic domain comes up against the boundary separating the note from the sound, since
these tools cannot penetrate the opaque sounds in order to efficiently control the micro-structure of
the symbolic atoms. The second trend considers computers as instruments for musical sound synthesis
[Pie83] rather than tools for assistance for musical composition. While the research related to music
mainly concerns musical analysis and composition, the research related to sound deals with sound
modeling, analysis, synthesis, and transformation in order to directly manipulate the inner structures
of sound. This research on the sound structure is issued from the work of Risset and Mathews on the
analysis of musical instrument tones [RM69]. Analysis and synthesis play a central role, even if the
expressiveness of the underlying sound model and its musical usefulness should not be left aside in
any way.

The sound / music dichotomy appears to result directly from the nature of the paradigms for
representing sound: The parameters for their controlling are too far away from the musical parameters
involved in the macro-structures of the symbolic level. In order to allow the two parallel trends
of research to merge, a sound model should enable a continuity between the atoms of the macro-
structures of music (first trend) and the inner representation of sound (second trend).
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We propose to focus on the perception of sound rather than its physical cause, in order to unify
sound (microscopic) and music (macroscopic). We propose as well to consider the musical intentions
of the instrumentalists instead of their physical actions on the instruments. We also propose to try
unifying musical writing and sound control in order to enable musical composition on several time
scales in a continuous manner, thus allowing the control of musical sounds from the microscopic level
(usual musical parameters, timbre) to the macroscopic one (score).

Sound Modeling. Sounds are physical phenomena belonging to the physical world. In order to
manipulate digital sounds using a computer we need a sound model, that is a formal representation
for audio signals. This model should be as general as possible so that most sounds can be faithfully
reproduced and transformed in a natural and musically expressive way. Sound modeling draws the
link between the real – analogical – and mathematical – digital – worlds. Extracting parameters for
the model from the real world is the analysis stage, while producing a sound from the parameters of
the model is the synthesis stage.

Auditory models [ZZ91, Pre00] mimic the functioning of the ear to produce visualizations that
are in accordance with the perception. They are closely connected to perception and psychoacoustics.
Their main drawback is that they produce representations that are ill-suited for musical transformation
or resynthesis of the sound. As a consequence we have to find an acceptable compromise for a sound
model well-suited for sound transformation and synthesis while taking perception into account. Apart
from auditory models, there are three main families of sound models: physical, abstract, and spectral
models.

Physical models [CC98] are related to physics and acoustics. They are modeling acoustic sources,
such as real instruments for example. They first put the sound source in equations, then they compute a
solution during the synthesis stage. They also deal with the gesture of the performer. Although these
models are close to the musical concepts since they take musical gesture into account, they cannot
manipulate musical abstractions. Moreover they cannot easily reproduce any kind of existing sounds.

Abstract models – such as the Frequency Modulation (FM) synthesis [Cho73, Moo85b] – propose
a mathematical formula for sound. This is often an empirical formula, possibly involving musical
parameters. Although they are well-suited for creating new sounds, their main drawback is that they
cannot reproduce existing sounds since they lack the possibility of sound analysis.

Spectral models [MQ86, SS90, Ser97b] attempt to parameterize sound at the basilar membrane of
the ear. Thus, the resulting sound transformations should be closely linked to the perception. Spectral
models based on additive synthesis indeed provide general representations of sound in which many
musical transformations can be performed in a very natural and musically expressive way. The next
step is to structure the sound model in such a way that musical operations can be simply expressed.

We have conducted musical analysis of electro-acoustic pieces [Del86] in collaboration between
scientists and musicians of the SCRIME [DCN00]. They involved well-known musical structures
like melody, dynamic, and rhythm. More precisely, we have identified the need for a certain number
of manipulations of musical sounds. These manipulations can involve either one sound or several
sounds. Among the one-sound transformations are operations on the pitch (transposition, vibrato,
etc.), loudness (amplification, tremolo), duration (time-stretching), but also on the timbre (such as
filtering for example). Transformations involving several sounds can consist in either interchanging
parameters among these sounds (cross-synthesis) or blending parameters among them (morphing),
thus providing ways to create hybrid sounds.
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Sound Analysis. In order to faithfully imitate or transform existing sounds, spectral models require
an analysis method to extract spectral parameters from sounds which were usually recorded in the
temporal model, that is audio signal amplitude as a function of time. The accuracy of the analysis
method is extremely important since the perceived quality of the resulting spectral sounds depends
mainly on it.

There are two main families of analysis methods for spectral models. The first family is issued
from short-time Fourier analysis, which produces a series of short-term spectra taken on successive –
often overlapping – temporal windows on the original signal. Information about the spectral peaks is
then extracted from these short-term spectra in order to provide the model with spectral parameters.
A good frequency resolution requires a large window, which leads to a poor precision in time. On
the contrary, a good time resolution leads to a poor precision in frequency. This is the well-known
trade-off of time versus frequency in the classic short-time Fourier analysis. The second family of
analysis methods deals with wavelets. The idea is then to perform a frequency decomposition with
a constant quality factor, that is with a frequency precision inversely proportional to frequency. As
a consequence, frequency resolution is greater for low frequencies, while time resolution is better
for high frequencies. The problem is that the parameters obtained from wavelet analysis are not
well-suited for musical sound transformations. Indeed the harmonics of a complex sound must be
identified in order to allow musical transformations without dramatically audible artifacts. Thus an
important problem with the constant quality factor in the wavelet transforms occurs for high-frequency
harmonics, for which the frequency resolution is so bad that several harmonics may be averaged into
one coefficient of the wavelet transform.

Spectral models can faithfully reproduce a wide variety of existing sounds provided that an ac-
curate analysis method is able to extract the model parameters from these sounds. Although many
analysis methods have been proposed, it turns out that few are accurate enough to suit our needs.
Moreover almost none of them have been implemented in open-source software programs. The main
interest of an accurate analysis methods, providing precise parameters for the spectral models, is to
allow ever deeper musical transformations on sound by minimizing deformations due to analysis ar-
tifacts. We are specially interested in reproducing and transforming pseudo-harmonic instrumental
sounds [ACM85] as well as the human voice.

Sound Synthesis. Sound models would be useless in most practical applications without an efficient
synthesis method being able to generate the audio signal from the model parameters, possibly in real
time. Spectral models based on additive synthesis require the computation of a large number of sinu-
soidal oscillators. The problem is to find a very fast method for generating the sequence of samples
for each oscillator with as few operations as possible. This computation could be done using the sine
function itself. The resulting synthesis would be accurate but extremely slow. Another possibility is
to use the inverse Fourier transform in order to simultaneously generate all the oscillators, provided
that the oscillator parameters vary extremely slowly. On the contrary, banks of individual sinusoidal
oscillators allow parameter variations and an extremely fine control of each oscillator. Nevertheless
these banks of sinusoidal oscillators are mostly used in hardware (VLSI) implementations. We are
interested only in hardware-independent methods for real-time synthesis. There is only a small num-
ber of algorithms for additive synthesis, and very few are efficient enough to suit our needs. Again,
almost none of them have been implemented in practice in open-source programs.

Overview. For short, we aim at designing a sound model both musically expressive and compu-
tationally efficient, together with an accurate analysis method as well as an efficient algorithm for
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real-time synthesis. The remainder of this document is organized as follows.
First of all, the word “sound” has not the same meaning for physicists or musicians. In order to

fully understand the objective and subjective aspects of sound, basic knowledge of elements of acous-
tics and psychoacoustics is required. The aim of Chapter 1 is to provide this basic knowledge. Some
notations and elements of mathematics and physics are introduced, such as spectra, partials, noises
or transients. Then, short introductions to acoustics and psychoacoustics briefly explain sound emis-
sion, propagation, and reception by the human auditory system. Finally, the main musical parameters
[Jeh97] perceived by a listener are discussed.

The next three chapters are organized in a similar way for the purposes of homogeneity and clarity.
For each of these chapters, we first describe interesting previous works while stressing their main
advantages and drawbacks, then we present new results and we make comparisons with the previous
works. We also describe practical implementations as free software programs. Finally, we possibly
stress some important features or perspectives out of our results at the end of each chapter.

Chapter 2 first presents the well-known temporal model, then focuses on spectral sound models,
since they provide general representations for sound well-suited for intuitive and expressive musical
transformations. More precisely, we first introduce the phase vocoder and additive synthesis. The
models based on additive synthesis have solid mathematical and physical basis but they are extremely
difficult to use directly for creating or editing realistic sounds. The reason for this difficulty is the huge
number of model parameters – controlling many sinusoidal oscillators – which are physically valid
but only remotely related to musical parameters as perceived by a listener. We propose the Structured
Additive Synthesis (SAS) model which imposes constraints on the additive parameters, giving birth
to structured parameters as close to perception and musical terminology as possible. The SAS model
consists of a complete abstraction of sounds according to only four physical parameters, functions
closely related to perception. These parameters – amplitude, frequency, color, and warping – are
inspired by the work on timbre of researchers like Risset [Ris86a, Ris86b], Wessel [Wes78, Wes79],
and McAdams [McA84, MBM99], and by the vocabulary of composers of electro-acoustic music.
These model parameters enable to independently modify musical parameters such as pitch, loudness
or duration, and constitute as well a solid base for investigating scientific research on the notion of
timbre. Since there is a close correspondence between the SAS model parameters and perception,
the control of the audio effects gets simplified. Many effects thus become accessible not only to
engineers, but also to musicians and composers. But some effects are impossible to achieve in the
SAS model. It appears that structuring a model in order to facilitate the design of some kinds of sound
transformations gives rise to both restrictions on the sounds that can be represented and impossibilities
for other kinds of transformations. In fact structuring the sound representation imposes limitations
not only on the sounds that can be represented, but also on the effects that can be performed on
these sounds. There is a kind of trade-off of complexity versus feasibility in every sound model. We
demonstrate these relations between models and effects for a variety of models from temporal to SAS,
going through well-known spectral models. We list their main advantages and drawbacks and focus
on the feasibility and the complexity of sound effects in these models. Finally, we present ProSpect,
our free software architecture for spectral sound manipulation.

Chapter 3 presents some analysis methods for extracting spectral parameters from sounds origi-
nally in the temporal model. In this chapter we first present the classic Fourier analysis and we point
out its main limitations and imprecisions, then we explain some interesting improvements to this anal-
ysis that have been proposed recently. We present our high precision Fourier analysis method using
signal derivatives. Precisely, this method extends the classic short-time Fourier transform by also
considering the signal derivatives, which effectively leads to efficient spectral parameter extraction.
FTn takes advantage of the first n signal derivatives in order to improve the precision of the Fourier
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analysis not only in frequency and amplitude but also in time, thus minimizing the problem of the
trade-off of time versus frequency in the classic short-time Fourier transform. After the short-time
analysis, a partial-tracking phase is necessary in order to reconstruct the evolutions in time of the par-
tials of the sounds. We first describe the most famous partial-tracking strategies, then we explain our
way of structuring the partials in order to get the four parameters of the Structured Additive Synthesis
(SAS) model. Short-time analysis, partial tracking, as well as SAS structuring are implemented in our
InSpect analysis program. We have also implemented in InSpect an interesting technique for lossless
compression of the sinusoidal modeling parameters. Finally, we show how the reanalysis of the pa-
rameters coming from initial analysis could turn out to be extremely useful not only to enhance the
compression ratio, but also to perform very interesting musical processing on the tremolo or vibrato of
the sounds for example. This reanalysis turns out to be of great interest for pitch tracking and source
separation too.

Chapter 4 presents some efficient synthesis algorithms. As in Chapter 3, the additive synthesis
model plays a central role. Additive synthesis requires the computation of a large number of sinu-
soidal oscillators. We present the most interesting synthesis methods for additive synthesis and we
compare their respective performances. We have implemented the fastest method in our ReSpect soft-
ware tool. We chose to generate each oscillator using the simple recursive description of the “digital
resonator” [GS85, SC92]. We explain in details the synthesis algorithm we designed, and especially
the way the frequency and amplitude parameters can be changed while avoiding discontinuities and
numerical imprecision, then we describe its efficient implementation in ReSpect, which has been spe-
cially designed for the purposes of real-time spectral synthesis. The synthesis is controlled by a flow
of additive parameters with a slow rate. We show how ReSpect manages to efficiently up-sample the
variations of these parameters using interpolating splines prior to the synthesis itself. We also ex-
plain how psychoacoustic considerations such as masking phenomena can help reducing the number
of partials, thus speeding up the synthesis process. We present then the synthesis of sounds in our
Structured Additive Synthesis (SAS) model, based on additive synthesis. Finally, we explain the way
of synthesizing noise as well.

Finally, Chapter 5 presents some of the applications of the Structured Additive Synthesis (SAS)
model in the fields of creation and education. These applications are numerous, since the SAS model
constitutes a solid base for investigating scientific and musical research on the notion of timbre while
favoring the unification between music and sound at a sub-symbolic level [Lem93]. We have ex-
perienced that this unification allows migrations of the control among the different levels, from the
microscopic (sound) to the macroscopic (music) one, thus enriching the palette of the composer. The
SAS model is well-suited for sound exploration and design. One of its advantages is its aptitude for
creating hybrid sounds from the combination of several sounds. We also show the use of the SAS
model for musical composition. It allows the composers to modify both the micro-structure and the
macro-structure of musical pieces in a multi-scale composition, that is to perform musical compo-
sitions on several time scales in a continuous manner. A new sound synthesis language for musical
composition has been implemented and should provide a way to validate and enrich the model. The
SAS model is also of great interest for applications regarding interactive control. A pedagogical tool
for early-learning electro-acoustic music is based on this model. It provides sound controls that are
well-suited for young children because they are based on sound listening rather than signal synthesis.
This tool can also be used for real-time musical performances, and it is in fact the first step to a new
visual language for music. Finally, we introduce in-progress applications of the SAS model to singing
voice. This model is indeed well-suited for the representation of vowels and allows us to control
precisely in time the volume and the pitch as well as the timbre itself.
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Chapter 1

Sound Physics and Musical Perception

The fast fluctuations – from tens to thousands per second – of the air pressure at the level of the ears
generate an auditory sensation. The word “sound” [BL94] stands for both the physical vibration and
the sensation this vibration produces. That is why this word has not the same meaning for physicists
or musicians. . .

In order to fully understand the objective and subjective aspects of sound, basic knowledge of
elements of acoustics and psychoacoustics is required. The aim of this chapter is to provide this
basic knowledge. First, Section 1.1 introduces some elements of mathematics and physics such as
spectra, partials, noises or transients. Section 1.2 gives then a short introduction to acoustics and
briefly explains sound emission and propagation, while Section 1.3 presents the reception of sound
by the human auditory system. Finally, Section 1.4 lists the main musical parameters perceived by a
listener.

1.1 Elements of Mathematics and Physics

The simplest way to represent an audio signal is to consider its amplitude as a function of time a(t),
where t is time expressed in seconds. This sound representation as a time-signal is often called the
time domain. However another – extremely convenient – way of representing an audio signal is the
frequency domain, dealing with both frequencies and amplitudes as functions of time (see [Orf96] for
an introduction to this topic).

Regarding complex numbers, we denote by j the imaginary unit, thus j2 = −1. We also use the
Euler notation for complex numbers, that is c = a e jφ, where a and φ are the amplitude (magnitude)
and the phase of the complex number c, respectively. We also denote by Re(c) and Im(c), respectively,
the real and complex parts of the complex number c, so that c = Re(c)+ jIm(c).

Fourier Transform
The Fourier transform and its inverse transform are mathematical transforms allowing to switch from
the time domain to the frequency domain and to do the opposite, respectively. If s and S are the
expressions of the same signal in the time and frequency domains, respectively, then the continuous-
time Fourier transform and its inverse are given by the following equations:

S(Ω) =
∫ +∞

−∞
s(t) e− jΩt dt (1.1)

s(t) =
1

2π

∫ +∞

−∞
S(Ω) e+ jΩt dΩ (1.2)
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The radian frequency Ω (in radians per second) is a function of the frequency f (in Hz):

Ω = 2π f (1.3)

Thus the Fourier transform and its inverse can also be defined using the ordinary frequency:

S( f ) =
∫ +∞

−∞
s(t) e− j2π f t dt (1.4)

s(t) =
∫ +∞

−∞
S( f ) e+ j2π f t d f (1.5)

Discrete-Time Fourier Transform
When s is a discrete-time signal, we note:

s[i] = s(i Ts) (1.6)

The sampling period Ts (in seconds) is the inverse of the sampling frequency Fs. For discrete-time sig-
nals, the expressions of the discrete-time Fourier transform (DTFT) and its inverse transform (IDTFT)
are, respectively:

S(ω) =
+∞

∑
n=−∞

s[n] e− jωn (1.7)

s[k] =
1

2π

∫ +π

−π
S(ω) e+ jωk dω (1.8)

S(ω) is a 2π-periodic function. The digital frequency ω is a function of the frequency f :

ω =
2π f
Fs

(1.9)

Thus the discrete-time Fourier transform and its inverse can be defined using the frequency:

S( f ) =
+∞

∑
n=−∞

s[n] e− j2π f n
Fs (1.10)

s[k] =
1
Fs

∫ +Fs/2

−Fs/2
S( f ) e+ j2π f k

Fs d f (1.11)

And this time S( f ) is a Fs-periodic function.

Discrete Fourier Transform
If the discrete-time signal s is of finite length N, then we use the discrete Fourier transform (DFT) and
its inverse transform (IDFT), which are special cases of the DTFT and IDTFT, respectively. Let us
define:

fk =
kFs

N
(1.12)

ωk =





2π fk
Fs

2πk
N

(1.13)
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time domain frequency domain

zero 0 zero 0
Dirac impulse constant

sinusoid Dirac impulse
addition + addition +

convolution ∗ multiplication ×
multiplication × convolution ∗

zero-padding interpolation
interpolation zero-padding

Table 1.1: Functions (top) and operations (bottom) in the time domain (left) and the corresponding
functions or operations in the frequency domain (right).

The values fk and ωk for k ∈ [0,N− 1] are the DFT frequencies in Hz or cycles per sample, respec-
tively. If we note S[k] = S(ωk) (for Equations 1.7 and 1.8) or S[k] = S( fk) (for Equations 1.10 and
1.11), the DFT and IDFT can be defined using the following equations, respectively:

S[m] =
N−1

∑
n=0

s[n]e− j2π mn
N (1.14)

s[k] =
1
N

N−1

∑
n=0

S[n]e+ j2π kn
N (1.15)

Sometimes a normalization factor 2
N is used in Equation 1.14 to read the exact amplitude of sinusoids

directly in the spectrum. Then 1
2 is used instead 1

N in Equation 1.15.

1.1.1 Spectrum

Spectra are made of complex numbers. The amplitude (magnitude) and phase spectra corresponding
to a complex spectrum S consist of the amplitudes and phases of its complex values, respectively. The
magnitude spectrum is also referred to as the power spectrum.

A signal s is real-valued iff its (frequency) spectrum S is conjugate-symmetric (real part is even,
imaginary part is odd), as shown in Figure 1.1.

The time and frequency domains are deeply related. Some of these relations are summarized in
Table 1.1.

Addition
Addition in the time domain and addition in the frequency domain are equivalent. Moreover a signal
s is equal to zero (∀t, s(t) = 0) iff its spectrum S is equal zero (∀ f , S( f ) = 0).

Convolution
The convolution sum ∗ is an operation whose definition in the continuous-time and discrete-time cases
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Figure 1.1: The real part (left) and imaginary part (right) of a real-valued signal (top) are even and
odd functions, respectively.
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are, respectively:

x(t)∗ y(t) =
∫ +∞

−∞
x(u) y(u− t) du (1.16)

x[n]∗ y[n] =
+∞

∑
k=−∞

x[k] y[n− k] (1.17)

Convolution in the time domain is equivalent to multiplication in the frequency domain, and multi-
plication in the time domain is equivalent to convolution in the frequency domain. That is, using the
usual uppercase notation for spectra:

x∗ y = X ×Y (1.18)

x× y = X ∗Y (1.19)

Zero-Padding
Zero-padding in the time domain consists in increasing the size of a finite-length signal by adding
samples with the 0 (zero) value at the end – or at the beginning – of the signal. Zero-padding in the
frequency domain consists in artificially increasing the width of the spectrum by adding zeroes for the
frequencies that were not in the original spectrum. Zero-padding in the time or frequency domains
is equivalent to interpolation in the frequency or time domains, respectively. The interpolation in the
frequency domain does not provide a greater resolution in frequency, but only a smoother spectrum.

Sinusoids
A simple Dirac impulse in the time domain has a continuously flat spectrum in the frequency do-
main, while a sinusoid – which has an infinite support in the time domain – is a Dirac impulse at
the corresponding frequency in the frequency domain. Sinusoids play an important role in sound be-
cause many sounds are made of a sum of sinusoidal oscillations. A sinusoid is totally described in
terms of amplitude, frequency, and phase. Figure 1.2 shows the temporal (time-domain) and spectral
(frequency-domain) representations of sounds consisting of superposed sinusoids. These sounds are
of the form:

s(t) =
P

∑
p=1

ap sin(2π fpt + φp) (1.20)

where P is the number of sinusoids (partials) and the values ap, fp, and φp are the amplitude, fre-
quency, and phase of the p-th partial, respectively. In Figure 1.2, only the magnitude spectra are rep-
resented. This corresponds to our perception, since the values of φp can be changed without changing
the perceived sound (see Section 1.3).

1.1.2 Partials

The partials are “peaks” – that is local maxima – corresponding to time-domain sinusoids in the
magnitude spectrum (see Figure 1.3). In fact the values ap and fp are not constants, but functions
of time. In Equation 1.20, the cosine function can be used instead of the sine function, since these
functions are indeed the same apart a phase difference of π/2:

sin(x) = cos
(

x− π
2

)
(1.21)

cos(x) = sin
(

x +
π
2

)
(1.22)
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Figure 1.2: Temporal (left) and corresponding spectral (right) representations of sounds consisting of a
sum of sinusoidal oscillations. Only the magnitude of the spectrum is represented. From top to bottom
are displayed a single sinusoid, the sum of two sinusoids, the sum of the same two sinusoids but with
different phases, and a complex sound consisting of many sinusoids. Waveforms corresponding to the
same magnitude spectrum by different phase spectra sound the same to the ear. Thus the time-domain
representation is not very meaningful.
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Figure 1.3: Magnitude spectrum resulting from a Fast Fourier Transform (FFT).

Let us consider the two following signals s1 and s2:

s1(t) = cos(2π5t)cos
(

2π4000t− π
2

)
(1.23)

that is Equation 1.20 with P = 1, a1(t) = cos(2π5t), f1(t) = 4000 Hz, φ1 =−π/2, and

s2(t) =
1
2

cos
(

2π3995t− π
2

)
+

1
2

cos
(

2π4005t− π
2

)
(1.24)

that is Equation 1.20 with P = 2, a1(t) = 1/2, f1(t) = 3995 Hz, φ1 =−π/2, a2(t) = 1/2, f2(t) = 4005
Hz, φ2 =−π/2.

In fact these sounds are the same: s1 = s2, because of the following equations:

cos(p)+ cos(q) = 2cos

(
p−q

2

)
cos

(
p + q

2

)
(1.25)

cos(a)cos(b) =
1
2

[cos(a−b)+ cos(a + b)] (1.26)

From a strictly mathematical point of view, both formulations are equivalent. But according to
perception, Equation 1.23 must be preferred. The ear decides when the mathematics cannot (see
Section 1.3).

1.1.3 Noise

Physicists often define noise as an unwanted signal causing interferences on another signal. The
musical definition of noise is not clear at all. We will use the word “noise” to designate a random signal
resulting from a stochastic process. For “deterministic signals” each value of a sequence is uniquely
determined by a mathematical expression or a rule of some type. In many situations the processes
that generate signals are so complex as to make precise description of signal extremely difficult or
undesirable, if not impossible. In such cases, modeling the signal as a stochastic process is useful.
A “stochastic signal” is considered to be a member of an ensemble of signals that is characterized
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by a set of probability density functions. In other words, for a specific signal at a particular time,
the amplitude of the signal sample at that time is assumed to have been determined by an underlying
scheme of probabilities.

1.1.4 Transients

Transients are very short signals, that are perceived as clicks. Although they can play an important
role during the modeling of realistic sounds, we will not study them in details in the remainder of this
document.

1.2 Elements of Acoustics

Objectively, sound is a physical phenomenon with a mechanical origin – an acoustic source – pro-
ducing a local perturbation of the air pressure which propagates into the air, thus giving birth to an
acoustic wave.

1.2.1 Sound Sources

To produce sound, something must vibrate. More precisely, a mass located somewhere in space must
oscillate around a position of balance. Such an acoustic source can be for example a pipe or a string,
excited either by a one-shot excitation or periodically. Castellengo lists in [Cas94] the main families
of acoustic sources. If the sound is produced by a series of impulses occurring periodically, the
associated spectrum is harmonic and the attack is quite soft. This is the case for the voice. On the
contrary, if the sound is produced by an unique impulse, the spectrum is not harmonic anymore and
there are transients at the beginning of the sound, followed by a – often long – damping. This is the
case for percussive sounds.

1.2.2 Sound Propagation

The sound source produces a local perturbation of the air pressure that propagates into the air, thus
giving birth to a wave pressure which is spherical provided that the source is punctual and the air is
homogeneous. Figure 1.4 shows an acoustic source S producing such an acoustic wave. For stan-
dard conditions the propagation speed is about 330 meters per second. Of course, most sources are
directional. For directional sources the intensity of the emitted wave is dependent on the angle in the
spherical coordinates centered at S. Anyway, in the remainder of this section we will consider that
the source is omnidirectional. For example, let us consider the classic case of a sinusoidal wave of
frequency f . Each time the wave hits an obstacle (for example a wall), it changes of direction (reflec-
tion) and possibly lose some intensity (absorption), depending on the material constituting the wall. It
may also change of phase, possibly with a different amount in function of the frequency f . For diffuse
materials the diffraction phenomenon can also occur. Anyway, a tutorial to room acoustics is beyond
the scope of this section.

Finally, the wave pressure reaches the receptor – the ear – and things are getting even more com-
plicated. . .
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Figure 1.4: Sound propagation in a room. The sound is generated by the acoustic source S, then the
wave pressure travels through the space, possibly being reflected by some walls, and finally reaches
the left (L) and right (R) ears.

1.3 Human Auditory System

Subjectively, sound is a sensation rendering the perception [Kit94] by the brain of an event which
conveys information from the world. Psychoacoustics is the science that deals with the perception
of sound and works on the link between perception and the auditory system. At the center of the
human auditory system – more precisely in the inner ear – is the cochlea (see Figures 1.5 and 1.6),
which contains the basilar membrane (see Figure 1.7) that performs the frequency decomposition of
the sound signals. The sound wave is traveling around the basilar membrane, deforming it. The
maximum of the deformation is located on the membrane at a point depending on the frequency of
the sound wave. High or low frequencies cause maxima at the entrance or at the back of the cochlea,
respectively. In short, the air vibration is transmitted to the ear-drum, amplified, and then analyzed by
the cochlea, which sends the electrical information to the brain via the auditive nerve.

Auditory Models. Research is in progress in the field of auditory modeling (see [ZZ91] and [Pre00]
for references). Auditory models mimic the functioning of the ear to produce visualizations that are
in accordance with the perception. Although they do not take all the mechanisms of the ear yet, they
already produce satisfactory results. But there are two main problems. The first problem is that they
require a very important amount of computational power for the analysis step. The second one is that
they produce representations that are ill-suited for musical transformation or resynthesis of sound.

As a consequence we have to find an acceptable compromise for a sound model well-suited for
sound transformation and synthesis while taking perception into account.
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Figure 1.5: Longitudinal section of the right ear. From left to right are the pavilion (pinna), the
ear-drum (tympanum), and the cochlea.
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Figure 1.6: Schematic version of the section of the right ear.
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Figure 1.7: Simplified version of the section of the right ear. The cochlea has been uncoiled. Inside
the cochlea is the basilar membrane that performs the frequency decomposition of the sound signals.

1.3.1 Amplitude and Loudness

The Fechner law applies to every sensory organ and claims that the sensation is proportional to the
logarithm of the excitation. More precisely, for a sound of intensity I the sound volume in dB can be
calculated using equation:

V (I) = 10 log10

(
I

I0dB

)
(1.27)

where I0dB is the intensity of reference for 0 dB. Since the acoustic intensity I is proportional to the
square of the acoustic pressure P, Equation 1.27 can be reformulated in function of the pressure P:

V (P) = 20 log10

(
P

P0dB

)
(1.28)

where I0dB is the pressure of reference for 0 dB. Psycho-acousticians take P0dB = 2 ·10−5 Pa (Pascals).
But we will consider in the remainder of this chapter the volume as a function of the amplitude of the
signal using equation:

V (A) = 20 log10

(
A

A0dB

)
(1.29)

In fact Equations 1.28 and 1.29 are the same, except that the origin of the volume scale gets simply
translated. This is not really a problem since the ear has much more gift for differential analysis than
for absolute measurement. As a consequence, only relative values really matter.

Things are not that simple. Indeed the perceptive parameter associated to the volume is in fact
loudness, since volume is related to a physical – not perceptive – level. For sinusoids with the same
amplitude but different frequencies, the perceived loudness is not the same. In fact loudness is a
function of both the amplitude and the frequency of the sinusoid, and this complex relation between
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amplitude, frequency, and loudness is illustrated by the Fletcher and Munson diagrams which can be
found for example in [ZF81]. Human beings can perceive loudness in a range of about 130 dB. In
fact this range is not a constant, but a – rather complicated – function of the amplitude and frequency
summarized in these Fletcher and Munson diagrams.

However we are interested in modeling complex sounds, not single sinusoids. It turns out that
Equation 1.29 together with a range of 130 dB is a good compromise.

1.3.2 Frequency and Pitch

Human beings can hear frequencies in the range of 20 Hz to 22 kHz approximatively, and can identify
more than 600 different pitches. More precisely, the precision in the perception of frequency (resolu-
tion) is not a constant. Below 500 Hz a difference of ∆ f = 1.8 Hz could hardly be heard. Beyond 500
Hz, we can consider that the imprecision in frequency ∆ f is proportional to the frequency f itself, so
that ∆ f / f = 0.35%. If two frequencies lie in the ∆ f interval then we hear beats and the ear can show
a nonlinear behavior. Since the real amplitude of variation of the frequency is twice the imprecision
threshold, there are about 140 different pitches below 500 Hz and more than 480 above.

A very convenient scale for representing frequencies is the Bark scale (after Barkhausen), which
is very close to our perception [ZZ91]. Equations 1.30 and 1.31 allow to go from the Hertz scale to
the Bark scale and to do the opposite, respectively.

B( f ) =

{
f/100 if f ≤ 500
9 + 4 log2( f/1000) if f > 500

(1.30)

F(b) =

{
100 b if b≤ 5
1000 ·2(b−9)/4 if b> 5

(1.31)

In fact the Bark is a multiple of a smaller unit called the mel. More precisely, 1 Bark = 100 mels. This
is the reason why this scale is also called the melodic scale. For musical applications we should rather
consider using the harmonic scale (see Section 1.4).

Again things are no that simple. When the volume increases, the pitch sensation may increase
or decrease for high or low frequencies, respectively. For very short sounds, the pitch is lower than
the one of longer sounds with the same frequency and timbre. The presence of formants – that is
local maxima in the spectral envelope – can modify the pitch sensation, thus leading to “paradoxical”
sounds studied by Risset. For example, a formant centered in the high frequencies can lead to a higher
pitch.

1.3.3 About the Phase

Is the ear able to perceive variations of the phase, and if the answer is positive, what are the thresholds
of this perception? Ohm stated that changes in the phase spectrum, although they altered the wave-
shape, did not affect its aural effect [Ris91]. Helmholtz developed a method of harmonic analysis
with acoustic resonators [vH54]. According to these studies, the ear is “phase-deaf”, and timbre is
determined exclusively by the magnitude spectrum. Except for very special cases, we have experi-
enced during the synthesis experiments (see Chapter 4) that Ohm is certainly right, although no one
can prove it formally yet. Apart from the practical experiments [CMD+76], there are at least two
arguments for believing this, an acoustic argument and a psychoacoustic one.

From the acoustic point of view, just imagine a complex sound going through a room. Each time it
hits a wall, its direction changes but also the phases of all of its frequency components. These changes
of phase and direction depend on the wall material and on the frequency. While some materials do
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modify phase on reflection at high frequencies, this does not occur significantly when the wavelength
is much larger than the “grain size” of the wall material. Thus, not much of this happens up to a few
kHz in most cases. However, when all the reflected sounds finally reach the ear, the phase differences
due to the different ray path-lengths are very significant. As a consequence, if phase was important
then in theory the perceived sound would be very different depending on whether or not it is the direct
sound or one of its reflections for example, whereas in practice the timbre of an instrument does not
really change.

The psychoacoustic argument is that it has been measured [ZF81] that the modification of the
phases existing between the components of a complex sound can be heard only if two components
lie in the same critical band and have sufficient amplitudes. And if at least three components lie in
different critical bands (see Table 1.2), it appears that the perception of the phase can be neglected,
especially for the perception of the loudness. Of course, for very low-pitched sounds, the phase can
produce “beats” in the volume. But this nearly never happens for sound with a “reasonable” pitch, so
in the remainder of this chapter we will consider, after Ohm, that the effects of phase can be neglected.

1.3.4 Nonlinearities of the Ear

As previously mentioned, the ear can behave in a nonlinear way. An extremely interesting nonlinear
property of the ear is that it integrates certain frequency areas of the audible spectrum in bands called
the critical bands.

For every frequency, there is a critical band centered at this frequency. Its width is a function of
the frequency itself, corresponding to exactly 1 Bark in the Bark scale. Inside the critical band are
audibility thresholds, inversely proportional to the masking threshold which is maximum at the center
of the band. Table 1.2 shows that the audible spectrum can arbitrarily be covered with only 24 critical
bands.

Masking Phenomenon. The existence of critical bands results in a masking phenomenon [ZF81,
ZF90, ZZ91]. Physically, the addition of two signals of the same amplitude is ruled by a nonlinear
addition law and gives a maximum of +6 dB. However, from a perceptive point of view, there is a
modification of the perception threshold for a sound m (masked sound) when it is played together
with a louder sound M (masking sound). Consider the case of M and m being two sinusoids of
frequency fM and fm, respectively [WL24]. In first approximation, the masking threshold looks like a
triangle in the Bark-dB scale, as shown in Figure 1.8. If fm is close to fM, the sound m is masked by
the sound M and becomes inaudible. This phenomenon can be used to lower the number of sinusoids
to be computed during additive synthesis (see Chapter 4).

Of course, as always, things are a bit more complicated. Beats can be perceived when fm ≈ n fM

(n being a positive integer). Moreover the two sounds can interact to create perceptive frequencies at
i fm± j fM (i and j being integers), thus creating “virtual” harmonics for a pure sinusoid. It can lead to
the addition of a “virtual” perceptive fundamental when the fundamental is physically missing.

Another interesting phenomenon is temporal masking. There are two kinds of temporal masking.
The post-masking occurs when the masking sound disappears. In fact, its effect persists in time
during some milliseconds. As a consequence, even if the masking sound is not present the masking
effect is still present, although it decreases with time. Perhaps more surprisingly, pre-masking also
exists. More precisely, the masking effect is active a few milliseconds before the masking sound really
appears. However this phenomenon is less important.
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Number Lower Boundary (Hz) Central Frequency (Hz) Upper Boundary (Hz)

1 20 50 100
2 100 150 200
3 200 250 300
4 300 350 400
5 400 450 510
6 510 570 630
7 630 700 770
8 770 840 920
9 920 1000 1080
10 1080 1170 1270
11 1270 1370 1480
12 1480 1600 1720
13 1720 1850 2000
14 2000 2150 2320
15 2320 2500 2700
16 2700 2900 3150
17 3150 3400 3700
18 3700 4000 4400
19 4400 4800 5300
20 5300 5800 6400
21 6400 7000 7700
22 7700 8500 9500
23 9500 10500 12000
24 12000 13500 15500

Table 1.2: Only 24 critical bands are sufficient to cover the whole audible spectrum.

amplitude (dB)

fM fm frequency (Bark)

Figure 1.8: Masking of a sinusoid of frequency fm by another sinusoid of frequency fM . The masking
effect is maximal when fm and fM are close. As a first approximation we can consider that the
masking threshold is close to a triangle in the Bark-dB scale, although it is not exactly the case in
practice, especially for the top of the triangle.
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1.4 Musical Parameters

Sound has a cultural and artistic dimension too. While the occidental world focuses mainly on the
duration, volume, and pitch of the sound and try to notate these parameters, the oriental world is more
oriented towards timbre and the music is not written.

Performed music is a continuous stream of sound. Notational systems are by nature discrete, so
capturing music in a notation first requires that the elements to be rendered are parsed out of the sound
stream. A good example of this is the quantization of the continuous musical stream into notes. Notes
are event specifications that code pitch, onset time, and duration.

In the traditional music notation, notes are indicated as large dots (the note head), with vertical
stems placed on a longitudinal grid of five lines (the staff). The shape of the head and the presence or
absence of flags on the stem, or beams connecting stems, determine duration. Multiple-note heads can
be grouped on a stem, producing a chord. Notes are sometimes connected to curved lines called slurs
to show their grouping into phrases. The flow of time is indicated on the staff by the accumulated
durations of the notes. Height on the staff determine pitch. Notes of the same pitch connected by slurs
are said to be tied, meaning that the duration of their group is the compound of slurred notes. This
notation is extremely complicated.

The traditional music notation bears little resemblance to a formal language. The degree of ab-
straction is such that is telescopes many levels of description together, resulting in a system that is
extremely concise and effective for humans, if formally rather ambiguous. Apart from this ambiguity,
the main problem is that where a continuum is quantized, information is necessarily lost. The trick
is then that the information not carried in the score can be recovered through a set of implicit rules.
Thus a satisfactory realization of an encoded work can be reconstituted through the interpretive prac-
tice of trained performers. A performer can use the rules of musical interpretation to reconstitute an
acceptable stream of sound.

In the traditional music notation only duration and pitch are systematically notated, and loudness
less so. Translating even the apparently straightforward dimensions into physical parameters of fre-
quency and amplitude is more difficult that it first appears. Perceived pitch is, of course, strongly
correlated with the frequency of a periodic – or nearly periodic – signal, but it can also depend on
amplitude and timbre.

In order to define sound models for computers, a formal representation of sound is needed. The
first attempt is to formalize the note. A note has an onset time, a duration, and an amplitude enve-
lope that is a function of time. This envelope is often simplified, and decomposed into four phases:
attack, decay, sustain, and release (see Figure 1.9). Although this simplification is often well-suited
for representing the macroscopic variations of the amplitude, it cannot represent tremolo (sinusoidal
variations) for example. We propose to generalize this representation. In this model, the note has
an onset time and a duration, an amplitude envelope that is a continuous function of time, as well as
a frequency envelope that may vary over time too. This representation is close to the physical and
perceptive parameters and is convenient for any kind of sounds, whether coming from the occidental
or the oriental traditions. The problem is now to represent the timbre.

The principal perceptual dimensions in music are indeed the complex psychoacoustic domains of
rhythm, loudness, pitch, and timbre.



42 CHAPTER 1. SOUND PHYSICS AND MUSICAL PERCEPTION

time
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A D S R

Figure 1.9: The simplified amplitude envelope of a note, composed of the attack (A), decay (D),
sustain (S), and release (R) phases.

1.4.1 Volume

Although loudness is the real perceptive parameter, we will use the volume as an approximation.
Equations 1.32 and 1.33 give the relations between the amplitude A and the volume in the dB scale:

V (A) = 20 log10

(
A

A0dB

)
(1.32)

A(V ) = A0dB 10V/(20dB) (1.33)

The variations of the amplitude over time constitute the dynamic of the music. When the variation
is a sinusoid with a frequency around 10 Hz, the musical effect is a tremolo. When this variation is
monotonous (mathematically speaking), then depending on whether it is increasing or decreasing, the
musical effect is either a fade-in or a fade-out.

1.4.2 Pitch

We will use the harmonic scale for the pitch. In fact, the melodic scale is the real perceptive scale
(see Section 1.3). Although the harmonic and melodic scales do not coincide, these two scales are
approximately the same (apart from a translation) for frequencies below 1 kHz. Since most musical
sounds have a fundamental frequency below 1 kHz, this is not really a problem in practice. However
perceptive incoherences may occur for high-pitched sounds.

Recall that pitch is not a physical parameter, but a perceptive one. There is a close link with fre-
quency, but this relation is complex. For a single sinusoid, Equations 1.34 and 1.35 give the relations
between the frequency F and the pitch in the harmonic scale P:

P(F) = Pref + O log2

(
F

Fref

)
(1.34)

F(P) = Fref 2(P−Pref)/O (1.35)

where Pref and Fref are, respectively, the pitch and the corresponding frequency of a tone of reference.
In the remainder of this chapter we will use the values Pref = 69 and Fref = 440 Hz. The constant O
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is the division of the octave. An usual value is O = 12, leading to the classic dodecaphonic musical
scale. With these values, P is the MIDI pitch [MMA96], where 69 corresponds to the A3 note, 70
to A#3, etc. There is a lower limit in our perception of the pitch [PPK99]. For an harmonic sound,
the perceived pitch corresponds to a kind of greatest common divisor (gcd) of the frequencies of the
harmonics [Ram65], that is the fundamental. The fundamental corresponds to the frequency of the
first harmonic. But this first harmonic may be missing, or “virtual”. For a narrow-band noise, the pitch
corresponds to the frequency of the middle of the band. For a rippled noise, the pitch corresponds to
the gcd of the peaks in the spectral envelope, even if the first peak is missing.

Pitch is a very complicated parameter. The helix is a good mental representation for pitch (see
Figure 1.10). The height of a tone is seen as one-dimensional property, whereas the chroma is seen
as a two-dimensional property [Rév44]. Consider a sequence of rising sevenths on this structure. The
tone chroma produces actually a descending scale of seconds. This effect can be demonstrated with
Shepard tones [She82, She83].

The macroscopic variations of the frequency over time constitute the melody of the music. When
the variation is a sinusoid with a frequency around 10 Hz, the musical effect is a vibrato. When this
variation is monotonous (again mathematically speaking), then the musical effect is a glissando or a
portamento.

1.4.3 Timbre

By definition, timbre is what allows us to differentiate two sounds with the same loudness and pitch.
However this definition is not clear. Anyway, if two parameters of a sound model correspond, respec-
tively, to the loudness and the pitch, then the remaining parameters constitute the timbre. Of course
spectral components plays an important role.

Any sound requires a certain amount of time before it is possible to qualify its timbre. There is
no unique value, but there is an agreement on saying that human beings need at least 50 milliseconds
before recognizing the timbre of a sound. The ear behaves like a temporal window which is sliding in
time while looking at the evolutions of the spectral components.

Regarding the perception, it appears that the timbre is dissociated from the pitch in our auditory
short-term memory [Dem00, SD91, SD93]. Another very important feature is that musicians often
characterize timbre simply as “tone color”, for example “sharp”, “dull”, “bright”.
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Figure 1.10: The helix as a mental representation for pitch. The height of a tone is seen as a one-
dimensional property, whereas the chroma is seen as a two-dimensional property.



Chapter 2

Sound Models and Musical
Transformations

Sounds are physical phenomena belonging to the real world. In order to synthesize new digital sounds
or manipulate existing ones using a computer, we need a formal representation for audio signals. A
sound model constitutes such a mathematical representation. It should be as general as possible so that
most sounds can be faithfully reproduced and transformed in a natural and musically expressive way.
Sound modeling draws the link between the real – analogical – and mathematical – digital – worlds.
Extracting parameters for the model from the real world is the analysis stage, while producing a sound
from the parameters of the model is the synthesis stage.

There are three main families of sound models: physical, abstract, and spectral models. Physical
models (see [CC98]) first put the sound source in equations, then compute a solution during the syn-
thesis stage. They are not signal models, because they are modeling the acoustic sources – for example
the instruments – instead of the audio signals themselves. Abstract models – such as the Frequency
Modulation (FM) synthesis [Cho73, Moo85b] – propose a mathematical formula for sound. This
is often an empirical formula, possibly involving musical parameters. Spectral models parameterize
sounds at the human receptor. Since they attempt to parameterize sound at the basilar membrane of
the ear, the resulting sound transformations are closely linked to the perception. Thus, the design of
such sound effects should be more musically intuitive. Spectral models indeed provide general rep-
resentations of sound in which many musical transformations can be performed in a very natural and
musically expressive way. The next step is to structure the sound model in such a way that musical
operations can be simply expressed.

The Structured Additive Synthesis (SAS) [DCM99b, DCM99a, Mar99, Mar00d] imposes con-
straints on the additive parameters, giving birth to structured parameters. Since there is a close cor-
respondence between the SAS model parameters and perception, the control of the audio effects gets
simplified. Many effects thus become accessible not only to engineers, but also to musicians and
composers.

analysis

synthesis

model

transformation
real

world

formal

representation
(physical) (mathematical)
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time

amplitude

Figure 2.1: A sound represented in the temporal model.

Several analyses of electro-acoustic pieces have been performed in collaboration between scien-
tists and musicians. We have identified the need for a certain number of manipulations of sound,
that we have determined to be straightforward in our model. Among these are modulation, mixing,
filtering, time-stretching, cross-synthesis, morphing, as well as new ways to create hybrid sounds.

But some effects are impossible to achieve in the SAS model. It appears that structuring a model
in order to facilitate the design of some kinds of sound transformations gives rise to both restrictions
on the sounds that can be represented and impossibilities for other kinds of transformations.

In fact structuring the sound representation imposes limitations not only on the sounds that can be
represented, but also on the effects that can be performed on these sounds. There is a kind of trade-
off of complexity versus feasibility in every sound model. We demonstrate these relations between
models and effects for a variety of models from temporal to SAS, going through well-known spectral
models. We list their main advantages and drawbacks and focus on the feasibility and the complexity
of sound effects in these models.

Section 2.1 presents the well-known temporal model, while the remainder of this chapter focuses
on spectral sound models, since they provide general representations for sound well-suited for intuitive
and expressive musical transformations according to perception. Sections 2.2, 2.3, and 2.4 introduce
the phase vocoder, additive synthesis, and structured additive synthesis models, respectively. Section
2.5 describes then the design and control of the main musical sound transformations in the SAS model
and explains the way to create hybrid sounds from several sounds expressed in this model. It also lists
some of the effects which are impossible to implement in the SAS model. Finally, Section 2.6 presents
ProSpect, our free software architecture for spectral sound manipulation.

2.1 Temporal Model

The simplest way to represent an audio signal is to consider its amplitude as a function of time a(t),
where t is time expressed in seconds. This sound representation as a time-signal is often called the time
domain or the temporal model. Figure 2.1 shows a sound with this representation. In this model a(t)
represents the acoustic pressure at one point in space. The stream of samples of the discrete version
of a can be sent directly to the digital-to-analog converter (reconstructor) of any sound card and, to
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obtain this stream of samples from real sounds, hardware analog-to-digital converters (samplers) exist
too. Sampling and reconstruction correspond, respectively, to the analysis and synthesis stages for the
temporal model.

2.1.1 Sampling

Let a be a real-valued signal, band-limited in frequency. This means that a has spectrum in some
interval [−Ωa,+Ωa], which is the case iff all the coefficients of its Fourier transform A corresponding
to parts of the frequency domain outside this interval are zero. More formally:

∃Ωa > 0, support(A)⊆ [−Ωa,+Ωa] where A(Ω) =
∫ +∞

−∞
a(t) e− jΩt dt (2.1)

Uniform Sampling

Uniform sampling consists in sampling a using a Ts-periodic impulse train, to obtain a discrete signal
where a[n] = a(nTs). Figure 2.2 illustrates this. Since the Fourier transform of an impulse train is
another impulse train, the multiplication of a with the impulse train in the time domain is equivalent
to the convolution of the other impulse train with the [−Ωa,+Ωa] spectrum in the frequency domain.
It results in periodically repeated copies of the Fourier transform of a shifted by integer multiples of
the sampling frequency Ωs = 2π/Ts (in radians per second), superposed to produce the spectrum of the
impulse train of samples. These shifted copies of the [−Ωa,+Ωa] interval should not overlap, or else
aliasing occurs. To avoid this phenomenon, the condition (Ωs−Ωa) > Ωa must be satisfied, that is
Ωs > 2Ωa. This is the well-known Nyquist criterion of the Shannon-Nyquist theorem [Nyq28, Sha49]
(and 2Ωa is the Nyquist frequency). As a consequence, to avoid aliasing, a sinusoid of frequency F
Hz cannot be sampled with less than 2F samples per second.

Down-Sampling a Discrete Signal. Uniform sampling in the time domain is equivalent to peri-
odization in the frequency domain. This is still true for discrete signals. The same considerations
must be taken into account when performing down-sampling. If a is now a real-valued vector of finite
length N, the discrete version of Equation 2.1 is:

∃M < N/2, A[m] = 0 for M < |m|< N/2 where A[k] =
N−1

∑
n=0

a[n]e− j2π kn
N (2.2)

The periodization constant being exactly N/Ts for a given sampling period Ts, it turns out that the
sampling period should satisfy the Nyquist criterion Ts ≤ N/M. For example, in Figure 2.3 the spec-
trum of the down-sampled signal by a factor 2 coincides with the 2-periodized version of the spectrum
of the original signal.

Irregular Sampling

Irregular – that is non-uniform – sampling is also possible, resulting in a discrete signal as with
as[n] = a(tn), where the (tn)n sequence is increasing but does not follow an arithmetic progression. It
is also possible to reconstruct the original signal a if the maximal distance between two consecutive
sampling times tn does not exceed the Nyquist period.
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Ω+1 ·Ωs0 ·Ωs−1 ·Ωs
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ΩΩa

|As|= |A∗S|

(Ωs−Ωa)

Figure 2.2: Uniform sampling with sampling period Ts. The time-domain and frequency-domain
representations are displayed on the left and on the right, respectively. From top to bottom are the
continuous-time signal a, the sampling signal s (which is a Ts-periodic impulse train), and the sampled
signal as.
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Figure 2.3: Down-sampling by a factor 2 (bottom) corresponds to a 2-periodization of the initial
spectrum (top).
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Figure 2.4: Uniform reconstruction of the sampled signal of Figure 2.2. The time-domain and
frequency-domain representations are displayed on the left and on the right, respectively. From top to
bottom are the discrete signal as, the reconstruction signal r (which is a sinc function, here translated
and truncated for the display), and the reconstructed signal a.

2.1.2 Reconstruction

Any band-limited signal a with spectrum in [−Ωa,+Ωa] can then be completely reconstructed from
its samples, provided that the Nyquist criterion has been respected during the sampling. However the
methods for reconstructing sampled signals are different for the uniform and irregular cases.

From Uniform Sampling

Reconstructing the continuous version of the signal a from its discrete values resulting from uniform
sampling is quite easy. In fact a simple low-pass filter will do it, provided that its cutoff frequency is
in the [Ωa,Ωs−Ωa[ interval. Figure 2.4 illustrates this. The sampled signal as is multiplied with the
impulse response r of the low-pass filter in the time domain to obtain the reconstructed signal a. In
fact, to reduce transients at the beginning and at the end, the signal is mirrored:





s[−i] = 2 s[0]− s[i]
s[(N−1)+ i] = 2 s[N−1]− s[(N−1)− i]

for 0< i< N

This extrapolation by mirroring the signal ensures the continuity of the signal and of its first derivative
at the beginning and at the end, and provided that r is symmetric the values of the reconstructed signal
match the values of the sampled signal at these positions. The problem is that the theoretical (ideal)
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Figure 2.5: Practical reconstruction filters are often sinc functions multiplied by bell-shaped windows
(the Hann window here), thus looking like “Mexican hats”.

reconstruction filter is a box in the frequency domain, corresponding to a sinc function in the time
domain, more precisely to sinc(Fst) where:

sinc(t) =
sin(πt)

πt
(and sinc(0) = 1) (2.3)

Unfortunately this function has an infinite support. For practical use, it has to be truncated. To avoid
aliasing phenomena, one may tapper the truncated version of the sinc function by multiplying it with
a bell-shaped window. We use the Hann window, but other windows can be used instead (see Chapter
3). Smith uses Kaiser windows in [SG84, Smi00], because its low-pass characteristics can be adjusted.
Anyway the resulting function is always the impulse response of a low-pass filter with a finite impulse
response and looks like a “Mexican hat” (see Figure 2.5).

Up-Sampling a Discrete Signal. In the same way, complete reconstruction of a discrete signal a
from its periodized spectrum resulting from down-sampling is possible provided that the shifted copies
of the spectrum do not overlap. The reconstruction is again a simple low-pass filtering operation.
Figure 2.6 illustrates the reconstruction of a discrete signal previously down-sampled by a factor 2.

From Irregular Sampling

Reconstructing the continuous version of the signal s from its discrete samples taken in an irregular
way is also possible, but a little more complicated. Indeed the uniform recovery method – consisting
of a simple low-pass filtering operation – fails in the case of irregular sampling, as shown in Figure
2.7. Most irregular reconstruction algorithms are iterative in nature [FCS91]. Starting from some
initial guess, typically based on the given sampling values, further approximations of a are obtained
step by step, using the available (assumed) knowledge about Ωa.



52 CHAPTER 2. SOUND MODELS AND MUSICAL TRANSFORMATIONS

20 40 60 80 100 120 140 160 180 200
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
uniform sampling by factor 2

−100 −80 −60 −40 −20 0 20 40 60 80 100
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25
spectrum (real part)

0 20 40 60 80 100 120 140 160 180 200
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
reconstruction filter (impulse response)

−60 −40 −20 0 20 40 60
0

0.2

0.4

0.6

0.8

1

reconstruction filter (response spectrum)

0 20 40 60 80 100 120 140 160 180 200
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
signal

−100 −80 −60 −40 −20 0 20 40 60 80 100
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25
complex spectrum (real part: even function)

Figure 2.6: Up-sampling – that is reconstruction – of the down-sampled signal of Figure 2.3, using
low-pass filtering.
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Figure 2.7: The uniform recovery method (low-pass filtering) fails in the case of irregular sampling.
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Figure 2.8: The first iteration of the Voronoi-Allebach algorithm. The Voronoi interpolation produces
a step function which is low-pass filtered, then the reconstruction error is measured (for known sam-
pling points) and reconstructed, recursively. The reconstruction error converges to 0 if the Nyquist
criterion was respected during the sampling stage.

This is the case of the Allebach algorithm, which is made of 3 steps. Step 1 consists of the in-
terpolation of the sampling values. The interpolated signal contains many high frequencies outside
of [−Ωa,+Ωa]. The information concerning Ωa can be used next. In step 2 the interpolated signal
is low-pass filtered with a cutoff frequency slightly greater than Ωa. Let a1 denote the first signal
resulting from steps 1 and 2, then look at the difference signal a− a1. According to its construc-
tion, a1 has its spectrum within the same range [−Ωa,+Ωa], and for obvious reasons we know its
coordinates at the given sampling positions. Therefore, the estimate indicated above can be applied.
Step 3 is the recursive reconstruction of the error – if significant – so that we can again recover a
certain portion of the remaining signal by repeating the first two steps, now starting with the sampled
coordinates of a− a1. Continuing to use the difference between the given sampling values of a and
those of the n-th approximation we generate additive corrections which lead stepwise to improved
approximations. Figures 2.8, 2.9, and 2.10 illustrate the Voronoi-Allebach algorithm, that is the
Allebach algorithm with Voronoi interpolation as step 1. The Voronoi interpolation corresponds to
the nearest neighborhood interpolation, using the arithmetic mean for equally-spaced neighbors. In
other words, given the sampling values at known positions we form a step function which is constant
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Figure 2.9: The second iteration of the Voronoi-Allebach algorithm.
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Figure 2.10: The third iteration of the Voronoi-Allebach algorithm.
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Figure 2.11: Reconstructed signal after 10 iterations of the Voronoi-Allebach algorithm.

from midpoint to midpoint of the given sampling sequence. Because of the assumed smoothness of
the signal, this step function will not be too far away from the original signal, in the mean-squared
sense. With the Voronoi interpolation, the convergence of the Allebach algorithm is fast. The filtering
process destroys the point-wise interpolation property of the Voronoi method, but theoretical consid-
erations show that if the maximal gap is smaller than the Nyquist period then the iterative scheme will
converge to the original signal a at a geometric rate (the faster the smaller the actual maximal gap is
compared to the Nyquist rate). Figure 2.11 shows the reconstructed signal a10 after 10 iterations of
the Voronoi-Allebach algorithm. The problem is that the computation of the Voronoi interpolation for
multidimensional signals is slow. Other interpolations can be used in step 1 of the Allebach algorithm.
For example, the Marvasti method consists in using the trivial interpolation (all the unknown values
are set equal to zero) instead of the Voronoi interpolation. The problem is that the convergence of the
Allebach algorithm is then much slower.

Strohmer has studied in [Str93, FS92] irregular reconstruction for multidimensional signals. For
(one-dimensional) sounds or (two-dimensional) surfaces, the ACT [FGS95] and ABC [Str97] algo-
rithms can be used, respectively. ACT stands for Adaptive weights [FS93] + Conjugate gradient
+ Toeplitz system while ABC stands for Adaptive weights + Block Toeplitz matrices + Conjugate
gradient. Toeplitz systems provide clever linear algebra to save computation time. The conjugate
gradient algorithm is a fast and iterative way of computing the inverse of a Toeplitz matrix, to solve
Toeplitz systems. The adaptive weights approximation consists in multiplying every sampling point
with a weight factor depending on the distance to its neighbor sampling points. It is computationally
cost-less and speeds up the convergence of the iterative reconstruction process.

2.1.3 Transformations

All band-limited sounds can be represented in the temporal model. The main advantage of this repre-
sentation it that everything is possible: There is no restriction on the sounds that can be reproduced or
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parameter Amplitude Frequency Timbre Time

Amplitude ×
Frequency × × ×

Time × × ×

Table 2.1: Interdependence of the musical parameters in the temporal model.
When changing a certain parameter (rows), other parameters may change too (columns).

on the transformations that can be performed.
Its main drawback is probably that none of these transformations are really musically intuitive, and

it is well known that the simplicity of this model has severe drawbacks as soon as the inner structures
of the sound have to be manipulated.

Of course amplification can be performed simply by multiplying the signal with an amplifica-
tion factor, provided that it varies “slowly”, or else amplitude modulation occurs, thus changing the
sound timbre. But pitch transposition while preserving duration is a real challenge [BJ95], and time-
stretching without pitch-shifting is another one [Fed98].

In fact the only musical parameters that can easily be modified are the volume (by scaling the
amplitude axis) and the pitch (by scaling the time axis), and this last transformation also modifies the
sound duration, tempo, and timbre in an unnatural way because it also shifts its formants. In fact the
musical parameters are interdependent, as shown in Table 2.1.

The temporal model is however well-suited for effects like echo or reverberation, as they involve
a superposition of pressure waves replicas in time. When the impulse response of the room is known,
reverberation is similar to filtering. Filtering a sound requires either the composition of a filtering
function with a, or convolving a with the impulse response of the filter, or even switching to the
frequency domain and multiplying their respective spectra.

Of course deeper transformations can also be performed in the time domain, but their mathemati-
cal foundations are not so intuitive and many require to switch to the frequency domain by the mean
of a Fourier transform. . .

2.2 Phase Vocoder

The Fourier transform converts the temporal signal (amplitude versus time) into a spectral repre-
sentation (amplitude versus frequency). It gives the frequency image of the whole sound, and the
entire signal is averaged into a single spectrum. This spectrum coincides with our perception only
for stationary sounds. Because most sounds evolve in time, sound models must have time-varying
parameters.

The phase vocoder [Moo78c, Dol86, Ser97a] uses the short-time Fourier transform [All77, Por80].
This time-dependent version of the Fourier transform goes through the entire sound while producing
a series of short-term spectra taken on successive – often overlapping – temporal frames, which are
small pieces of temporal signal. In practice this is a discrete signal resulting from uniform sampling.
Then, for each frame window x of N consecutive samples, a (discrete) windowing function w is applied
(multiplied) to x, and a (discrete) Fourier transform X is computed:

X [m] =
2
N

N−1

∑
n=0

w[n] x[n] e− j 2π
N nm (2.4)
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Figure 2.12: Magnitude spectrum resulting from a Fast Fourier Transform (FFT).

The result is a (short-term) spectrum as shown in Figure 2.12. The 2
N factor in Equation 2.4 was

added for the purposes of normalization. In this model all band-limited sounds can be represented,
there is no restrictions on the transformations that can be performed on the sounds, and there is a fast
algorithm – the Fast Fourier Transform (FFT) [CT65] – to go from the temporal model to this model,
and the inverse transform to do the opposite. In fact this is not a real sound model, but mainly a way
to provide a spectral representation for sounds in the temporal domain.

The problem is that there are many physical parameters that are not musically relevant such as
the type, size, and hop of the analysis window w, and these parameters have a great impact on the
quality of the analyzed sounds. The main advantage is that the sounds are now represented in a
spectral domain. As a consequence, filtering gets easier: It is just a matter of multiplication among
spectra once the spectral response of the filter is designed, which is quite easy to do. In fact this is
not that simple, since artifacts may occur. Time stretching remains quite difficult [SRD, DSR87],
mostly because the phases of the short-term spectra must be changed with great care. Again because
of the phases, it is extremely difficult to edit these time-varying short-term spectra in a musical way
[Str87, Car95].

2.3 Additive Synthesis

Additive synthesis (see [Moo77]) is the original spectrum modeling technique. It is rooted in Fourier’s
theorem, which states that any periodic function can be modeled as a sum of sinusoids at various
amplitudes and harmonic frequencies. For pseudo-periodic sounds, these amplitudes and frequencies
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Figure 2.13: Partials of an harmonic sound.

evolve slowly with time, controlling a set of pseudo-sinusoidal oscillators commonly called partials
(see Chapter 1). In fact there are many additive syntheses, depending on the way these partials may
vary over time (no variation, linear or continuous-time variations).

2.3.1 Sinusoidal Modeling

The McAulay-Quatieri analysis [MQ86] – implemented for example in an analysis / synthesis pro-
gram for MacOs called Lemur [FH96] – looks across the short-term magnitude spectra for peaks,
in order to reconstruct the evolutions of the partials. These partials are pseudo-sinusoidal tracks for
which frequencies and amplitudes continuously evolve slowly with time. The audio signal a in the
temporal model can be calculated from the additive parameters using equations:

a(t) =
P

∑
p=1

ap(t)cos(φp(t)) (2.5)

dφp

dt
(t) = 2π fp(t) i.e. φp(t) = φp(0)+ 2π

∫ t

0
fp(u) du (2.6)

where P is the (finite) number of partials and the functions fp, ap, and φp are the instantaneous fre-
quency, amplitude, and phase of the p-th partial, respectively. The P pairs ( f p,ap) are the parameters
of the additive model and represent at time t points in the frequency-amplitude plane, as shown in
Figure 2.13, and the evolutions of the partials in time make curves as shown in Figure 2.14. It is
important to note that the phases of the partials are recomputed from scratch and not given by anal-
ysis. More precisely φp can be recovered using the initial phase φp(0) and Equation 2.6. The initial
phase φp(0) can also be ignored during analysis and set to an arbitrary value for resynthesis. This is
a consequence of psychoacoustic experiments (see Chapter 1). The choice of the π/2 value has been
done in the ReSpect synthesis software package (see Chapter 4).

The real-time synthesis has been implemented in the ReSpect software tool (see Chapter 4). The
difficulty is then to obtain these parameters from real, existing sounds. An accurate analysis method
can be found in Chapter 3. This analysis method as well as many others have been implemented in
the InSpect program (see Chapter 3).
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(a) Frequencies

(b) Amplitudes

Figure 2.14: The evolutions of the partials of an alto saxophone during 1 second. The frequencies (a)
and amplitudes (b) are displayed as functions of time (horizontal axis).
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Figure 2.15: Evolutions of a partial in amplitude (left) and frequency (right).

Partial Evolutions

The hypothesis that partial frequencies and amplitudes evolve slowly is indeed very important. For
example, given any sound a, the solution P = 1, f1(t) = 0, a1(t) = a(t) trivially verifies the model
equations, but since a1 is not slow time-varying such a solution is ruled out by this hypothesis. How-
ever, the definition of “slow time-varying” has to be clarified.

More formally the ap and fp functions are band-limited in frequency, with a small frequency
much less than the value of the smallest fp. More precisely they are band-limited to a frequency Fmax

around 20 Hz. Indeed the variations of the parameters should remain inaudible, or else modulation
phenomena occur.

As a consequence, the Shannon-Nyquist sampling theorem ensures that, in theory, sampling the
evolutions of the partials at 2 times Fmax samples per second is sufficient (see Section 2.1).

Sinusoidal modeling can faithfully reproduce a wide variety of sounds, but only pseudo-periodic
sounds with no noise and no transients can be represented in the sinusoidal models.

2.3.2 Spectral Modeling Synthesis (SMS)

Spectral Modeling Synthesis (SMS) adds noise to sinusoidal modeling. Serra and Smith propose in
SMS [SS90, Ser89] a spectral model based on a deterministic plus stochastic decomposition. This
sound model decomposes any audio signal a into the sum of two signals:

a(t) = d(t)+ s(t) (2.7)

where

• d(t) is the deterministic part (narrow-band component),

• s(t) is the stochastic part (broad-band component).

Deterministic Part
The deterministic part consists of a sum of sinusoidal oscillators (partials) for which frequency and
amplitude evolve in a slow time-varying manner. This is exactly like in sinusoidal modeling. In the
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very first step of the analysis, SMS searches for the parameters – amplitude, frequency, and phase –
of the partials.

Stochastic Part
SMS performs the resynthesis of the deterministic part, using also the phase information, and then
subtracts it from the original signal. The stochastic part is what remains after the deterministic part
has been subtracted from the original signal and is generally called noise. It is in fact a random signal
with statistical properties. In SMS this stochastic part is modeled as a filtered white noise.

SMS has been implemented for Windows and Linux in SMS Tools [Ser97b]. Although the very
first version was open source, it is not the case anymore. SMS can reproduce pseudo-periodic sounds
with filtered white noise, but still no transients.

2.3.3 Sinusoids+Transients+Noise (S+T+N)

Verma and Meng introduce in [VM98b, VM98a] the Sinusoids+Transients+Noise (S+T+N) model,
which extends SMS with transients represented in the temporal model. S+T+N can reproduce pseudo-
periodic sounds with filtered white noise as well as transients, provided that an accurate analysis
method is able to separate the sinusoids, noise, and transients components. The main difficulty is the
analysis stage. Unfortunately no free implementation seems available yet.

Sinusoids
The sinusoids are the same as in sinusoidal modeling, and as a consequence the same as in SMS. In
the first step of the analysis the partials are searched for, as in SMS.

Noise
The sinusoids are then resynthesized and subtracted from the original signal, thus leading to a stochas-
tic part as in SMS. The difference with SMS is that the second step of the analysis looks for fast
variations (transients) in the stochastic part, and remove those transients from the noise.

Transients
The transients are small pieces of signal in the temporal model. They have been extracted from the
noise. So the S+T+N model is an hybrid model consisting of spectral parameters together with signals
expressed in the temporal domain.

2.3.4 Transformations

These additive models are extremely expressive and allow perfect filtering or time-stretching while
simplifying the design of such effects too. Perfect filtering is just a matter of multiplying each am-
plitude ap by the gain of the filter at the corresponding frequency fp. Whereas time-stretching gets
trivial in these models (mostly because it is possible to get rid of the phase), reverberation turns out to
be impossible. In fact the reverberation of a partial is not a partial anymore. Indeed a single partial can
lead to a huge – possibly infinite – number of simultaneous frequencies, so that the reverberated sound
would not be in the model anymore (since the number of partials P would not be finite). Of course
reverberation is a linear transformation, and does not produce frequencies that were not in the original
sound. But this is not a “short-time linearity” in a sense that there can be at a certain time t frequencies
that did not exist at time t in the original sound. Those frequencies are replicas of frequencies emitted
before t. Figure 2.16 illustrates this phenomenon.
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Figure 2.16: On the left, the reverberation of a single oscillator whose frequency increases linearly
gives rise in theory to an infinite number of partials. On the right, after reverberation the second partial
seems to “fork”. In fact the reverberation process gives birth to other partials made of frequencies
which are replicas of frequencies emitted before.

parameter Amplitude Frequency Timbre Time

Amplitude ×
Frequency × ×

Time ×

Table 2.2: Interdependence of the musical parameters in sinusoidal modeling.
When changing a certain parameter (rows), other parameters may change too (columns).

Anyway it is possible simply by scaling the amplitude, frequency or time axis to change, respec-
tively, the amplitude, frequency or duration of the sound. But the frequency and the timbre are still
related, as shown in Table 2.2. Cross-synthesis or pitch-shifting without shifting formants require
another level of structuring for the parameters.

2.4 Structured Additive Synthesis (SAS)

The models based on additive synthesis are extremely difficult to use directly for creating and editing
realistic sounds. This observation can be done in practice using software programs based on additive
synthesis such as SoftSynth [dig]. The reason for this difficulty is the huge number of model param-
eters – controlling many sinusoidal oscillators – which are physically valid but only remotely related
to musical parameters as perceived by a listener [Jeh97]. An interesting idea is then to group some of
the parameters in order to ease their manipulation [Kle89].

Structured Additive Synthesis (SAS for short) [DCM99b, DCM99a, Mar99, Mar00d] is a spectral
sound model that keeps most of the flexibility of additive synthesis while addressing these problems.
It imposes constraints on the additive parameters, giving birth to structured parameters as close to
perception and musical terminology as possible, thus reintroducing a perceptive and musical consis-
tency back into the model. To validate the correspondence between the parameters of our model and
the perception of music by a listener, we work in close collaboration with psycho-acousticians and
composers of electro-acoustic music.

We have developed an accurate analysis method to get the model parameters from sampled sounds
(see Chapter 3). It is of course possible to eliminate analysis entirely, and create new sounds directly,
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using the parameters of our model. This is indeed possible because there is a close correspondence
between these parameters and real music perception.

2.4.1 Structured Parameters

The SAS model consists of a complete abstraction of sound according to only four physical param-
eters, functions closely related to perception. These parameters – amplitude, frequency, color, and
warping – are inspired by the work on timbre of researchers like Risset [Ris86a, Ris86b], Wessel
[Wes78, Wes79], and McAdams [McA84, MBM99], and by the vocabulary of composers of electro-
acoustic music. They constitute a solid base for investigating scientific research on the notion of
timbre.

We note (A,F,C,W) a sound in the SAS model. The first two parameters – amplitude A and
frequency F – are one-dimensional, functions of time only, while the two others – color C and warping
W – are two-dimensional, functions of both frequency and time. These two-dimensional parameters
can indeed simplify the problem of controlling partials for additive synthesis, and manipulating them
in a sensible way [SR99].

Amplitude

Amplitude is a function A : time→ amplitude. Human beings perceive amplitude on a logarithmic
scale, and the amplitude is related to the intensity which corresponds to the volume in dB. In the
additive representation, the amplitude A corresponds to the sum of the amplitudes of all partials and
can be calculated from the additive parameters using Equation 2.8. In order to consider the RMS
(Root Mean Square) amplitude (closer to perception), Equation 2.9 must be used instead of Equation
2.8.

A(t) =
P

∑
p=1

ap(t) (2.8)

ARMS(t) =
1√
2

√√√√
P

∑
p=1

(ap(t))2 (2.9)

When the sound is amplified, these two amplitudes have the same relative variation:

∀p, ap → k ·ap

A → k ·A
ARMS → k ·ARMS

and since only relative values really matter to the ear, any of these two amplitudes could be used.
However the RMS amplitude is closer to the perception: While A corresponds to a physical level,
ARMS is related to the perceptive loudness.

Calculating the volume in dB from the amplitude is easy (see Chapter 1):

V (A) = 20 log10

(
A

A0dB

)
dB (2.10)

where A0dB is the amplitude of reference for 0 dB. In the remainder of this section we will use the
value 1/

√
2 or 1 whether or not we are considering the RMS amplitude ARMS.
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RMS Amplitude
In fact, Equation 2.9 is only an approximation of the real RMS amplitude aRMS, measured for a signal
s in the time domain:

aRMS[s] =

√
1
N

N

∑
i=1

(s[i])2 (2.11)

However, this is indeed a very good approximation. And here is why. For any partial p with frequency
f , amplitude a, and initial phase φ0, we have:

aRMS[asin(2π f Ts + φ0)] =
a√
2

(2.12)

Note that the RMS amplitude does not depend on the phase. This is still true when the sound consists
of a sum of partials, provided that their frequencies are different though. For two sounds, we have:

aRMS[s1 + s2] =

√
1
N

N

∑
i=1

(s1[i]+ s2[i])2

aRMS[s1 + s2] =

√
1
N

N

∑
i=1

((s1[i])2 +(s2[i])2 + 2s1[i]s2[i])

aRMS[s1 + s2] =

√√√√ 1
N

(
N

∑
i=1

(s1[i])2 +
N

∑
i=1

(s2[i])2 + 2
N

∑
i=1

s1[i]s2[i]

)

Let us now consider sounds consisting of exactly one partial in the additive model. For two such
simple sounds s1 and s2 with different frequencies, the cross-terms in the equation above can be
neglected. More formally ∑N

i=1 s1[i]s2[i]≈ 0 because ∑N
i=1 sin(c1i)sin(c2i)≈ 0 for c1 6= c2. This is the

same argument as the one used in the Fourier decomposition. As a consequence, we have:

(aRMS[s1 + s2])2 ≈ (aRMS[s1])2 +(aRMS[s2])2

and finally, since amplitude is always positive:

aRMS[s1 + s2]≈
√

(aRMS[s1])2 +(aRMS[s2])2 (2.13)

The generalization of Equation 2.13 for such n additive sounds consisting of exactly one partial leads
to Equation 2.9.

Frequency

Frequency is a function F : time→ frequency. The way of calculating the frequency from the additive
parameters is trickier, and is explained in Chapter 3. Anyway, for harmonic sounds F coincides with
the fundamental (see Figure 2.17), possibly missing or “virtual”. The frequency is also perceived on a
logarithmic scale, and is related to the pitch (see Chapter 1). For example, the MIDI pitch [MMA96]
is a function of frequency given by equation:

P(F) = 69 + 12 log2

(
F

440 Hz

)
(2.14)

where 69 corresponds to the A3 tone, 70 to A#3, etc.
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Figure 2.17: An harmonic sound at time t, with its frequency F and color C.

Color

Color is a function C : frequency× time→ amplitude. Color coincides with an interpolated version of
the spectral envelope [Ris86b]. The reason why we call it color is both physical and musical. There
is a great analogy between audible and visible spectra. Visible colors are indeed defined by their
spectral envelopes [Gla95]. This analogy is already well-known for noises (white, blue, etc.). The
vocabulary of the music composers is also marked with this notion of color. They speak about the
coloration induced by filters, loudspeakers or concert halls, which indeed corresponds to modifications
of the spectral envelope. Color and its manipulation is amply used in contemporary popular music,
though such manipulations are inherently present in the timbre of some ancient instruments like the
didjeridoo, which shows very unusual color variations.

Color is a time-varying function (see Figure 2.18). Nevertheless for some instrumental sounds it
may be close to a constant over time (see Figure 2.21).

Color is a continuous function. When the color is known only at the frequencies of the partials
fp, it can be completely reconstructed from these samples using uniform or irregular reconstruction
methods (see Section 2.1) depending on whether the fp are harmonically related ( fp = p F) or not.

Color is a positive function. A problem is the arbitrary choice of C(0, t), since this value cannot
be given by the analysis. The classic “mirroring extrapolation” technique will choose something
like C(0, t) = 2 C(1, t)−C(2, t). But since C(0, t) has to be positive, it may not be a good choice.
Unless specified, we arbitrary use the value C(0, t) = 0. Schwarz and Rodet propose in [SR99] to use
C(0, t) = 1. Moreover it is impossible that ∃t,∀ f , C( f , t) = 0. In such a case (corresponding to the
silence), the other parameters would simply be undefined (corresponding to the absence of sound).

Color should be represented in a log-log scale for a better correspondence with the perception.
We are envisaging interesting researches on the perception of the color, in close collaboration with
psycho-acousticians. For example it turns out that it is a peculiarity of the color that it can have its
own pitch, which can in some cases override the frequency of the sound and thus influence the pitch
the listener actually perceives. Moreover many characteristics exist for the color itself, such as the
“brightness” [Ris86b], which is related to the spectral centroid:

B(t) =
∑P

p=1 ap(t) fp(t)

A(t)
=

∑P
p=1C( fp(t), t) fp(t)

A(t)
(2.15)

It might be a good idea to split the color into two colors: one for odd harmonics, the other for even
ones. But we prefer to keep the analogy with the light spectrum, since it opens up new perspectives.
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amplitude

frequencytime

Figure 2.18: The color of an soprano saxophone with time.

For example, the video color is often encoded – by taking perception into account – as a Red+Green+-
Blue (RGB) value. It could be possible to encode in the same way the audio color by using 24 critical
bands (see Chapter 1), that is with a set of 24 values instead of 3 for RGB.

For harmonic sounds the variations of the color with time constitutes the timbre itself. For non-
harmonic sounds, another parameter is necessary.

Warping

Warping is a function W : frequency× time→ frequency. Harmonic sounds are totally defined by
the A, F , and C parameters (see Figure 2.17). But when sounds are not perfectly harmonic [MP80a,
MP80b], the frequencies of the partials are not exactly multiples of the fundamental frequency F .
That is why the fourth parameter – called warping after wavelet terminology [EC98] – gives the real
frequency of a partial from the theoretical one it should have had if the sound had been harmonic,
so that we have fp(t) = W (pF(t), t). Warping is related to inharmonicity [Rio84]. Of course for all
harmonic sounds W = Id1, that is ∀ f , t, W ( f , t) = f . Some sounds have a natural warping, such as
pianos, gongs or bells for example. Figure 2.19 shows such a non-harmonic sound.

Warping is a continuous function, and can be reconstructed from samples exactly like the color
using the reconstruction methods explained in Section 2.1.

Warping is a positive function, and necessarily we have W (0, t) = 0, although this value is use-
less, since no partial can have a null frequency. Since partials cannot be crossing, we must have
∀t, W (pF, t)>W (p′F, t) iff p> p′. So ∀t0, W ( f , t0) is a strictly growing function. Figure 2.20 shows
some examples of warping functions. Another important point is that the “warped” frequency W ( f , t)
should not be too far away from the original frequency f , or else the sound would be so distorted
that a single SAS sound might be perceived as composed of two different sources. As a consequence
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Figure 2.19: A non-harmonic sound a time t (left) with its warping envelope W (right).

there should exist a constant K > 0 (within a few percents) so that ∀t, |W ( f , t)/ f −1|< K. Warping
should also be represented in the log-log scale for a better correspondence with the perception. Since
∀t0, W ( f , t0) is a strictly growing function, a good idea might be to deal with its first derivative, which
must then be strictly positive.

A free software implementation called ProSpect is being developed in order to allow the manipu-
lation of the sound in this model (see Section 2.6).

All the SAS parameters vary slowly over time. More precisely they are band-limited to a frequency
around 20 Hz. Indeed the variations of the parameters should remain inaudible, or else modulation
phenomena occur and question the perceptive consistency of the parameters. The variations of the
parameters reveal the inner structures of sound, and they can describe any pseudo-periodic sound
provided that it is a monophonic source with no noise and no transients.

2.4.2 Structured Equations

The SAS parameters were already used – among others – to describe some characteristics of the
sounds. This time these parameters are sufficient to define the sound completely. From the four struc-
tured parameters, we can calculate directly the audio signal a in the temporal model using Equations
2.16 or 2.17, depending on whether or not the RMS amplitude is considered:

a(t) = A(t)
∑P

p=1C(W (pF(t), t), t)cos(φp(t))

∑P
p=1C(W (pF(t), t), t)

(2.16)

a(t) =
√

2ARMS(t)
∑P

p=1C(W (pF(t), t), t)cos(φp(t))√
∑P

p=1 (C(W (pF(t), t), t))2
(2.17)

where P = maxt{bFmax
F(t) c} (Fmax being the highest audible frequency) and

φp(t) = φp(0)+ 2π
∫ t

0
W (pF(u),u) du (2.18)
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Figure 2.20: Examples of warping functions at time t.
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Figure 2.21: Examples of instrumental sounds in the SAS model. From top to bottom are displayed
the four parameters of the SAS model: the amplitude and frequency as functions of time A(t) and
F(t), the color as a function of frequency only C( f ), since it does not vary much over time for the
examples considered here, and finally the warping which satisfies W ( f , t) = f because both sounds
are harmonic.
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These equations are the “structured” versions of Equations 2.5 and 2.6, and require approximately
the same computation time. Any sound can be faithfully synthesized in real time from the model
parameters using these equations (see Chapter 4).

2.4.3 Limitations and Possible Extensions

Structured Additive Synthesis (SAS) can faithfully reproduce a wide variety of sounds – as additive
synthesis does – provided that they are pseudo-periodic sounds corresponding to monophonic sources.
However it cannot produce noise or transients. Reverberation can also be a great disadvantage for SAS
(see Section 2.5). The SAS model can be extended with symbolic structures to handle polyphonies,
that is sets of monophonic sounds. It can also be extended to handle noise as well. On the other hand
very short sounds like transients cannot be represented in this spectral model.

Noise
Noises could be added to the SAS model in the same way as in SMS, since many noises can be
modeled as filtered (colored) white noises at certain amplitudes. The amplitude and color parameters
exist also for noises and are sufficient to define many of them. White noise has a white color (C =
1), and every noise named after an analogy with a light spectrum matches this correspondence of
terminology. As a consequence we can easily extend the SAS model to include noises. However
amplitude and color may not be sufficient to define any kind of noise, as stated by Hanna [Han00].

Symbolic Structures
We are developing a sound synthesis language based on SAS, in close collaboration with composers
of electro-acoustic music. In order to use SAS for the whole compositional process, a hierarchical
model with symbolic structures must be designed on the top of the sub-symbolic structures of SAS
and incorporated in the language. For that purpose we use hierarchical structures similar to the hier-
archic temporal organization of musical structures proposed by Balaban [BS93]. More precisely, the
elementary musical structure is

{A,F,C,W}
then the sequence of n musical structures is

[|(Si = {Ai,Fi,Ci,Wi})i=1,n 7−→ {A,F,C,W}]

while the superposition of n musical structures is

[−(Si = {Ai,Fi,Ci,Wi})i=1,n 7−→ {A,F,C,W}]

Chords are represented as superpositions of elementary sounds Si. By considering the (Fi,Ai) pairs,
we have “pseudo-partials” and we can again define color and warping parameters for the chords, and
the warping is this time related to the inharmonicity of the chords.

This further level of structuring – allowing for instance the manipulation of sets of SAS sounds –
makes more things possible, like representing polyphonic sounds or performing echoing or mixing.

One advantage in the SAS model is the independence of the musical parameters. The amplitude,
frequency, and timbre can indeed be changed independently. It is possible to stretch the sound in
time without changing its pitch, to shift the pitch while preserving the timbre, and so on. Table 2.3
illustrates this independence. This property amply facilitates the design of digital audio effects in the
SAS model.
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parameter Amplitude Frequency Timbre Time

Amplitude ×
Frequency ×

Timbre ×
Time ×

Table 2.3: Independence of the musical parameters in the SAS model.
It is possible to change one parameter while leaving the others unchanged.

2.5 Musical Sound Transformations

In the SAS model many effects become accessible not only to engineers, but also to musicians and
composers. Among these are the transformation of a single sound, such as filtering or time-stretching,
as well as the creation of hybrid sounds by the combination of several sounds, such as cross-synthesis
or morphing. These effects turn out to be straightforward in the SAS model and can be designed in a
very intuitive way. This is done at the expense of restrictions not only on the kind of sounds that can
be represented in the SAS model, but also on the kind of effects that can be performed.

2.5.1 Transforming Sounds

Given an SAS sound S = (A,F,C,W), the simplest sound transformations can be expressed as a simple
multiplication on one of its SAS parameters. In the remainder of this section we use the standard
notation for the product between functions, that is for one-dimensional parameters (kP)(t) = k(t) P(t)
while for two-dimensional ones (kP)( f , t) = k( f , t) P( f , t).

Amplitude, Amplification, and Tremolo

Changing the volume of S is trivial: Given an amplification factor k, consider the sound (kA,F,C,W).
If k is a constant, this is a simple amplification. If k is a sinusoid with a frequency around 8 Hz, the
musical effect obtained is a tremolo with this frequency. If the variations of k are slow and monotonous
(mathematically speaking), this is either a fade-in or a fade-out.

Frequency, Transposition, and Vibrato

Pitch-shifting is quite as much easy: Given a transposition factor k, consider (A,kF,C,W). The base-2
logarithm of k is the amount of pitch-shifting expressed in octaves. Figure 2.23 shows a sound and
the same sound one octave lower (k = 0.5). If k is a constant, this is a simple transposition. If k is a
sinusoid with a frequency around 8 Hz, the musical effect obtained is a vibrato with this frequency.
If the variations of k are slow and monotonous (again mathematically speaking), this a glissando or a
portamento.

Color and Filtering

When k is the spectral response (color) of a filter, filtering (coloring) S with this filter can be done
ideally like this: S′ = (A,F,kC,W). This is a perfect filtering, without artifacts. In fact the design of
a filter in the SAS model is mainly the specification of the color parameter for the filter, which can of
course evolve in time.
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Figure 2.22: Expressiveness of several sound models. The temporal, phase vocoder, additive synthesis
(AS), Spectral Modeling Synthesis (SMS), Sinusoids+Transients+Noise (STN), and Structured Addi-
tive Synthesis (SAS) models are compared. The horizontal axis represents the variety of sounds that
can be represented (the models at the right being the most general), whereas the vertical axis repre-
sents the ease for performing musical transformations (the models at the bottom being the best-suited
for these transformations).
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Figure 2.23: Two sounds with the same color but different frequencies.



74 CHAPTER 2. SOUND MODELS AND MUSICAL TRANSFORMATIONS

(A1,F1,C1,W1)

(A1,F1,C2,W1)

(A2,F2,C2,W2)

(A2,F2,C1,W2)

Figure 2.24: Cross-synthesis by color swapping.

Warping and Harmonization

Warping S sounds a bit stranger, since we are not really used to this parameter in music. However
we are carrying out promising experiments in close collaboration with composers of electro-acoustic
music. It has already been used in several pieces to draw a link between harmonic and non-harmonic
sounds (see Chapter 5). Warping is related to inharmonicity, and one can change it easily like this:
S′ = (A,F,C,kW), where k is a “warping envelope”. One can also perform a new kind of cross-
synthesis by replacing the warping of one sound by the one of another sound.

Time and Time-Stretching

Since all the SAS parameters are functions of time, time-stretching is only a matter of scale on the
time axis. For example the sound (A(kt),F(kt),C(kt),W(kt)) is k times shorter than S. Of course k
does not have to be a constant. Time-varying stretching factors can produce very impressive effects.

2.5.2 Combining Sounds (Hybrid Sounds)

One of the advantages of the SAS model is its aptitude for creating hybrid sounds from the combina-
tion of several sounds.

Cross-Synthesis

One can perform many kinds of cross-syntheses only by interchanging parameters among different
sounds. Figure 2.24 illustrates a cross-synthesis on the color parameter between S1 and S2.

Morphing

Of course one can also blend the parameters of different sounds. Let us realize a morphing in the SAS
model. Assuming that we perceive all the parameters logarithmically, consider the blending operator:

∀α ∈ [0,1], blend(P1,P2,α) = P(1−α)
1 Pα

2

By blending each parameters and making α vary over time from 0 to 1, one hears a morphing from
the first sound to the second. Figures 2.25 and 2.26 illustrate this. But the blend operator is not well-
suited for voice, since it does not really care about formants. In order to perform “formant-morphing”,
the blending operator has to be changed for the color parameter. In the example of Figure 2.27, the
morphing should be able to go from a vowel to the other while mimicking a real singer. Sequences of
morphing among vowels become then possible, like a→ e→ i→ o→ u. Then, by also controlling
the amplitude and the frequency parameters, it is possible to realize a singing voice like the one in
Figure 2.28 (see also Chapter 5).
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Figure 2.25: Some morphing examples (saxophone to horn, saxophone to voice, voice to horn).

2.5.3 About Impossible Effects

Whereas the design and control of most audio effects become considerably simplified in the SAS
model [Mar99, Mar00d], some effects turn out to be impossible to achieve in this model.

While structuring the sound representation facilitates the design and control of musical sound
effects, it also imposes limitations not only on the sounds that can be represented but also on the
effects that can be performed on these sounds.

Reverberation, as in additive synthesis, cannot be implemented. But since SAS models (mono-
phonic) sound sources – and not sounds reaching our ears – reverberation has no meaning in the SAS
model. Echoes cannot be done either, since echoing one (monophonic) sound may lead to a poly-
phonic sound that cannot be represented as one single sound in the SAS model. Even the mixing of
two sounds in the SAS model is not a sound in the model, since the mixing of several monophonic
sources is not (in general) a monophonic source (see Figure 2.29). To manipulate polyphonic sounds
– that is sets of monophonic sounds – a symbolic structuring must be added on the top of SAS, as
mentioned above.

2.6 ProSpect Software Package

ProSpect (“Prospect Spectrum”) [Mar00e] is a free software platform that allows the manipulation
(analysis, transformation, synthesis) of sounds in various sound models, mainly spectral ones. It
is a research tool also useful for creation (see Chapter 5). This hardware-independent architecture
is developed for the Linux operating system, although a Windows 95/98/NT version exists too. It
is freely distributed [Mar00b] under the terms of the GNU General Public License (GPL) [FSF91].
The development version of this tool has been tested by composers of electro-acoustic music who
were enthusiastic [MB00]. This software system should open new horizons for both researchers and
composers. However the current development version needs a simplification of its general architecture
and still lacks a complete documentation. . .

ProSpect offers the possibility to act on the sounds directly via the instructions of a functional
programming language. It combines the advantages of the C programming language with the power
of functional languages (Scheme or Lisp). It allows to literally program the musical sound, thus fa-
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Figure 2.26: The color of sounds while morphing from a saxophone to a horn. From top to bottom
are displayed the colors of the source (saxophone), the intermediate hybrid sound (half-saxophone,
half-horn), and the destination (horn). The axis are the same as in Figure 2.18.
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Figure 2.27: Color examples for two vowels (only the function of frequency C( f ) is represented since
C is nearly constant in time here).
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Figure 2.28: Singing voice in the SAS model.
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Figure 2.29: The mixing of two monophonic sources is not (in general) a monophonic source, that is
why mixing is impossible in the SAS model.

cilitating the musical composition process greatly. It provides traditional operations such as filtering,
time-stretching (without limits on the stretching factor), cross-synthesis, transposition while preserv-
ing formants, timbre morphing and many more. Since these manipulations are made on a spectral
representation which has fewer data points than the signal itself, our operations are quite efficient.
Although most operations on sound are very fast thanks to the power of modern computers, the ma-
nipulation of sounds in real time is not the goal of ProSpect.

Although ProSpect can be used alone, it is not a “final” software program such as SMS [Ser97b],
but rather an open development environment in the spirit of the ATS library [Pam99] and can be used
as a starting point for other software programs. ProSpect is at the root of software tools covering vari-
ous fields from sound analysis (InSpect, see Chapter 3) to assistance for music composition (BOXES,
see Chapter 5). Its opening and its extensibility allow to incessantly add new functionalities. We hope
that in the future more interested people will be involved in its development and will use it as a starting
point for many other software programs in the field of computer music.

2.6.1 Software Architecture

The software architecture of ProSpect consists of a set of basic functionalities dynamically extended
by plug-in modules.

Base

This architecture results from the extension of an all-purpose functional language by a set of sound-
specific data types and primitives. More precisely, the base of ProSpect consists of a Scheme inter-
preter extended by a library containing new data types and primitives mostly written in C program-
ming language for performance reasons. There is a similar structure in ATS [Pam99], except that in
our case the functional language is not Common Lisp but Scheme.

Functional Language
In the current version, STk [Gal99, Gal95] is used as the basic Scheme environment. STk (Scheme +
Tk) is a free Scheme interpreter with native support for the Tk graphical toolkit. However many other
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Scheme interpreters exist and for example the use of Guile in the forthcoming versions is possible.
ProSpect inherits the basis of λ-calculus and symbolic programming from the functional language.
There is no a priori distinction either between code and data regarding the computer programming as-
pects or between instrument and score concerning music composition. As a consequence this artificial
boundary between instrument and score present for example in CSound [Ver86, Ver92] and MPEG-4
[VGS98] does not exist anymore. Nevertheless ProSpect is not completely written in Scheme. Unlike
Common Lisp Music [LLP99] – entirely written in Common Lisp – ProSpect takes advantage of ex-
tensions that are written in C, which is a lower-level language but also a more efficient one in terms
of computation speed.

Graphical User Interface
ProSpect is based on STk (Scheme + Tk), and thus inherits from it not only the Scheme interpreter but
also the Tk graphical toolkit, which offers a wide variety of graphical objects (widgets) and primitives.
ProSpect also provides the user with new functions to facilitate the management of menus or dialog
boxes for example.

Digital Signal Processing
The initial possibilities of the functional language are extended by a library of new data types and
primitives implemented in C programming language. Thus, one can easily manipulate for example
complex numbers, vectors or matrices in a very efficient way. Among the available extensions are new
mathematical functions, linear algebra, as well as primitives for encoding and compressing data flows.
ProSpect also contains functions that come from psychoacoustics, even if digital signal processing
remains the main goal of the extensions. Of course it contains many basic tools issued from signal
theory, such as analysis windows (Hann, Hamming, Blackman, Kaiser, etc.), algorithms for filtering
or resampling, as well as the Fourier transform for example. By the way the Fast Fourier Transform
used in ProSpect is the so-called “Fastest Fourier Transform in the West” (FFTW) [FJ98] developed
at the MIT, which is freely distributed under the terms of the LGPL too.

Extensions

The software base can easily be extended using plug-in modules written in Scheme or in C pro-
gramming languages for example. Using extensions it is possible to dynamically add sound models,
analysis or synthesis methods, as well as file formats. The software programs derived from ProSpect
can define their own extensions, which can in turn be reused in new programs. Defining such an
extension is easy. The following example defines a new file format for spectral sounds:

(prospect-link "msc") ; dynamic linking of msc.so

(plugin-insert-spectral-format
’("Spectral Model (Compressed)"
(".msc")
spectral-test-msc
spectral-load-msc
spectral-save-msc))

(prospect-provide "msc")
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This format is called “Spectral Model (Compressed)” and has a default filename extension msc. The
test function decides whether of not a given file is in this format, the load function loads a file
within this format, and the save function saves a spectral sound in a file using this format. These three
functions are defined in the msc.so file, which is dynamically linked at the beginning of the example
and contains the object code resulting from the compilation of a C program. ProSpect provides the
user with all the primitives necessary for the interface between the C and Scheme languages. Here is
the glue code between C and Scheme as well as the interface of the C part of the extension module
above:

#include "plugin_scm.h"
#include "msc.h"

PLUGIN_SPECTRAL_FORMAT_DEFINE (msc, test_msc, load_msc, save_msc);

where file msc.h is:

#ifndef __SPECTRAL_FORMATS_MSC_H__
#define __SPECTRAL_FORMATS_MSC_H__

#include <prospect.h>
#include "spectral.h"

extern bool test_msc (char *name);
extern spectral load_msc (char *name, ...);
extern bool save_msc (spectral s, char *name, ...);

#endif /* !__SPECTRAL_FORMATS_MSC_H__ */

2.6.2 Sound Models

Sound models are extensions of ProSpect too. Currently there are mainly three models available:

• The temporal model (temporal), where each sound is represented by the acoustic pressure level
at a certain point in space, as a function of time;

• The additive synthesis model (spectral), where sounds consist of a set of partials, sinusoidal
oscillators for which amplitudes and frequencies evolve slowly in time;

• The structured additive synthesis model (sas), structuring the parameters of the classic additive
synthesis to give birth to only four new parameters closer to the perception.

It is possible to define a sound from a file (load function) and inversely to create such a file from
a sound defined in memory (save function). With these simple functions performing the conversion
among different file formats but within the same sound model is easy. The following example converts
a sound in the temporal model from the WAV format to the AIFF format:

(temporal-save (temporal-load "sound.wav") "sound.aiff")

The main sound formats are supported, such as AIFF or WAV for the temporal model. In fact the list
of the file formats supported by ProSpect gets longer day after day since it is very easy to add a new
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format, which is inserted in the general architecture as a plug-in module. ProSpect supports many file
formats for spectral sounds, compressed or not. The support for the Sound Description Interchange
Format (SDIF) file format [WCF+99, IRC00, CNM00] is under development.

One can also get the sampling rate of the sound, its size in samples as well as its duration in
seconds. It is possible to normalize the amplitude of a sound or to change its sampling rate for
example. One can also play the sound, even spectral ones. The underlying real-time synthesis is
performed by our ReSpect synthesis module, via the SAS library for the SAS model (see Chapter 4).

Even if there are some common functionalities among the different sound models, the set of
manipulations that can be performed on a given sound depends on the model in which this sound is
expressed.

Temporal Model

In the temporal model the sound is represented as the acoustic pressure level at a certain location
in space. Every band-limited sound can be represented as a stream of samples resulting from the
sampling of this pressure level. Recording and reproducing such a sound can be done quite easily
using, respectively, analog-to-digital and digital-to-analog converters, but the manipulation of the
sound is difficult and often not intuitive. The following example records 10 seconds of sound and
normalizes its amplitude before playing it back:

(define sound (temporal-record 10))
(temporal-normalize! sound)
(temporal-play sound)

The user can get the number of samples in the sound (size) as well as the duration of the sound in
seconds (time), but it is impossible to modify them. On the other hand it is possible to get and change
the sampling rate (rate) of any temporal sound. In order to go from the 48000-Hz DAT (Digital Audio
Tape) format to the 44100-Hz audio CD format, while inevitably loosing the frequency contents of
the original sound above 44100/2 = 22050 Hz, one can type:

(define s (temporal-resample (temporal-load "sound.wav") temporal-rate-cd))

It is also possible to construct new sounds using superpositions (mix) and sequences (seq) of existing
sounds, provided that they all have the same sampling rate. The following example constructs the s4
sound consisting of the superposition of the s1 and s2 sounds followed in sequence by the s3 sound:

(define s1 (temporal-load "sound1.aiff"))
(define s2 (temporal-load "sound2.aiff"))
(define s3 (temporal-load "sound3.aiff"))
(define s4 (temporal-seq (temporal-mix s1 s2) s3))

In fact the number of manipulations allowed in the temporal model is very limited. On the one hand the
amplitude of the sound can be easily modified. On the other hand its frequency, duration, and timbre
are interdependent and it is extremely difficult to change any of these parameters without changing
the others.

Spectral models do allow to separate these parameters, since they are dealing with the frequency
contents of the sound at certain times. They parameterize sound at the (human) receptor, possibly
taking perception into account.
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Additive Synthesis (AS) Model

The McAulay-Quatieri analysis [MQ86], implemented in Lemur [FH96], extracts partials from the
sounds. These partials are sinusoidal oscillators for which the amplitudes and frequencies evolve
slowly with time. These evolutions are sampled and it is possible, as in the temporal model, to obtain
and modify their sampling rate (rate). It is also possible to get the number of partials, the maximum
number of simultaneous partials (polyphony), as well as the frequency and amplitude of each partial.
One can also perform time-stretching or perfect filtering, that is filtering without artifacts. It is possible
to amplify or transpose a sound, but this transposition does not take the formants of the sound into
account.

Although the primitives on spectral sounds are too numerous to be enumerated in details, many of
them are illustrated in the remainder of this chapter.

This additive model can reproduce a wide variety of sounds, provided that they are without noise
or transients though. However sound models based on additive synthesis are often difficult to use for
creating or editing sounds. The reason for this difficulty is the huge number of model parameters that
are only remotely related to musical ones as perceived by a listener.

Structured Additive Synthesis (SAS) Model

In the Structured Additive Synthesis (SAS) model (see Section 2.4) every monophonic sound can be
described in terms of amplitude, frequency, color, and warping. All these parameters vary slowly over
time. This model favors the unification of the representations of sound and music at a sub-symbolic
level, since the definition of a sound or a musical operation can be done in the same way in this model
(see Chapter 5).

A sound S in the SAS model is: (A,F,C,W), where the two first parameters – amplitude A and
frequency F – are one-dimensional, functions of time only, while the two others – color C and warping
W – are two-dimensional, functions of both frequency and time. All these parameters are functions
that vary slowly over time:

Amplitude A : time→ amplitude
Frequency F : time→ frequency
Color C : frequency× time→ amplitude
Warping W : frequency× time→ frequency

In the current implementation of the SAS model, four functions get the parameter values at a given
time (sas-a-get, sas-f-get, sas-c-get, and sas-w-get), and four other functions allow to change
these values (sas-a-set!, sas-f-set!, sas-c-set!, and sas-w-set!). It is then possible to per-
form all the other necessary manipulations on these parameters directly in Scheme, as explained later.

In fact two other sound models also exist in ProSpect. The “harmonic” model places a strong
constraint of proportionality among the frequencies of the partials. This is indeed a restricted version
of the SAS model, the notion of warping being absent. However the amplitude, frequency, and color of
sound can still be manipulated in this model. The second sound model is the one of the phase vocoder
[Moo78c, Ser97a], that uses the short-time Fourier transform in order to produce a series of short-term
spectra taken at successive times in the temporal sound. This model is not directly implemented in
ProSpect, but is part of the InSpect sound analysis software tool described in Chapter 3.

2.6.3 Examples of Sound Transformations

It is possible to modify the duration, amplitude, frequency, and timbre of the sounds.
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Time

Changing the duration of a spectral sound is very easy. The following example calls the stretch-time
function that allows here to stretch the s0 sound in time, from the starting time 0 to the end of the
stretched sound, using a constant stretching factor. A stretching factor of 1 would have left the original
sound unmodified.

; original
(define s0 (spectral-load "cello.msc"))
; 2 times slower
(define s1
(spectral-stretch-time s0 0 (* (spectral-time s0) 2) (lambda (t) 0.5)))
; 2 times faster
(define s2
(spectral-stretch-time s0 0 (* (spectral-time s0) 0.5) (lambda (t) 2)))

However the function of time used as a parameter is not necessarily constant. It can be considered as
a signal, with variations much slower than the signal of the resulting sound. This mechanism allows
to realize a multi-scale composition [Vag98] (see Chapter 5).

Amplitude and Frequency

Amplifying or transposing a spectral sound is just as easy. The parameters of the amplification or
transposition functions are the original sound (s0 here) and, respectively, an amplification or a trans-
position factor that may vary over time.

; fade-in
(define (fade-in s) (lambda (t) (/ t (spectral-time s))))
(define s3 (spectral-amplify s0 (fade-in s0)))

; higher octave
(define s4 (spectral-transpose s0 (lambda (t) 2)))

Color and Warping

Perfect filtering of a spectral sound is easy too. It is also possible to change the harmonicity of a sound
thanks to the warping. The following examples illustrate these possibilities:

(define (filter f a d t) (* a (- 1 (/ f 6000))))
(define s5 (warp-amplitude s0 filter))

(define (warper f a d t) (pow f 1.04))
(define s6 (warp-frequency s0 warper))

The above filter (filter) is in fact a function returning the gain of the filter as a function of
frequency f, but also of amplitude a, duration of the sound d, and current time t. This complex way
of defining filters allows to design extremely interesting filters. But the simplest way to define a filter
is to use the fact that in the SAS model a filter is simply defined by its color as a function of time:
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(define (sas-filter! sound filter)
(do-loop 0 (sas-size sound) 1 ; sound from the beginning to the end
(lambda (i)
(sas-c-set! sound i
(sas-envelope-multiply (sas-c-get sound i) (sas-c-get filter i))))))

(define (sas-example)
(let* ((source (sas-load "source.sas"))

(filter (sas-load "filter.sas")))
(sas-filter! source filter)
(sas-save source "result.sas")))

2.6.4 Examples of Sound Hybridizations

One of the advantages of the SAS model is its aptitude for creating hybrid sounds.

Cross-Synthesis by Color Swapping

One can perform many kinds of cross-syntheses only by interchanging parameters among different
sounds. Figure 2.24 illustrates a cross-synthesis on the color parameter between S1 and S2. Program-
ming such a transformation within ProSpect is trivial:

(define (sas-cross! s1 s2)
(do-loop 0 (max (sas-size s1) (sas-size s2)) 1
(lambda (i)
(let* ((c1 (sas-c-get s1 i))

(c2 (sas-c-get s2 i)))
(sas-c-set! s1 i c2)
(sas-c-set! s2 i c1)))))

Simple Morphing

Of course one can also blend the parameters of different sounds. The following program realizes a
simple morphing from one sound to a second one, without taking formants into account:

(define (morpher v1 v2 alpha)
(* (pow v1 (- 1 alpha)) (pow v2 alpha)))

(define (sas-envelope-blend e1 e2 morpher alpha)
(if (= (vector-length e1) (vector-length e2))
(let ((e (make-vector (vector-length e1))))
(do-loop 0 (vector-length e) 1
(lambda (i)
(vector-set! e i (morpher (vector-ref e1 i) (vector-ref e2 i) alpha))))

e)))

(define (sas-morphing s1 s2 morpher)
(let* ((n (max (sas-size s1) (sas-size s2)))
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(s (sas-make n)))
(do-loop 0 n 1
(lambda (i)
(let* ((alpha (/ i (- n 1)))

(a1 (sas-a-get s1 i))
(f1 (sas-f-get s1 i))
(c1 (sas-c-get s1 i))
(w1 (sas-w-get s1 i))
(a2 (sas-a-get s2 i))
(f2 (sas-f-get s2 i))
(c2 (sas-c-get s2 i))
(w2 (sas-w-get s2 i))
(a (morpher a1 a2 alpha))
(f (morpher f1 f2 alpha))
(c (sas-envelope-blend c1 c2 morpher alpha))
(w (sas-envelope-blend w1 w2 morpher alpha)))

(sas-a-set! s i a)
(sas-f-set! s i f)
(sas-c-set! s i c)
(sas-w-set! s i w))))

s))

(define (sas-example)
(let* ((s1 (sas-load "source1.sas"))

(s2 (sas-load "source2.sas"))
(s (sas-morphing s1 s2 morpher)))

(sas-save s "target.sas")))

This algorithm was used to generate the sounds illustrated in Figure 2.26.
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Chapter 3

Sound Analysis

Digital sound synthesis and manipulation require a good model of sound (see Chapter 2). Spectral
models provide general representations in which such operations can be performed in a very natural
and musically expressive way. In order to faithfully imitate or transform existing sounds, such models
require an analysis method to extract spectral parameters from sounds which were usually recorded in
the temporal model, that is audio signal amplitude as a function of time. The accuracy of the analysis
method is extremely important since the perceived quality of the resulting spectral sounds depends
mainly on it. The main interest of an accurate analysis method, providing precise parameters for the
spectral models, is to allow ever deeper musical transformations on sound by minimizing deformations
due to analysis artifacts.

Designing an accurate analysis method is a difficult problem. This chapter presents some analysis
methods for extracting spectral parameters from sounds originally in the temporal model. For those
analysis methods to be efficient, the spectral model considered has to be restricted.

The remainder of this chapter will focus on sounds for sinusoidal modeling. In practice, this
restriction means that the considered sounds should have a low noise level, which is true for many
clear natural sounds, perhaps after their attack phase. Thus, this chapter only concerns an analysis
method for extracting parameters for the deterministic part of the sounds. The deterministic part is the
sum of sinusoidal oscillators whose frequencies and amplitudes evolve in a slow time-varying manner.
Such a slow time-varying oscillator is commonly called a partial. More formally:

a(t) =
P

∑
p=1

osc( fp(t),ap(t),φp(0)) (3.1)

where P is the number of partials and

osc( fp(t),ap(t),φp(0)) = ap(t)cos(φp(t)) (3.2)

with
dφp

dt
(t) = 2π fp(t) i.e. φp(t) = φp(0)+ 2π

∫ t

0
fp(u) du (3.3)

The functions fp, ap, and φp are the frequency, amplitude, and phase of the p-th partial, respectively.
The initial phase φp(0) will be ignored during analysis and set to an arbitrary value for resynthesis.
This is a consequence of psychoacoustic experiments (see Chapter 1). The choice of the π/2 value
has been done in our ReSpect synthesis software package (see Chapter 4).

Although it is often useful to distinguish two types of partials – harmonic and non-harmonic
partials – depending on whether or not they have equally spaced frequencies [MP80a, MP80b], this

87
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distinction will not be done here. This distinction is of great interest for pitch detection, and pitch-
synchronous analysis methods can take advantage of it. However, this is not the case of the techniques
presented in this chapter.

Another restriction is that the partials have to be spaced enough in frequency. Given any sound a,
there must exist a minimal distance d > 0 so that:

mini6= j,t{| f j(t)− fi(t)|}> d

This condition, which also prevents two partials frequencies from “crossing”, is a reasonable hypoth-
esis verified for many monophonic natural sounds. The reasons why it is needed will be discussed in
Sections 3.2 and 3.3.

Section 3.1 presents the classic Fourier analysis and points out its main limitations and impreci-
sions, while Section 3.2 explains some interesting improvements to this classic Fourier analysis. In
Section 3.3 we present our high precision Fourier analysis method using signal derivatives. After
this short-time analysis, a partial-tracking stage is necessary. Section 3.4 describes the most famous
partial-tracking strategies. Section 3.5 shows how we structure the partials in order to get the four
parameters of the Structured Additive Synthesis (SAS) model (see Chapter 2). Short-time analysis,
partial tracking, as well as SAS structuring are implemented in our InSpect analysis program, pre-
sented in Section 3.6. We have also implemented in InSpect an interesting technique for lossless
compression of the sinusoidal modeling parameters. This technique is presented in Section 3.7. Fi-
nally, Section 3.8 shows how the reanalysis of the parameters coming from initial analysis could turn
out to be extremely useful not only to enhance the compression ratio, but also to perform very inter-
esting musical processing on the tremolo or vibrato of the sounds for example. This reanalysis turns
out to be of great interest for pitch tracking and source separation too.

3.1 Fourier Analysis

Many sinusoidal models have been proposed in recent years, and have demonstrated their practical
interest in software implementations like Lemur [FH96], SMS [Ser97b], and ProSpect (see Chapter
2), thanks to the always increasing power of modern computers. However, sinusoidal models are
derived from the work of Joseph Fourier during the nineteenth century.

The Fourier transform (FT) and its discrete version – the discrete Fourier transform (DFT) – are
mathematical operations defined by Equations 3.4 and 3.5, respectively:

FT( f ) =
∫ +∞

−∞
a(t) e− j2π f t dt (3.4)

DFT[m] =
2
N

N−1

∑
n=0

a[n] e− j 2π
N nm (3.5)

The Fast Fourier Transform (FFT) algorithm computes the discrete Fourier transform with a complex-
ity of only O(N log(N)). Note that in Equation 3.5 a 2

N factor has been added for the purposes of
normalization (see Chapter 1).

The Fourier transform converts the temporal signal (amplitude versus time) into a spectral rep-
resentation (amplitude versus frequency). It gives the frequency image of the whole sound, and the
entire signal is averaged into a single spectrum. This spectrum coincides with our perception only for
stationary sounds. Because most sounds evolve in time, sound analysis algorithms must produce time-
varying results. Those algorithms generally repeat the same procedures on successive short sections
of sound. This kind of processing is called short-time analysis.
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a

t

x

Figure 3.1: A sliding analysis window hops through the entire signal. At each step a frame window x
of temporal signal is produced.

3.1.1 Short-Time Fourier Analysis

Among the most famous short-time analyses is the short-time Fourier transform [All77], which gives
a time-dependent version of the Fourier transform. It produces a series of short-term spectra taken
on successive – often overlapping – temporal frames, which are small pieces of temporal signal. In
practice this is a discrete signal resulting from uniform sampling with sampling rate Fs.

A sliding analysis window hops through the entire signal, as shown in Figure 3.1. Usually the
width N of the analysis window as well as the hop size are constants. Then, for each frame window x
of N consecutive samples, its (discrete) Fourier transform X is computed:

X [m] =
2
N

N−1

∑
n=0

x[n] e− j 2π
N nm (3.6)

The classic approach to estimate the frequency and amplitude of the partials is to scan the spectrum
for local maxima – peaks – in the magnitude spectrum, and to determine the frequency, amplitude,
and possibly phase at these maxima.

In fact a (discrete) windowing function w is always applied (multiplied) to x prior to the Fourier
transform. Figure 3.2 illustrates this. Since e jφ = cos(φ) + j sin(φ), the real and imaginary parts of
the complex exponential function in Equation 3.6 are cosine and sine functions, respectively. Another
way to understand Equation 3.6 is to look at Figure 3.2 from bottom to top and to consider that these
cosines and sines are multiplied by the analysis window w, and that these products are then multiplied
to the signal x. The products of the analysis window with oscillations look like wavelets, but are in
fact Gabor grains (provided that w is a Gaussian though), as the one shown in Figure 3.3. That is why
this transform is also called the Gabor transform when w is a Gaussian [Arf91].

If w[k] is 1 for every 0 ≤ k < N (and 0 outside) – as in Equation 3.6 – w is called the rectangular
window (because the shape of its graph looks like a rectangle), and this is probably the worst analysis
window.

The remainder of this section will focus on the (short-term) power spectra obtained from the
short-time Fourier transform.
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Figure 3.2: In Equation 3.6, an analysis window w is multiplied to the temporal frame x, then the
result is multiplied by complex exponential functions. From top to bottom, the window frame x, the
analysis window w, and the real part of one of the exponentials are displayed in both the time (left)
and frequency (right) domains.
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Figure 3.3: Example of a Gabor grain.

3.1.2 Choosing the Analysis Window

The choice of the analysis window is very important. Although an exhaustive discussion about analy-
sis windows is beyond this chapter, Figure 3.1 provides a short summary of the characteristics of the
most common analysis windows. Basic knowledge of analysis windows is required to fully under-
stand the discussion below. Information about analysis windows can be found for example in [Har78]
and [OS89].

Equations 3.7, 3.8, 3.9, 3.10, and 3.11 are the equations of the most commonly used analysis
windows, that is the rectangular, Bartlett, Hamming, Hann, and Blackman windows, respectively. All
these equations are valid only for 0≤ n< N. Outside this interval their value is simply 0.

wrectangular,N(n) = 1 (3.7)

wBartlett,N(n) =

{ 2n
N−1 if 0≤ n≤ N−1

2
2− 2n

N−1 if N−1
2 < n< N

(3.8)

wHamming,N(n) = 0.54−0.46cos

(
2πn

N−1

)
(3.9)

wHann,N(n) =
1
2

(
1− cos

(
2πn

N−1

))
(3.10)

wBlackman,N(n) = 0.42−0.5cos

(
2πn

N−1

)
+ 0.08cos

(
4πn

N−1

)
(3.11)

The first one is called the rectangular window because the shape of its graph in the temporal domain
looks like a rectangle. Figure 3.4 shows the temporal representations of the other windows. The
Bartlett window is also called the triangular window, again because of the shape of its graph. The
Hann window is named after Julius von Hann, an Austrian meteorologist, and is often referred to as
the Hanning window. The term “hanning” was used in [BT58] by Blackman and Tukey to describe the
operation of applying this window to a signal and has since become the most widely used name for the
window. But the “hanning” term was used mainly in an ironical way. The Hann window is close to the
Hamming window in the frequency domain and close to the Blackman window in the time domain.
However the Hann window has indeed very interesting properties, and turns out to be very useful for
sound analysis and synthesis. That is why in my opinion the ironical term “hanning” should not be
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Figure 3.4: Temporal representations of some classic analysis windows.
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used in the remainder of this chapter. Figure 3.5 shows the power spectra of these analysis windows.
Note that although the Hann and Blackman windows may look similar in the temporal domain, they
have in fact very different spectra, and thus different properties.

Of course there are many other windows, such as the Kaiser windows [OS89] which allow to
quantify the trade-off between the main-lobe width and side-lobe area. The Kaiser windows are
defined by the following equation:

wKaiser,β,N(n) =

I0

(
β
√

1−
(

n−α
α
)2
)

I0 (β)
(3.12)

where I0 is the modified Bessel function of the first kind and order 0. By tuning the β parameter,
it is possible to design a Kaiser window with the same properties than those of the usual windows
described above. Let Asl be the ratio in dB of the amplitude of the main lobe (ml) to the amplitude
of the largest side lobe (sl). The values for the classic analysis windows are given in Table 3.1. Let
∆ml be the main-lobe width, defined as the symmetric distance between the central zero crossings in
the frequency domain. To obtain this parameter for the classic analysis windows, just use the right
column of Table 3.1 and multiply it by 2π

Fs
. The Kaiser and Schafer formulas can be used to determine

the two β and N parameters from Asl and ∆ml:

β(Asl) =





0 if Asl ≤ 13.26
13.26 + 0.7660(Asl−13.26)0.4 + · · ·
· · ·+ 0.09834(Asl−13.26) if 13.26< Asl ≤ 60
0.12438(Asl + 6.3) if 60< Asl < 120

(3.13)

N (Asl,∆ml) =

[
24π(Asl + 12)

155∆ml

]
+ 1 (3.14)

Window Type
First, the type of the analysis window must be fixed, according to three principal requirements. First of
all, a pure sinusoidal signal should always lead to a single local maximum in the magnitude spectrum,
in order to have only one peak during the partial-tracking stage (see Section 3.4). More formally,
with B = Fs

N , for all 0 ≤ f < B , the (W ( f + kB))k≥0 sequence should be decreasing. Among all the
windows that are considered in Figure 3.1, only the rectangular and Hann windows have this “one-
peak” property. In fact this requirement is important only for the partial-tracking stage following the
short-term analysis, and not for the analysis itself. This requirement can be weakened by considering
only the maxima above a certain magnitude threshold. The next requirements are more important
since they prevent neighboring frequency components from contaminating the measurement of any
particular frequency component. The second requirement is that the side lobes can be neglected in
comparison to the main lobe. This is the case for the Hann window, but not for the rectangular one.
Then, the third requirement is that the main lobe must be narrow, in order to have good frequency
resolution. But the price to pay for this is to increase the magnitudes of the side lobes. A compromise
must be reached. Again the Hann window turns out to be a good candidate. The InSpect (see Section
3.6) analysis software implements many windows, and the Hann window has proven to perform very
well in practice (see below).

Window Size
The size of the analysis window must then be precised. On the one hand N has to be large enough so
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Figure 3.5: Power spectra of some analysis windows, from top to bottom: Wrectangular, WBartlett,
WHamming, WHann, and WBlackman.
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type one-peak side/main-lobe ratio (−Asl) main-lobe width

rectangular yes -13 dB 2B
Bartlett (triangular) no -26 dB 4B

Hann yes -31 dB 4B
Hamming no -42 dB 4B
Blackman no -58 dB 6B

Table 3.1: Some analysis windows characteristics. The side/main-lobe ratio is the relative amplitude
between the main lobe and the strongest side lobe. The main-lobe width is defined as the symmetric
distance between the central zero crossings in the frequency domain.

that B < mini6= j(| f j− fi|), which is always possible because of the model restrictions assumed at the
beginning of this chapter. The reason behind this condition is that two frequencies must lie in different
Fourier transform bins, because fiai+ f ja j

ai+a j
6= fi + f j and this would cause problems with Equation 3.37

(bin contamination). On the other hand, the analysis window should remain small enough, so that the
frequencies and amplitudes may not vary too much throughout the window.

3.1.3 Limitations of the Classic Fourier Analysis

The analysis window has a great impact on the analysis precision in both frequency and amplitude.
Its effects on the spectrum must be reduced as much as possible. Figure 3.6 provides a clear synthetic
view of two phenomena. It shows the result of the short-time Fourier transform on a single sinusoidal
oscillator whose frequency is linearly increasing while its amplitude remains constant. The analyzed
frequency curve is not a line as it should be, but a sort of stairs, due to spectrum sampling (frequency
imprecision). And the analyzed amplitude curve is not flat, i.e. not a constant, but a succession of
bumps, due to the shape of the analysis window main lobe (amplitude imprecision). These are the
reasons why the classic phase vocoder can perform poorly when analyzing sounds with vibrato or
tremolo, respectively.

Frequency Imprecision

Let us denote by S the spectrum of a signal s, and by S( f ) its value at frequency f . Since in practice
the discrete Fourier transform is used, this spectrum is sampled from 0 Hz (DC component) to Fs

2 Hz
(Nyquist frequency) by steps of Fs

N Hz. Let us denote by S[k] its value at frequency kB where B = Fs
N .

The Fourier transform can be regarded as a fixed filter bank, and the instantaneous amplitude and
frequency are computed for each of the N channel filters or bins.

The first limitation comes from the fact that the frequency precision is inversely proportional to
N. A good frequency precision requires a small B , i.e. a large N, which leads to a poor precision in
time (since N is the analysis window width in samples). On the contrary, a good time resolution leads
to a poor frequency precision. This is the well-known trade-off of time versus frequency in the classic
Fourier analysis.

Amplitude Imprecision

The spectrum of the wx product is the convolution W ∗X . If x is a pure sinusoidal oscillation with
amplitude 1 and frequency f , X is a spectral ray: |X( f )| = 1 and |X( f ′)| = 0 for f ′ 6= f . But since
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frequency

time
amplitude

time

Figure 3.6: Original (dashed) versus Fourier analyzed (solid) frequency and amplitude evolutions
for a single sinusoidal oscillator whose frequency is linearly increasing while its amplitude remains
constant. (The marks on the time axis indicate when the oscillator frequency goes from one bin to the
other.)



3.2. IMPROVEMENTS TO FOURIER ANALYSIS 97

Frequency/(2PI/N)
10.50-0.5-1

1 Amplitude*2

0.8

0.6

0.4

0.2

Figure 3.7: Hann window lobes.

rectangular Bartlett (triangular) Hann Hamming Blackman

36% 19% 15% 18% 12%

Table 3.2: Amplitude imprecision for some windows.

W is similar to the window spectra shown in Figure 3.5, W ∗X is far from being a spectral ray as it
should be. More precisely, to obtain a spectral ray W should be as close to an impulse (|W (0)| = 1
and |W ( f )| = 0 for f 6= 0) as possible, which is impossible with a finite-duration analysis window.
So in practice W often consists of “lobes”, and it is only required that the side-lobe amplitudes are
negligible compared to the main-lobe amplitude. Unfortunately, this side/main-lobe ratio is inversely
proportional to the main-lobe width, which determines the frequency resolution of the window. A
good frequency resolution requires a small main-lobe width, but because of the shape of the lobe, the
magnitude of the spectrum is distorted as shown in Figure 3.6. This is the reason why the amplitude
of a sinusoidal oscillator is so distorted as its frequency goes from bin to bin (see Figure 3.7). Any
good analysis method should take care of this phenomenon. Of course such little deformations cannot
generally be heard, but they may become dramatically audible as soon as some transformations are
performed on the sound. Figure 3.2 shows that the amplitude imprecisions for the most common
analysis windows are quite important. In order to minimize this imprecision, a “flat” main lobe is
necessary. But this is possible only with a very large main lobe. So there is a sort of trade-off of
amplitude precision versus frequency precision.

3.2 Improvements to Fourier Analysis

Accurate short-time spectral analysis is extremely important for many computer music analysis / syn-
thesis methods, such as the George-Smith [GS90] analysis, as well as the McAulay-Quatieri analysis
[MQ86] where accurately identifying frequency components is the first step for a key technique called
partial tracking (see Section 3.4). When no precautions are taken, the imprecisions pointed out in the
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previous section appear. As a consequence, many analysis / synthesis software tools suffer from the
short-time Fourier analysis limitations shown above. Many techniques have been proposed in order
to reduce these limitations.

In spite of its many drawbacks, the short-time Fourier transform is often used in the very first
step of the analysis process. Regarding frequency, the imprecision in frequency ∆ f of the classic
short-time Fourier analysis or the Gabor analysis is a constant, inversely proportional to the analysis
window width N.

We need to extract the partials of the sound, that is to measure for each partial its frequency, am-
plitude, and possibly phase. This section focuses on methods that reduce the imprecision in frequency,
as well as the imprecision in amplitude and possibly phase.

Wavelets perform a frequency decomposition with a constant ∆ f / f factor, that is a frequency
imprecision ∆ f proportional to the frequency f . This resolution is closer to the behavior of the auditory
system. Moreover the wavelet transforms have associated inverse transforms, thus facilitating the
synthesis stage [Eva91].

The problem is that the parameters obtained from wavelet analysis are not well-suited for musical
sound transformations at all. The harmonics of a complex sound must be identified in order to allow
musical transformations without dramatically audible artifacts. Thus an important problem with the
constant ∆ f / f factor in the wavelet transforms occurs for high-frequency harmonics, for which the
frequency resolution is so bad that several harmonics may be averaged in one coefficient of the wavelet
transform.

3.2.1 About Estimators

Partials are spectral peaks, and should correspond to local maxima in the power spectrum. To deter-
mine the parameters – frequency, amplitude, and phase – of the partials, the classic Fourier analysis
considers only the Fourier transform bin with the greatest magnitude. This gives the exact parameters
only if the frequency of the partial is exactly one of those used by the Fourier transform, which is very
unlikely in practice. When the frequency to analyze lies between two Fourier transform frequencies,
the convolution of this frequency with the analysis window is sampled by the discrete Fourier trans-
form. The effect on the spectrum is that there is a local maximum for a certain Fourier transform bin,
but this time the neighboring bins have significant magnitudes too, as shown in Figure 3.8. In order to
increase the precision of the classic Fourier analysis for the measurement of a certain spectral peak, a
good idea is to consider not only this bin, but also some of its neighbors.

Estimators are algorithms using the main bin and some of its left and right neighbors in order
to refine the measurement of the parameters of the partial. Spectral components which are close in
frequency additively interfere, affecting each-other’s spectra. It is therefore desirable to make all
spectral measurements close to the maximum of a peak, so as to maximize the influence from that
peak and minimize the influence from adjacent peaks. That is the reason why in practice only the left
and right neighbors are used, to prevent other partials – close in frequency – from interfering in the
measurement.

There are many estimators. Jacobsen [Jac00] and Kootsookos [Koo99] have taken an inventory of
them. Among these estimators are the barycentric peak interpolation, the two Quinn’s estimators, as
well as the Jain and Grandke methods. Their algorithms can be found for example in [Don99] and are
given in Tables 3.3, 3.4, and 3.5, respectively.

Unfortunately it appears that most of these estimators are mostly empirical, that is without any
clear mathematical justification. That is the case for the barycentric interpolation, as well as the Jain
and Grandke methods. However Quinn published the justifications for his estimators in [Qui94].
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Figure 3.8: When the analyzed frequency is not a multiple of the lowest Fourier transform frequency,
the neighbors of the main bin have significant magnitudes too.

Barycentric Peak Interpolation
al ← |X [mp−1]|
ac← |X [mp]|
ar← |X [mp + 1]|
d← (al−ar)/(al + ac + ar)
mp← mp + d

Table 3.3: Algorithm for barycentric peak interpolation.
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Quinn’s First Estimator
a+← (X [mp + 1].re ·X [mp].re + X [mp + 1].im ·X [mp].im)/|X [mp]|2
d+← a+/(a+−1)

a−← (X [mp−1].re ·X [mp].re + X [mp−1].im ·X [mp].im)/|X [mp]|2
d−← a−/(1−a−)
d← ((d+ > 0) && (d− > 0)) ? d+ : d−
mp← mp + d

Quinn’s Second Estimator

τ(x) = 1
4 log(3x2 + 6x + 1)−

√
6

24 log
(

(x + 1−
√

2
3)/(x + 1 +

√
2
3)
)

a+← (X [mp + 1].re ·X [mp].re + X [mp + 1].im ·X [mp].im)/|X [mp]|2
d+← a+/(a+−1)

a−← (X [mp−1].re ·X [mp].re + X [mp−1].im ·X [mp].im)/|X [mp]|2
d−← a−/(1−a−)

d← (d+ + d−)/2 + τ(d+
2)− τ(d−2)

mp← mp + d

Table 3.4: Algorithms for Quinn’s first (top) and second (bottom) estimators.

Jain Method Grandke Method
al ← |X [mp−1]| al ← |X [mp−1]|
ac← |X [mp]| ac← |X [mp]|
ar← |X [mp + 1]| ar← |X [mp + 1]|
if (al > ar) if (al > ar)

a← ac
al

a← ac
al

d← a
1+a d← 2a−1

a+1
mp← mp−1 + d mp← mp−2 + d

else else
a← ar

ac
a← ar

ac

d← a
1+a d← 2a−1

a+1
mp← mp + d mp← mp−1 + d

Table 3.5: Algorithms for Jain (left) and Grandke (right) methods.
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Figure 3.9: The main peak and its two neighbors are located on a parabola corresponding to the shape
of the main lobe of the analysis window.

All these estimators have been implemented in the new version of our analysis tool InSpect (see
Section 3.6). It appears that the accuracies of these estimators are not satisfactory, even if Quinn’s
second estimator seems much better than the others.

Other estimators exist, such as the parabolic peak interpolation and the triangular algorithm. These
two estimators have solid mathematical foundations and perform extremely well in practice.

3.2.2 Parabolic Interpolation

The shape of the main lobe of most analysis windows looks like a parabola, as shown in Figure 3.8
and on the zoom on the main lobe in Figure 3.9. For each partial, the parabolic interpolation uses the
main bin and its left and right neighbors in a curve-fitting process with a parabola, using the Brent
method [PTVF92] to estimate the maximum of the parabola. Table 3.6 gives the resulting algorithm.

This method gives best results with a Gaussian analysis window, because the shape of its main
– and unique – lobe is exactly a parabola in the power spectrum (see Figure 3.10). Gaussian-like
windows can be calculated using the following equation:

wGauss,α,N (n) = e−α( 2n
N −1)

2

for 0≤ n< N (3.15)

In practice, we use α = 3.
In order to increase the precision of the parabolic interpolation, zero-padding can be used as in

SMS [Ser89, Ser97b].
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Parabolic Peak Interpolation
/* frequency correction */
al ← 20 log10(|X [mp−1]|)
ac← 20 log10(|X [mp]|)
ar← 20 log10(|X [mp + 1]|)
d← 1

2
al−ar

al−2ac+ar
/* Brent */

mp← mp + d
/* amplitude (in dB) correction */
ac← ac− (al−ar) ·d/4

Table 3.6: Algorithm for parabolic peak interpolation, also known as quadratic interpolation.
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Figure 3.10: The truncated Gaussian window of Equation 3.15 with N = 256 (left) and its power
spectrum (right), showing a parabolic main lobe.
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Figure 3.11: Triangular Frequency (TriFreq) window (S = 4, N = 1024) in the time (top) and fre-
quency (bottom) domains. Left and right plots correspond, respectively, to the linear and logarithmic
(dB) scales for the magnitude.

3.2.3 Triangular Algorithm

The triangle analysis algorithm [AKZ99, KZ00] – also known as the triangular algorithm – is named
after the shape of the analysis window in the frequency domain. Keiler and Zölzer propose to use a
window whose magnitude response can be determined by a simple function. A triangular frequency
response can be described by only two lines. After applying a Fourier transform to the input data,
for each detected local maximum of the magnitude spectrum a fitting of two lines in the least mean
square error sense is performed through the spectrum data. This is the same idea as the parabolic
interpolation, but this time the window is not a Gaussian, and the curve-fitting is performed using
a “triangle” instead of a parabola. The triangular frequency (TriFreq) window is computed from its
magnitude spectrum using the inverse Fourier transform. Figure 3.11 shows the TriFreq window for a
triangle slope of S = 4.

3.2.4 Phase Distortion Analysis

A fundamental assumption when using the Fourier transform is that the partials are assumed to have
constant frequency and amplitude throughout the analysis window. Since musical signal are in fact
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pseudo-periodic, this assumption is only a good approximation for short time windows. However the
requirement for good frequency resolution often necessitates long time windows. Consequently the
spectra produced by the Fourier transform contain artifacts which are due to the non-stationarities of
the audio signals.

The Phase Distortion Analysis [MB95, MC98] is a technique introduced by Masri for extract-
ing non-stationary elements from spectra produced by the Fourier transform, by making use of the
artifacts they produce. In particular, linear frequency modulation and exponential amplitude modu-
lation can be determined from the phase distortion that occurs around spectral peaks. In a practical
situation the frequency and amplitude modulations will not follow such idealized trajectories as lin-
ear frequency modulation and exponential amplitude modulation. However the methodology can be
used successfully and its estimations are largely accurate, when there is a presence of higher order
modulation.

The Fourier transform of a windowed, stationary sinusoid is the Fourier transform of the window
function, centered about the frequency of the sinusoid, and sampled at frequencies corresponding to
the bins of the Fourier transform. It is also scaled according to the amplitude of the sinusoid, and
rotated to the instantaneous phase of the sinusoid at the center of the time-window. Modulation of the
frequency and/or amplitude of the sinusoid results in a widening of the spectral shape, distortion to
its form (particularly around the main lobe), and phase distortion. However the frequency location,
amplitude, and phase at the maximum of the main lobe are minimally affected, unless the distortion
is severe.

The distortion is dependent on the window function but experiments on the classic windows –
rectangular, Bartlett, Hamming, Hann, and Blackman – suggest that the form of the distortion is
identical, and it is only the actual values that differ. In all cases, the measurements were found to be
invariant of the frequency and amplitude of the modulated sinusoid. As a consequence, the distortion
only depends on the modulation itself.

For an unmodulated sinusoid, the phase is constant across the main lobe as shown in Figure
3.13, provided that the zero-phase windowing technique is used. This technique – also used in SMS
[Ser89, Ser97b] – consists in using an odd-length analysis window centered in a larger – zero-padded
– Fourier transform buffer at the origin in order to obtain the phase spectrum free of the linear phase
trend induced by the analysis window. Figure 3.12 illustrates this.

For sinusoids of linearly increasing or decreasing frequency, the phase either side of the maximum
is, respectively, reduced or raised, as shown in Figure 3.14. The degree of phase distortion is depen-
dent on the rate of change of frequency, and has to be calibrated for the method to take advantage of it.
Whereas the phase distortion for linear frequency modulation is equal either side of the maximum, in
the case of exponential amplitude modulation, the phase distortion is of equal magnitude but opposite
sign, as shown in Figure 3.15. The phase distortions of linear amplitude and exponential frequency
modulations are additive. At any offset from the maximum, in the range −1 to +1 bin, the total phase
distortion is the sum of the distortions due to the linear amplitude and exponential frequency modula-
tions. If two measurements are taken one either side of – and equidistant from – the maximum, then
the amounts of distortion due to frequency and amplitude are, respectively, the sum and the difference
both scaled by 0.5.

3.2.5 Spectrum Reassignment and Analytically Differentiated Windows

“Reassignment” has been proposed to improve time-frequency representations. In usual time-frequency
representations, the values obtained when decomposing the signal on the time-frequency atoms are
assigned to the geometrical center of the cells (center of the analysis window and bins of the Fourier
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Figure 3.12: Linear-phase (top) versus zero-phase (middle) windowing, consisting in using an odd-
length analysis window (width 2k + 1) centered in a larger – zero-padded – Fourier transform buffer
(width N) at the origin in order to obtain the phase spectrum free of the linear phase trend induced by
the analysis window. The same comparison is made during the analysis of a signal (bottom).
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Figure 3.13: Magnitude and phase of an unmodulated sinusoid using zero-phase windowing (left) and
the classic linear phase windowing (right).
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Phase Distortion – Frequency Modulation
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Figure 3.14: Magnitude and phase of a sinusoid modulated in frequency. The frequency of the sinu-
soid changes by -1 (left) and +1 (right) bin during the analyzed frame window.
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Phase Distortion – Amplitude Modulation

−3 −2 −1 0 1 2 3
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

M
ag

ni
tu

de
 (

dB
)

−3 −2 −1 0 1 2 3
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

M
ag

ni
tu

de
 (

dB
)

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Frequency offset from peak (bins)

P
ha

se
 (

ra
di

an
s)

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Frequency offset from peak (bins)

P
ha

se
 (

ra
di

an
s)

Figure 3.15: Magnitude and phase of a sinusoid modulated in amplitude. The frequency of the sinu-
soid changes by -6 dB (left) and +6 dB (right) during the analyzed frame window.
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transform). Auger and Flandrin propose in [AF95] to assign each value to the center of gravity of
the cell’s energy. The method uses the knowledge of the first derivative w′ – obtained by analytical
differentiation – of the analysis window w in order to adjust the frequency inside the Fourier transform
bin. For example, if the analyzed frequency leads to a maximum of magnitude at the k-th bin of the
spectrum of the Fourier transform, frequency reassignment is given by the following equation:

ωr(t,ωk) = ωk− Im

(
STFTw′(ωk)

STFTw(ωk)

)
(3.16)

where ωk is the digital frequency (see Chapter 1) corresponding to bin number k – that is correspond-
ing to frequency fk = kFs/N – and ωr is the reassigned digital frequency, corresponding to frequency
fr = Fsωr/2π. STFTw and STFTw′ are the short-time Fourier transforms of the signal using, respec-
tively, w or its first derivative w′ as the analysis window.

This method was recently implemented in SINOLA [PR99] by Peeters. Borum and Jensen also
present in [BJ99] the use of a similar method for analysis / synthesis. We have implemented spectrum
reassignment – among other analysis methods – in our InSpect analysis program (see Section 3.6).

In order to obtain Equation 3.16 (its continuous version, though), we can consider the continuous
short-time Fourier transform of signal a at time t and frequency Ω and using the analysis window w.
Its expression is given, for example, by the following equation:

STFTa,w(t,Ω) =
∫ +∞

−∞
a(t + θ) w(θ) e− jΩθ dθ (3.17)

Introducing τ = t + θ gives:

STFTa,w(t,Ω) =
∫ +∞

−∞
a(τ) w(τ− t) e− jΩ(τ−t) dτ (3.18)

The complex spectra resulting from this transform are:

STFTa,w(t,Ω) = Aa,w(t,Ω) e jΦa,w(t,Ω) (3.19)

Let us now focus on the “instantaneous frequency”:

Ωa,w(t,Ω) =
dΦa,w(t,Ω)

dt
(3.20)

If we consider the imaginary part of the differentiation of the logarithm of the short-time Fourier
transform, together with Equations 3.19 and 3.20, we have:

Im

[
d
dt

log(STFTa,w(t,Ω))

]
= Im

[
d
dt

(log(Aa,w(t,Ω)+ jΦa,w(t,Ω))

]

· · · =
dΦa,w(t,Ω)

dt
· · · = Ωa,w(t,Ω)

If we now consider the same expression, but this time considering only Equation 3.18, we have:

Im

[
d
dt

log(STFTa,w(t,Ω))

]
= Im

[
d
dt

(∫ +∞
−∞ a(τ) w(τ− t) e− jΩ(τ−t) dτ

)

STFTa,w(t,Ω)

]

· · · = Im

[
jΩSTFTa,w(t,Ω)−STFTa,w′(t,Ω)

STFTa,w(t,Ω)

]

· · · = Ω− Im

[
STFTa,w′(t,Ω)

STFTa,w(t,Ω)

]
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Using the two previous results, we obtain the continuous version of Equation 3.16:

Ωa,w(t,Ω) = Ω− Im

[
STFTa,w′(t,Ω)

STFTa,w(t,Ω)

]
(3.21)

Considering the Signal Derivative instead of the Window Derivative
The previous equation involves the a w and a w′ products, that is, respectively, the A ∗W and A ∗W ′

convolutions (using the uppercase notation for spectra introduced in Chapter 1). We could consider
a′ w instead of a w′, that is the A′ ∗W instead of A∗W ′.

In practice the discrete versions of Equations 3.17 and 3.18 are not equivalent. Equation 3.18 is
a phase-modulated version of Equation 3.17 [BJ99], and Equation 3.20 is not valid anymore if we
consider Equation 3.17 instead of Equation 3.18. However, we have:

Im

[
d
dt

log(STFTa,w(t,Ω))

]
= Im

[
d
dt

(∫ +∞
−∞ a(t + θ) w(θ) e− jΩθ dθ

)

STFTa,w(t,Ω)

]

· · · = Im

[
STFTa′,w(t,Ω)

STFTa,w(t,Ω)

]

but Ωa,w(t,Ω) 6= Im

[
STFTa′,w(t,Ω)

STFTa,w(t,Ω)

]
(3.22)

But we will show in Section 3.3 that:

Ωa,w(t,Ω) =
|STFTa′,w(t,Ω)|
|STFTa,w(t,Ω)| (3.23)

3.2.6 Higher Order / High Resolution Spectral Analysis

The Fourier transform has been viewed traditionally as incapable of yielding more than a linear phase
representation, even if the Phase Distortion Analysis [MB95, MC98] is capable of yielding second
order phase information. As a result higher order phase representations, which can describe non-
stationarities of frequency, have been – and continue to be – developed. These are largely based on
the Wigner-Ville transform, which achieves quadratic phase – that is linear frequency modulation –
representation.

For signals that are mono-component and non-stationary these higher order spectra have proven
to be very useful. However for multi-component signals such as sounds – additively composed of
sinusoids in the sound model considered in this chapter – the spectra display peaks not only for
each component (the auto terms), but also for the correlation between components (the cross terms).
The cross terms are often large enough to be indistinguishable from the auto terms, and can even
mask them at times [BR92]. Current research is attempting to overcome this problem by developing
techniques that suppress the cross terms [BZ92, OMQ92].

Anyway, the Wigner-Ville transform – as well as high-resolution spectral analysis in general – still
requires a very important computational power, and its implementation is actually limited principally
to parallel calculators. . .

3.3 High Precision Fourier Analysis using Signal Derivatives

We propose in [DCM98, Mar98, DCM00] the n-order (short-time) Fourier Transform (FTn). This
method is an enhancement of the classic short-time Fourier transform, providing greater accuracy for
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both frequency and amplitude with small analysis windows, thus permitting greater time resolution.
The FTn method is particularly well-suited for analyzing the deterministic component of sound.

Precisely, this method extends the classic short-time Fourier transform by also considering the
signal derivatives, which effectively leads to efficient spectral parameter extraction, and thus allows
precise modifications of the inner structures of the sounds. FTn takes advantage of the first n signal
derivatives in order to improve the precision of the Fourier analysis not only in frequency and ampli-
tude but also in time, thus minimizing the problem of the trade-off of time versus frequency in the
classic short-time Fourier transform. This method is of great interest for extracting spectral modeling
parameters from existing sounds.

After a detailed theoretical presentation of the enhanced analysis method, the way to implement
its discrete version for n = 1 is explained. This implementation is of practical interest since it pro-
vides accurate frequency information with great time resolution, which is then used to obtain accurate
amplitude information as well. Finally, some practical results of the application of this method to
synthetic and natural sounds are presented at the end of this section.

3.3.1 FTn: Fourier Transform using n Signal Derivatives

Position, speed, but also acceleration are key parameters in dynamics. There is a deep analogy be-
tween these parameters and, respectively, phase φp, frequency fp =

dφp

dt , and also frequency derivative
d fp

dt =
d2φp

dt2 . In the considered sound model both frequency and amplitude are slow time-varying pa-
rameters. More precisely the ap and fp functions are band-limited in frequency, with a small frequency
much less than the value of smallest fp. So during a single analysis window of the short-time Fourier

transform d fp

dt and dap

dt are close to 0. We show that under such conditions using the first n signal
derivatives can improve Fourier analysis precision both in frequency and amplitude. The idea behind
this technique is extremely simple: Differentiating a sine gives a sine, with different phase but same
frequency. More formally, signal derivatives must be examined.

Continuous Signal Derivatives

Let us consider a single oscillator:

op(t) = osc( fp(t),ap(t),φp(0)) = ap(t)cos(φp(t))

and then let us calculate its first derivative:

dop

dt
(t) =

d
dt

(ap(t)cos(φp(t))) = ap(t)
d
dt

(cos(φp(t)))+
dap

dt
(t)cos(φp(t))

Since ap is slow time-varying dap

dt ' 0 can be assumed so that, when the first term of the sum has a
significant value1:

dop

dt
(t)' ap(t)

d
dt

(cos(φp(t))) =−ap(t)
dφp

dt
(t)sin(φp(t))

But dφp

dt (t) = 2π fp(t) (from Equation 3.3), so:

dop

dt
(t) =−ap(t) (2π fp(t))sin(φp(t)) = 2π ap(t) fp(t)cos

(
φp(t)− π

2

)
(3.24)

1We are interested only in spectral peaks with a significant amplitude, that is beyond a certain minimal threshold. That
is why we will not consider the case where the first term of the sum is not significant, that is when the whole sum is not
significant.
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More generally, it is easy to verify by induction that:

dkop

dtk (t) = ap(t) (2π fp(t))k cos

(
φp(t)− kπ

2

)
(3.25)

Finally, since differentiation is a linear operation and from Equation 3.1, the k-th signal derivative is:

dka
dtk (t) =

P

∑
p=1

ap(t) (2π fp(t))k cos

(
φp(t)− kπ

2

)
(3.26)

Analysis Precision from Differentiation

Let us denote by FTk the Fourier Transform of the k-th signal derivative dka
dtk (k ≥ 0), and by |FTk( f )|

the value of its amplitude (magnitude) at frequency f .
The intuition behind Equation 3.26 is that there should be a maximum in every |FTi| (i≥ 0) power

spectrum for each partial p. The underlying idea is then to use |FTi| power spectra for different values
of i in order to determine the exact frequencies of the set of partials. When only the first n derivatives
of a are used, let us call this approach n-order derivative Fourier analysis (and since d0a

dt = a, the
classic Fourier transform coincides with the zero-order derivative Fourier transform FT0).

Determining the Frequency
A consequence of Equation 3.26 is that for each partial p there is a maximum in every |FTi| at fre-
quency fp (assuming ap > 0 and fp > 0), and:

fp =
1

2π

∣∣FTi+1( fp)
∣∣

∣∣FTi( fp)
∣∣ (3.27)

Although this equation may seem of poor interest since it requires the knowledge of f p, its discrete
version will turn out to be of great practical interest. The reason is that the sampling of the FTi

spectra in practice leads to an approximated value f 0
p of the frequency fp. The exact value can be then

recovered from its approximation using the discrete version of Equation 3.27.
It is extremely important to note that the effects of any analysis window are the same on both

FTi( fp) and FTi+1( fp) as soon as the same analysis window is used to compute these two spectra.
These effects are compensated thanks to the division in the preceding equation.

Correcting the Amplitude
Of course in order to get precise maxima in a |FTi| spectrum (sharp spectral peaks), an analysis
window w is needed. Section 3.1 pointed out the consequences of windowing on magnitude spectra.
Fortunately, the exact amplitude ap of partial p can easily be recovered from the approximate analyzed
value a0

p = |FT0( fp)| since:

ap =
a0

p

W (0)
(3.28)

Adjusting the Phase
Adjusting phase information is also possible as soon as precise frequency values are available, since
for a small time variation ∆t the model equations ensure that φp(t + ∆t) ' φp(t) + 2π fp(t)∆t . Any-
way, this consideration is left aside in this chapter since recovering accurate phase information from
analysis is not that important for the considered sound model.
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3.3.2 DFT1: Discrete FT1 – First Order Fourier Transform

We now describe the discrete version of the FTn technique for n = 1 and shows its practical interest
for extracting accurate frequency and amplitude.

The FTn transform requires the first n signal derivatives. We show that even without any analog
device providing such information, the discrete version of FT1 can be implemented. But since the
signal derivative is not usually recorded together with the signal, it has to be calculated from the
digital signal after the sampling phase. The discrete signal is uniformly sampled with sampling rate
Fs. For all figures and practical examples in the remainder of this section, the audio-CD sampling rate
Fs = 44100 Hz will be used.

Discrete Signal Derivatives

The first derivative da
dt , also noted a′, is mathematically defined by:

a′(t) = lim
ε→0

a(t + ε)−a(t)
ε

In fact, left and right derivatives for, respectively, ε negative or positive are:

a
′
−(t) = lim

ε→0−

a(t + ε)−a(t)
ε

= lim
η→0+

a(t)−a(t−η)

η
(η =−ε)

a
′
+(t) = lim

ε→0+

a(t + ε)−a(t)
ε

Since signal a is a C ∞ function, left and right derivatives are equal, i.e.:

a
′
−(t) = a

′
+(t) = a′(t)

In practice, the audio signal a is discrete, a[i] representing a(i Ts), and the smallest (non-zero)
possible |ε| for the derivative computation is the sampling period Ts = 1/Fs. So let us consider the
following approximations:

a
′
−[i] = (a[i]−a[i−1]) Fs and a

′
+[i] = (a[i + 1]−a[i]) Fs

This time a
′
+[i] 6= a

′
−[i], but:

a
′
+[i] = (a[i + 1]−a[i]) Fs = a

′
−[i + 1]

a
′
−[i] = (a[i]−a[i−1]) Fs = a

′
+[i−1]

so apart from a one-sample time translation they are the same discrete functions (and this small trans-
lation has a negligible impact on the power spectrum of the signal derivative, which is the only thing
considered by the method). Let us arbitrarily take left derivative approximation as an approximation
for the derivative itself (taking a[i] = 0 for i< 0):

a′[i] = Fs (a[i]−a[i−1]) (3.29)

Equation 3.29 has a form which is quite classic in digital filters theory [Moo90, Smi85]; specifically
it defines a linear phase high-pass filter. Its equation is:

y[n] = Fs x[n]−Fs x[n−1] (3.30)
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Figure 3.16: Practical gain |H| (solid) versus theoretical differentiation gain (dashed).

its transfer function can be easily calculated:

H(z) = Fs (1− z−1) (3.31)

and finally its gain is:

|H(e jω)|= Fs

√
2(1− cos(ω)) = 2Fs sin

(ω
2

)
with ω =

2π f
Fs

(3.32)

Differentiation is a linear operation that can also be considered as a filtering operation with a 2π f
gain (see Equation 3.24), that is Fsω, which is a theoretical gain quite different from the practical one
|H(e jω)|, especially for great values of ω. Figure 3.16 illustrates this phenomenon. Fortunately this
difference can be corrected by multiplying the power spectrum of the signal “derivative” approxima-
tion obtained from Equation 3.29 by the F scaling factor defined in Equation 3.33.

F(ω) =
ω

2sin
(ω

2

) with ω =
2π f
Fs

(3.33)

It is easy to show also that sharp spectral peaks are roughly conserved by a slowly growing gain.
Figure 3.17 illustrates this phenomenon. Another possibility is to recover the frequency directly
from the gain of the filter. For a given spectral peak, if the v0 and v1 (strictly positive) values are
measured in the magnitude spectra of, respectively, the signal and its first derivative at the same
location corresponding to frequency f , then

v1 = 2Fs sin
(ω

2

)
· v0

thus

ω = 2arcsin

(
v1

2Fsv0

)
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Figure 3.17: DFT0 and DFT1 power spectra.
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that is:

f =
1

πFs
arcsin

(
v1

2Fsv0

)
(3.34)

In this section the derivative is approximated with a first-order linear filter. In fact, the method
could be generalized and many other filters could be used instead since the change in the amplitude of
the signal at a certain frequency could be compared with the expected change produced by the filter.
The main advantage of using the first difference operator is to remain close to the theory of the con-
tinuous method while leading to good results in practice as shown later. If in the future the derivative
of the signal could be recorded together with the signal itself, one could just skip the computation of
the approximation of the derivative.

Analysis Precision from Discrete Differentiation

Let us denote by DFTk the Discrete Fourier Transform of the k-th signal derivative (k≥ 0), computed
using N consecutive samples from a certain location l. |DFTk[m]| is the amplitude (magnitude) of bin
number m. More formally:

|DFTk[m]|=
∣∣∣∣∣
N−1

∑
n=0

dka
dtk [l + n] w[n] e− j 2π

N nm

∣∣∣∣∣

For a frequency fp, the classic Fourier analysis gives the following approximate frequency and
amplitude:

f 0
p = mp

Fs

N
(3.35)

a0
p =

∣∣DFT0[mp]
∣∣ (3.36)

where mp is the index of the maximum in |DFT0| corresponding to frequency fp. Taking advantage
of |DFT1|, much more accurate frequency and amplitude values can be obtained.

A consequence of Equations 3.1 and 3.24 is that for each partial p there is a maximum in both
|DFT0| and |DFT1| amplitude spectra for a certain index mp, as shown in Figure 3.18.

Accurate Frequency
A discrete equivalent of Equation 3.27 for i = 0 is:

fp =
1

2π

∣∣DFT1[mp]
∣∣

∣∣DFT0[mp]
∣∣ (3.37)

Precisely, mp is the closest integer to fp
N
Fs

, mp = b fp
N
Fs

+ 1
2c and B (mp− 1

2)≤ fp < B (mp + 1
2). If

this is not the case for the calculated fp, then the DFT1 analysis has failed for this frequency and this
is a clue to bin contamination (there is not a single frequency in this bin).

The exact frequency of every partial can be determined by considering Equation 3.37 for every
maximum m in |DFT0|. Since only the first derivative of a is used, let us call this method the first
order derivative Fourier analysis.

Again, as in the continuous case, it is extremely important to note that the effects of any analysis
window are the same on both |DFT0[mp]| and |DFT1[mp]| as soon as the same analysis window is
used to compute the two spectra. These effects are still compensating thanks to the division in the
preceding equation.
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Figure 3.18: Although the analyzed frequency fp lies in the middle of the mp-th Fourier transform
bin, it produces a peak in the spectra of both the signal (a) and its derivative (b), except that the
corresponding amplitudes differ.
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Accurate Amplitude
The exact amplitude of each partial can then be determined, from the approximate amplitude a0

p and
frequency f 0

p together with the accurate frequency fp computed before, using the discrete version of
Equation 3.28:

ap =
a0

p

W
(∣∣ fp− f 0

p

∣∣) (3.38)

It also requires the knowledge of the (continuous) power spectrum W of the analysis window such as
those shown in Figure 3.5.

Enhanced “Phase Vocoder” Algorithm

The most famous analysis method for additive synthesis is probably the phase vocoder. Very good
introductory texts on the phase vocoder can be found for example in [Moo78c], [Por80], [Por76],
[Dol86] or [Ser97a]. It is mainly an implementation of the short-time Fourier transform [All77,
AR77]. As a consequence, the classic phase vocoder inherits its limitations from the classic short-
time Fourier transform.

The DFT1 method can be practically used during the analysis stage of spectral modeling synthesis
[Mar98], instead of a classic phase vocoder.

An important problem arises with order 2 analysis, due to computation imprecisions during the
calculation of the second signal derivative. In fact, for order 1 with 44100 Hz sampling rate, 16-bit
samples are just precise enough, since the imprecision resulting from 16-bit quantization (2/65536)
is multiplied by Fs = 44100 Hz, and then becomes significant. A 24-bit quantization should be a
solution. Experiments with high-quality sampling are in progress. For now, only the DFT1 method
has been successfully implemented.

Here is an informal description of a standard analysis algorithm using the DFT1 method. It is
given as a starting point for a practical implementation. For each frame of the temporal signal the
following operations have to be done in sequence:

1. Apply windowing function to a;

2. Perform DFT0 (discrete Fourier transform of this current frame of a);

3. Compute a′ using Equation 3.29;

4. Apply (same) windowing function to a′;

5. Perform DFT1 (discrete Fourier transform of this current frame of a′);

6. Scale DFT1 power spectrum by correcting factor F (see Equation 3.33);

7. For each m index of a local maximum in DFT0 do:

(a) Compute accurate frequency using Equation 3.37;

(b) Compute accurate amplitude using Equation 3.38;

(c) Add pair (frequency, amplitude) to the result list for the current frame.

Since a′ can be incrementally computed for each frame and since |DFT1| values are needed only
for the local maxima of |DFT0|, two immediate optimizations can be performed, thus saving both
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space and time. Moreover if the analysis window size is a power of 2, using the Fast Fourier Transform
(FFT) to implement the discrete Fourier transform (DFT) makes this algorithm even faster.

Of course the partials must then be tracked from frame to frame in order to recover which (fre-
quency, amplitude) pair belongs to which partial p (see Section 3.4).

3.3.3 Performance and Comparative Results

We now present some results obtained with a direct implementation of the DFT1 method using the
optimized version of the algorithm described above (part of our InSpect software package, see Section
3.6), and a very simple peak-tracking strategy (nearest-frequency connection, see Section 3.4).

From the complexity point of view, this method is very interesting since it requires the compu-
tation of two small discrete Fourier transforms instead of one much larger. Using the Fast Fourier
Transform (FFT), its complexity is the same as for the classic Fourier analysis, that is O(Nlog2(N)).
But in practice N = 256 is often sufficient with the DFT1 method, whereas the classic Fourier analysis
requires much larger values of N (about 8 times larger in practice).

This technique has been successfully tested on both synthetic and natural sounds with low noise.
The method can also be generalized for noisy sounds, which vary quickly over time, assuming that
the stochastic component remains low. To do so, there is two possibilities: Either revert to order 0,
or move to order 2 if computation precision makes it possible. In the first case, the spectral envelope
of the noise can be easily found using the classic Fourier transform. In the second case, performing
order 2 analysis might help refine the order 1 results to even better isolate spectral peaks.

The DFT1 method has proven to be very accurate in practice. First, its performance is measured
on synthetic examples. A simple comparison shows that the DFT1 analysis can accurately recover
partial parameters where the classic Fourier transform has failed. The same comparison is then shown
on natural sounds, including well-known difficult ones like voices with deep vibrato.

Performance on Synthetic Examples

The performance of the DFT1 method has been measured on synthetic but significant examples con-
sisting of a single oscillator. A single oscillator is in fact a reference example for analysis. Most
natural sounds are indeed made of a sum of partials, and since the analysis process is a linear opera-
tion, it should also precisely recover the time evolutions of their parameters.

We have compared the DFT1 method with three of the most accurate analysis methods presented in
Section 3.2: the parabolic (quadratic) interpolation using the Brent method, the triangular algorithm,
and the spectrum reassignment using analytically-differentiated windows. The full numerical results
are available in the appendix at the end of this document.

For most analysis windows, the DFT1 method has proven to be more accurate than the Brent
method. The behavior of the DFT1 method in the presence of noise is very good. With vibrato or
tremolo the results are still satisfactory. The DFT1 method performs particularly well using the Hann
window. Of course a truncated Gaussian window favors the Brent method since the shape of its mag-
nitude spectrum is a parabola, well-suited for parabolic interpolation. With such a truncated Gaussian
window the DFT1 and Brent methods give similar results, excellent ones because the examples we
consider have only one frequency component. But in practice a truncated Gaussian window should
not be used because of its too large main-lobe width.

We have also compared the DFT1 method and the accurate triangular algorithm. It turns out
that the DFT1 method has a higher precision in frequency, but lower in amplitude, except for small
signal-to-noise ratios (SNR). This might seem surprising, since in our method we use a more accurate
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frequency information to compute an amplitude value that turns out to be less accurate. In fact the
amplitude imprecision might be due to the distortion of the main lobe when the parameters change,
as described in the Phase Distortion Analysis in Section 3.2. The triangular algorithm is probably less
sensitive to the distortion of the top of the main lobe. Tables A.6 and A.3 (see Appendix) show the
comparison between the triangular algorithm and DFT1 with or without noise.

The spectrum reassignment using analytically-differentiated windows shows excellent results on
frequency, equivalent to DFT1 though, but twice better in the presence of deep vibrato. However the
DFT1 method performs better for noisy sounds with very low SNRs.

We now study the behavior of the DFT1 method on synthetic examples, with numerical results.
The parabolic interpolation using the Brent method is used as a reference.

Base Case: Sinusoidal Oscillator
The first synthetic example considered here is a single oscillator whose frequency is linearly increasing
from 440 Hz to 1660 Hz while its amplitude remains constant at 0.8 (see Figure 3.6).

Even with a very small analysis window width of 256 points (less than 6 ms analysis time), the
evolutions of the partial shown in Figure 3.6 are almost perfectly recovered. Such a result would have
been impossible to achieve with the classic Fourier analysis since a large analysis window is needed
to have such a great frequency precision, in which case the time resolution is so bad that the evolution
of the frequency with time cannot be successfully recovered. It is important to note that the effect of
windowing on the amplitude has been almost completely canceled as well, thanks to Equation 3.38.

Tables A.1 and A.2 show the bias and standard deviation of the errors on frequency and amplitude
measured by the DFT (without peak interpolation), the DFT plus parabolic peak interpolation using
the Brent method, and the DFT1 method.

For all these methods the frequency error is inversely proportional to the window width. Since
there is only one frequency component, the frequency error of the DFT is independent of the analysis
window type. The amplitude precision does not depend on the analysis window width. The DFT1

method shows excellent results on the amplitude and very good ones on the frequency, depending
on the analysis window type. The best relative results are obtained with the Hann window, while
a truncated Gaussian window favors the Brent’s parabolic (quadratic) interpolation (since the shape
of the magnitude spectrum of a Gaussian window is exactly a parabola). With such a window the
frequency error is small, even if some big – but very rare – mistakes may lead to a higher standard
deviation for the DFT1 method.

Noise
Let us now add some white noise to the synthetic example considered before. Tables A.4 and A.5
show the errors on frequency and amplitude of the DFT1 and the Brent methods in the presence of
noise and Figure 3.19 illustrates their general behaviors.

The frequency error remains low until the noise amplitude gets close to the amplitude of the signal
itself, then the Brent method diverges – because the wrong spectral peak is taken into account – while
the DFT1 frequency error remains proportional to the noise level. The amplitude error remains low
until the noise amplitude gets close to the amplitude of the signal itself, then the error increases very
quickly for the Brent method while the DFT1 amplitude error remains proportional to the noise level.

Vibrato and Tremolo
The assumptions about stationarity of the signal are being violated by any vibrato or tremolo on the
signal.
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Figure 3.19: Behaviors of the Brent and DFT1 methods in presence of noise. The errors on frequency
(left) and amplitude (right) are displayed as functions of the noise level. The analyzed signal is the
same as in Tables A.4 and A.5, and the analysis window is a 512-point truncated Gaussian (favoring
the Brent method).
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The behavior of the DFT1 method in presence of vibrato is studied using a single sinusoidal
oscillator whose frequency is 2000 Hz modulated by a vibrato while its amplitude remains constant at
1. Tables A.7 and A.9 show the errors on frequency and amplitude of the DFT1 and the Brent methods
– using the Hann window – for several vibrato rates and depths. On these tables a boundary indicates
when the error is greater than 0.1%. Regarding the DFT1 method in comparison to the Brent method,
this area is wider for the frequency error but smaller for the amplitude error.

For the frequency, the DFT1 method gives better results than Brent’s one when the vibrato rate
and depth remain low and worse results as they increase. For the amplitude, the DFT1 method gives
much better results with low vibrato rates and depths. There is a still a degradation when the vibrato
is too strong, but the results of the DFT1 and Brent methods are then equivalent.

The behavior of the DFT1 method in presence of tremolo is studied using a single sinusoidal
oscillator whose frequency remains constant at 2000 Hz while its amplitude is 0.5 modulated by a
tremolo. Tables A.13 and A.11 show the errors on frequency and amplitude of the DFT1 and the
Brent methods for several tremolo rates and depths.

The frequency error of the Brent method is constant. The DFT1 method gives better results,
except when the tremolo rate and depth increase. The DFT1 method also gives lower amplitude
errors, equivalent to the results of the Brent method as the tremolo rate and depth increase. The DFT1

method shows good results provided that the tremolo rate and depth are reasonable, which is the case
for most natural sounds.

The example in Figure 3.20 shows that the analysis window width should be chosen as small as
possible. The only condition is that two frequencies must lie in two separate Fourier transform bins.
If the analysis window is too small, this is not the case. And if it is too large, the spectrum is averaged
by the Fourier transform and both the classic DFT and the DFT1 methods perform poorly.

Results on Natural Sounds

The DFT1 method has also been successfully used to analyze natural sounds with low noise levels.
An exhaustive presentation of these results is beyond the scope of this chapter. However, the method
succeeds even with polyphonic sounds (see [Cas82]) and voices with deep vibrato. It is well-known
that sounds with vibrato are hard to analyze with the classic short-time Fourier transform described in
Section 3.1. The reason of this difficulty is illustrated in Figure 3.20.

The examples which are represented in Figure 3.21 are the results of the DFT1 method in com-
parison to the classic short-time Fourier analysis on a voice of a soprano singer. The hop size is 64
samples. The Hann analysis window has been used. The best result with the classic Fourier analysis
was obtained for an analysis window of 4096 points (93 ms analysis time). This result is at the top
of Figure 3.21. With the DFT1 method, only 1024 points (23 ms analysis time) were needed for the
analysis window, and a great quality improvement was achieved. This result is represented at the
bottom of Figure 3.21.

Of course the DFT1 analysis succeeds with classic instruments like guitars, pianos, trumpets,
etc. Samples are available on the Internet [Mar00c]. On most of high-pitched sounds (more than
180 Hz for the fundamental frequency), excellent results have been achieved with very short analysis
windows, down to 256 points with Fs = 44100 Hz, i.e. less than 6 ms analysis time.

Originally designed for sounds with slow time-varying partials, this method has turned out to
allow precise analysis of musical instruments with quite fast evolutions (even for the attack phase).
This is indeed possible because small analysis windows are sufficient for high-pitched sounds.
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Figure 3.20: Comparison of DFT (left) and DFT1 (right) on a single partial with vibrato. The analyzed
frequency is displayed as a function of time. The analysis window width is increasing from top to
bottom (with the 256, 512, 1024, 2048, and 4096 values).
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Figure 3.21: Voice with vibrato using the classic DFT (top) and the DFT1 methods (bottom).
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3.4 Partial Tracking

Accurately identifying frequency components is the first step for a key technique called partial track-
ing. It consists in following the evolutions of power spectrum maxima in time. This technique is used
in famous software packages like AudioSculpt [IRC96], Lemur [FH96], PARSHL [SS87], and SMS
[Ser97b].

More precisely, the short-time spectral analysis produces a series of short-term spectra, from
which is extracted the information about the partials. Each short-term spectrum gives birth to a spec-
tral frame, set – possibly empty – of (frequency, amplitude) pairs, corresponding to the frequency and
amplitude of the spectral peaks.

The partials must then be tracked from frame to frame in order to recover which (frequency,
amplitude) pair belongs to which partial p. This is the role of partial-tracking algorithms.

Partial-tracking algorithms generally maintain a list of active trajectories in the frequency-amplitude
plane (functions of time), each corresponding to a partial being reconstructed. The algorithms hop
from frame to frame and try to follow the trajectories.

In a first step (forward search), each trajectory that has not yet found a continuation in the current
frame picks out the peak of that frame that matches best, that is the one with the greatest connection
probability (see below).

In two-step algorithms the trajectories can choose several peaks (with the same connection prob-
ability). Then, in the second step (backward search), all peaks in the current frame choose among
the trajectories which have chosen them in the first step, using a certain criterion (for example by
minimizing the difference in amplitude).

Finally, the trajectories are extended according to the previous choices and the next frame is
considered.

3.4.1 Birth-Death Concept

A trajectory which does not find peak for continuation in the current frame simply “dies”. If there
are unmatched peaks in the current frame, new trajectories are “born” (see Figure 3.22). The lifetime
is the number of frames that a trajectory exists. Of course there is a minimum lifetime to avoid the
“blurring” which occurs when analyzing noisy sines without peak tracking for example.

We propose to also add a “zombie state”, associated to trajectories which have not found a partner
in the current frame but are still active for a few n frames. Those trajectories will die in a few frames,
if the connection fails for all these n frames. On the contrary, if such a trajectory finds a peak for
continuation in the meanwhile, it exits from its zombie state. Thus the corresponding partial evolu-
tions contain a gap (missing information), which is then filled by an extrapolation technique (such as
reconstruction from irregular sampling, see Chapter 2).

This mechanism allows to follow trajectories with small gaps. As a consequence, the short-time
analysis can make big mistakes from time to time.

3.4.2 Connection Probability

Each trajectory tries to find a continuation in the current frame by picking out the peak of that frame
that matches best, that is the one with the greatest connection probability. The connection probabil-
ity is a function of the current frequency and amplitude of the trajectory, and of the frequency and
amplitude of the candidate for continuation.
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Figure 3.22: Partial trajectories. The circles represent the spectral peaks in the time-frequency plane
(the amplitude is not represented). A filled circle or square represent, respectively, the beginning or
the end of a trajectory. In the current frame (time 6), the p3 partial is continued. The p1 and p4 partials
want the same peak for their respective continuations, but p1 wins because its connection probability
is greater. As a consequence, p4 is going to die. On the contrary, an unmatched peak gives birth to a
new partial, p5. The p2 partial is special. At frame 2 no connection was possible, and thus partial p2

entered the zombie state. Since a connection was possible at the next frame, it then exited from this
state and the missing information was reconstructed (empty square).
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The most commonly used connection probabilities are inversely proportional to the distance in
frequency between the current frequency of the trajectory and the frequency of the candidate peak, so
that the peak with the nearest frequency is chosen for the continuation. This method is called nearest-
frequency connection. For the same distance in frequency, we choose to give the priority to the longer
(in time) trajectory. Nevertheless, the connection probability can be much more complicated. The
amplitude should also be taken into account. Unfortunately it is difficult to design a distance in the
frequency-amplitude space. The Euclidean distance is not a good choice because the frequency and
amplitude dimensions do not have the same physical unit. The best choice is probably to avoid clicks
in the resulting sound, and not to favor the graphical aspect of the trajectories.

Anyway, for each peak in the current frame, the connection probability is computed for the current
parameters of each trajectory. The peak with the greatest probability is then considered. If the prob-
ability is under a minimal threshold, then no connection is possible and the partial enters the zombie
state (see above).

3.4.3 Trajectories Forecast

Each trajectory has a current frequency and amplitude, usually corresponding to the spectral param-
eters of the last peak chosen for the continuation of the trajectory. If we use these values for the
connection probability then we assume that the trajectory is stationary, which is a good approxima-
tion for slow time-varying partials. However, it is also possible to try to predict the frequency and
amplitude for the next frame using the past evolutions of these parameters.

Apart from using the current frequency and amplitude of the trajectory, the simpler forecast
method is probably the linear extrapolation technique. This technique consists in using the frequen-
cies and amplitudes corresponding to the two previous frames, and to consider that the frequency and
amplitude corresponding to the current frame should be on the corresponding line. This ensures the
continuity of both the trajectory and its first derivative.

Of course more complex extrapolations exist. We can for example use the curvature, to ensure the
continuity of the second derivative. Again, the aim is to avoid clicks in the resulting sound, and not to
favor the graphical aspect of the trajectories.

Depalle, Garcia, Rodet, and Doval propose in [DGR93, DR93, Gar92] to use statistical modeling,
and more precisely the Hidden Markov Models (HMM).

However we prefer to use deterministic methods, for example by using the derivatives of the
frequency and amplitude parameters, which can be obtained using the phase distortion analysis (see
Section 3.2). Peeters and Rodet successfully use this new technique in SINOLA [PR99] already.

3.5 Extraction of the SAS Parameters

To convert a sound from its temporal representation to the SAS model, one can perform a short-term
Fourier analysis, then track partials across short-term spectra, to finally extract the SAS parameters
from the set of partials, thus going through three levels of structuring. This structuring is implemented
in InSpect (see Section 3.6).

After the peak-tracking stage, the result of the analysis is a set of P partials whose parameters
(frequency fp and amplitude ap) evolve relatively slowly with time. In this section we show how we
structure this intermediate representation in order to obtain the parameters of the Structured Additive
Synthesis (SAS) model (see Chapter 2).
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Figure 3.23: The spectrum of a non-harmonic sound and the corresponding frequency F and warping
W parameters.

3.5.1 Frequency and Warping

For harmonic sounds F coincides with the fundamental, possibly missing or “virtual”. For these
sounds, if the frequencies were integers, we would have had something like:

F(t) = gcd( f1(t), · · · , fP(t))

where gcd would be the greatest common divisor. Here is the way to determine the F and W parame-
ters in the general case.

Given a frequency f , let the harmonic frequency distortion for f be:

Wf = ((rank f ( f1) · f , f1), · · · ,(rank f ( fP) · f , fP)) (3.39)

with rank f ( fi) = [ fi
f ] ([x] being the nearest integer to x). Denote by F the frequency for which the

y = x line is closest to the (rankF( fi) ·F, fi) points (in the least-squared error terms). Then, F is the
frequency parameter of the model and the warping W is the continuous version (interpolation) of WF .
This interpolated version can be reconstructed from its samples using the techniques described in
Chapter 2.

3.5.2 Amplitude and Color

In the additive representation, the amplitude A corresponds to the sum of the amplitudes of all partials
and can be calculated from the additive parameters using Equation 3.40. In order to consider the
RMS (Root Mean Square) amplitude (closer to the perception), Equation 3.41 must be used instead
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Figure 3.24: An harmonic sound at time t, and its color C.

of Equation 3.40.

A(t) =
P

∑
p=1

ap(t) (3.40)

ARMS(t) =
1√
2

√√√√
P

∑
p=1

(ap(t))2 (3.41)

Color is simply the continuous version (interpolation) of the spectral envelope defined by the ( f p,ap)
points. In practice, we reconstruct it as a signal using the techniques described in Chapter 2, and then
we resample it uniformly with the lowest rate possible.

3.6 InSpect Software Package

InSpect (“Inspect Spectrum”) [MS99] is a sound analysis program, designed to look at the inner
structures of sound. It performs the analysis of sampled sounds, extracting parameters and structuring
them into spectral sound models. The resulting spectral sounds can then be manipulated in a very
musical and intuitive way. Although InSpect can resynthesize these sounds, ReSpect was specially
designed for the purposes of real-time synthesis (see Chapter 4).

InSpect was initially written in C plus Tcl/Tk [Mar00c], then rewritten using ProSpect as a starting
point (see Chapter 2) [Mar00b]. This program generally allows to go from a sound model to another
one, and particularly to obtain the sound in a spectral model from its temporal representation.

Many analysis methods are proposed (see Sections 3.1, 3.2, and 3.3) but few were implemented
in a software system, and it appears that freely-available analysis software tools are extremely rare.
We have implemented these methods in InSpect. Our software system is developed for the Linux
operating system (although a version for Windows 95/98/NT also exists), and is distributed freely
under the terms of the GNU General Public License (GPL) [FSF91].

InSpect was developed in order to convert sounds from the temporal model (audio signal ampli-
tude versus time) to a spectral representation. Although it was first designed for low-noise sounds, it
can also analyze, transform, and resynthesize noises as well. But InSpect does not yet separate the
sinusoids (deterministic part) from the noise (stochastic part) as SMS [Ser97b] does. However, this
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Figure 3.25: InSpect architecture overview.

functionality will be available in the forthcoming version, using recent techniques such as the one
proposed by Peeters and Rodet in [PR98].

InSpect has numerous functionalities that are extensions of ProSpect and thus can be reused in
other programs. Among these functionalities are many short-time analysis methods (and in particular
the n-order Fourier transform, see Section 3.3), partial-tracking techniques, as well as algorithms
for extracting musical parameters (pitch, volume, brightness, etc.) from the sounds. There are also
many spectral synthesis methods, thus providing a very convenient way to compare their respective
performances. We have implemented the fastest synthesis method directly as a module for the kernel
of the Linux operating system (see Chapter 4), and ProSpect takes advantage of it to perform real-time
spectral synthesis.

3.6.1 Overview

Basically, InSpect can open a sound file, analyze it, and synthesize a new one from the analysis. The
synthesized sound file may be played or exported. InSpect does neither care about recording, nor about
the way the original sound file was obtained. Neither does it compare the resulting sounds, which is
strictly the role of the (human) user. Figure 3.25 gives a general overview of the main functionalities
of InSpect. InSpect allows the user to look at the inner structures of sound. For each partial it is
possible to show its frequency and amplitude as functions of time. It is also possible to display the
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short-time spectrum at a given time and the associated spectral envelope, as well as spectrograms,
phasograms, and results of linear prediction.

Step 1: Loading

The first step is to load a sampled sound. InSpect supports many file formats. Traditional computer
sound files (WAV, AIFF, etc.) are typical examples of representations of sounds in the temporal model.

Step 2: Analysis

InSpect was designed not only for researchers and engineers, but also for composers and musicians.
That is why the analysis step can be performed without setting lots of parameters. The most useful
analysis configurations are available instead, according to the nature and the pitch of the sound to ana-
lyze. Moreover the default configuration succeeds in most cases. The default method of InSpect works
best with low-noise sounds, harmonic or not. The analysis step and its configuration are developed
later in this section.

InSpect can also structure these additive parameters in order to switch to the Structured Additive
Synthesis model (SAS) (see Section 3.5). But since this functionality is still experimental in the actual
version of the software tool, we will not develop it further in this section.

Step 3: Saving

When the analysis step is completed, the resulting spectral sound is displayed as shown in Figure 3.26
and it is possible to save it in a spectral format. InSpect knows how to take advantage of the slow
time-varying nature of the parameters in order to perform efficient compression. It is also possible to
import directly an already-analyzed sound, thus skipping the analysis step.

3.6.2 Analysis

Given a sampled sound, the aim of the analysis stage is to decompose it into elementary sound compo-
nents called partials, whose frequencies and amplitudes evolve slowly in time. This is the well-known
McAulay-Quatieri analysis [MQ86] used in Lemur [FH96] and SMS [Ser97b]. InSpect performs this
analysis in three steps.

Step 1: Short-Time Analysis

Our analysis tool can use the new DFT1 technique (see Section 3.3) for extracting parameters from
sampled sounds. In addition to the signal itself this new technique uses the derivative of the signal. We
compute the discrete Fourier transform (using the FFT algorithm) of both the signal and the derivative
of the signal. The quotients between peaks across these two spectra allow us to compute very accurate
values for the instantaneous frequencies of the sound, which are then used to precisely compute the
corresponding amplitudes. Our method gives very accurate values for frequency and amplitude con-
tents, provided that partials are separated by at least the lowest frequency of the Fourier transforms
used. Experience has shown that our method can work with very short analysis windows, speeding up
the analysis while maintaining a high-quality result together with an increased time resolution.

InSpect was first developed in order to experiment in practice this enhancement of the classic
short-time Fourier analysis called the n-order Fourier analysis [DCM00]. However other analy-
sis methods are implemented to make comparisons possible, like the one described in Section 3.2.
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Figure 3.26: InSpect displaying the evolutions of the partials of an alto saxophone as functions of
time during 0.7 second. The snapshot on the left shows the frequencies of the partials, as well as a
short-time spectrum and the corresponding spectral envelope, while the one on the right shows the
amplitudes of the partials.
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Figure 3.27: Analysis process, consisting of three steps (short-time analysis, partial connection, and
partial selection). During the short-time analysis step the signal x is multiplied by the analysis window
w, then transformed into a spectral representation. The peaks in the magnitude spectra are tracked
from frame to frame to form partials during the connection step. Finally, the selection step keeps the
partials according to a certain criterion.

Among the analysis parameters you can change are the analysis window width and type (Hann, Kaiser,
Bartlett, Hamming, Blackman, etc.).

Step 2: Connection of Partials (Partial Tracking)

Each short-time analysis produces a spectral frame. Spectral peaks are tracked from frame to frame
to form partials. Different connection strategies are available, as well as connection probabilities and
thresholds in frequency and amplitude.

Step 3: Selection of Partials

The result of the connection step is a (frequently large) set of partials. InSpect selects only some
of these partials according to certain selection methods and criteria. The default method is selecting
the strongest and longest partials, given thresholds in strength (amplitude) and duration (time). Thus,
partials that have a low amplitude level or that are too short are removed from the set of partials. This
is very useful when analyzing noisy sounds with a low noise level.

3.6.3 Transformations

The result of the analysis is a set of partials whose parameters (frequency and amplitude) evolve rela-
tively slowly with time. Our software system allows us to structure and manipulate this intermediate
representation. We provide musical parameter extraction (volume, pitch, brightness, etc.) as well as
traditional operations such as filtering, time-stretching (without limits on the stretching factor), cross-
synthesis, transposition while preserving formants, timbre morphing and many more. Since these
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manipulations are made on a spectral representation which has fewer data points than the signal itself,
our operations are quite efficient. These manipulations are in fact done by ProSpect (see Chapter 2),
on the top of which InSpect is now developed.

3.6.4 Resynthesis

From the spectral representation, it is then possible to resynthesize a sound back in the temporal
model. By playing the original and resynthesized sounds and comparing them, one can hear if the
original sound has been faithfully modeled.

Again different synthesis methods are proposed, mainly for the purposes of research and experi-
mentation. The fastest synthesis method is available in a separate software tool called ReSpect (see
Chapter 4).

3.7 Compression of Sinusoidal Modeling Parameters

We have implemented in InSpect a technique for lossless compression of the sinusoidal modeling
parameters [Mar00a]. This technique can be very useful for any analysis / synthesis program dealing
with spectral modeling. Compression is also useful for embedding spectral sounds in a synthesizer,
broadcasting spectral sounds or simply storing many of them on a medium.

3.7.1 Compression Method

This technique consists in compressing the frequency and amplitude parameters of each partial by
adaptively sub-sampling and encoding their evolutions with time. It can be easily extended to handle
spectral envelopes instead of partials, that is two-dimensional structures instead of one-dimensional
ones.

Spectral models based on additive synthesis contain a deterministic part consisting of a – often
huge – number of partials, which are pseudo-sinusoidal tracks for which frequencies and amplitudes
evolve slowly with time. The spectral modeling parameters of this deterministic part consist of the
evolutions in time of the controls of the partials, thus leading to a large amount of data.

Grey [Gre75] demonstrated that for many natural sounds the functions f p and ap could be simpli-
fied by piecewise-linear approximations with great data reduction by keeping only some breakpoints
instead of every discrete value of the (sampled) functions. In fact, even if the consequences of this
simplification are often not noticeable, they can become very audible after some transformations have
been performed on the sound. Strawn [Str80] also proposed to approximate the frequency and am-
plitude functions of the partials. Charbonneau propose in [Cha80] a study of the perceptual effects
of these data reductions on the timbre of the sounds. The compression scheme we consider in this
section is a lossless compression. We consider the frequency and amplitude functions of the partials
as continuous-time control signals.

Sub-Sampling

The frequencies and amplitudes of the partials are slow time-varying parameters, slow enough to avoid
amplitude or frequency modulation phenomena that would modify the timbre. They can be regarded
as inaudible signals controlling audible oscillations. They are indeed band-limited signals, with a
maximal frequency F below the threshold of hearing, around 20 Hz. The Shannon-Nyquist theorem
assures that 2F – only 40 here – samples per second are sufficient for the signal to be reconstructed
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without any error. The evolutions in time of the frequency and amplitude of all the partials can be
safely sub-sampled. For that purpose we use a generic resampling algorithm such as the one proposed
by Smith in [SG84, Smi00].

Encoding

After the resampling of the parameters, an encoding process is performed in three steps on each
parameter (frequency and amplitude) of every partial of the sound.

Delta-Encoding. First, delta encoding consists in replacing the stream of parameter samples by the
one resulting from the differences between two consecutive samples, close samples leading to small
differences:

v1,v2, · · · ,vn→ v1,(v2− v1), · · · ,(vn− vn−1) (3.42)

Variable-Length Quantities (VLQ). Then, variable-length quantities – also used in MIDI files
[MMA96] – allow us to store each delta-encoded value with a reduced number of bits. Each value is
stored as a series of bytes which is called a variable-length quantity. Only the first 7 bits of each byte
are significant. So, if we have a value requiring more than 7 bits, we have to unpack it into a series of
7-bit bytes. Of course, we will have a variable number of bytes depending upon our value. To indicate
which is the last byte of the series, we leave bit 7 clear. In all of the preceding bytes, we set bit 7. So,
if the value is between 0 and 127, it can be represented as one byte. More generally, if the value is
between 27k and 27(k+1)−1, k + 1 bytes are required for its corresponding variable-length quantity.

Run-Length Encoding (RLE). Finally, a classic run-length encoding algorithm is used to com-
press the sequences of consecutive samples with the same value. Run-length encoding stands for the
specification of elements in a list as a list of pairs giving the element and number of times it occurs
in a run. This is a well-known technique often used in mathematics and computer science. Here is an
example of run-length encoding:

1,1,1,2,3,3,4,4,4,4,4→ (1,3),(2,1),(3,2),(4,5)

This technique allows to compress the list of values whenever consecutive values are the same.

3.7.2 Compression Enhancement

It is possible to enhance this basic compression scheme.

Adaptive Sub-Sampling

First, it is possible to enhance the compression ratio by performing an adaptive sub-sampling, that is
by choosing the minimal sampling rate allowed for the parameters f p and ap of each partial p instead
of fixing an unique sampling rate for all the partials during the resampling step.

Interdependent Parameters

It is also possible to enhance the compression ratio by taking advantage of the potential interdepen-
dence of the parameters.
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size (in Kbytes) sine voice saxophone trumpet

original 86 127 246 3190
spectral 11 1077 1137 13134

resampled <1 270 284 3284
Delta <1 135 142 1642
VLQ <1 30 30 660
RLE <1 12 15 589

spectral (zip) 9 753 1051 10449

Table 3.7: Some results using the compression method. The last line gives the performance of the
Lempel-Ziv method (zip files).

Pseudo-Harmonic Sounds. For pseudo-harmonic sounds like in Figure 3.28(a) we use the knowl-
edge that the frequencies are close to multiples of the fundamental frequency. We store only the ratios
to this frequency, which are close to integers.

Analysis of Parameters. Such relations among partials can also exist for their amplitudes, as in
Figure 3.28(b), and can be found out by analyzing the parameters themselves and comparing the
results among partials (see Section 3.8).

3.7.3 Results

Concerning the compression ratio, the saxophone sound partly shown in Figure 3.28 lasts 2.85 seconds
and was sampled at 44100 Hz. When the spectral analysis is done each 64 samples, this sound gives
rise to an SDIF file of 1137 Kbytes (using sinusoidal tracks with 64-bit floating point values). After
the resampling and delta-encoding steps, its size is only 284 Kbytes. After the VLQ step, this size
drops to 30 Kbytes. At the end, after the RLE step, it is only 15 Kbytes. In this case there is a 1/75
ratio from the SDIF information. Other examples can be found in Table 3.7. Moreover, we show that
the well-known Lempel-Ziv method – used for example in the zip compression – performs poorly on
the spectral data.

3.7.4 File Format

The resulting structures are not suited for implementation in the Sound Description Interchange For-
mat (SDIF) [WCF+99, CNM00, IRC00], which is overall a succession of frames ordered in time.
This is the reason why we have designed a new file format for (compressed) spectral sounds. This
format is currently known as the MSC format in the InSpect analysis tool [MS99, Mar00c, Mar00b].

The detailed description of the MSC format can be found in the sources of InSpect. For short,
this format is composed of a header followed by the compressed partials. Each partial consists of two
values (start and length) followed by two compressed arrays, one for the frequency and the other for
the amplitude of the partial. Each compressed array is composed of the stream of values of the down-
sampled evolutions of the considered parameter of the partial. The first sample is called the “base”,
and the amplitude of the variations is called the “delta”. In fact, the values (vi) are stored relatively
to the base and normalized according to the delta, that is (vi−base)/delta, encoded as integers using
variable-length quantities (see above).
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(a) Frequencies

(b) Amplitudes

Figure 3.28: The evolutions of the partials of an alto saxophone during 1 second. The frequencies (a)
and amplitudes (b) are displayed as functions of time (horizontal axis).
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Figure 3.29: The hierarchical structure of the MSC file format.

We perform lossless compression with impressive ratios and the file format we have designed
is very compact. It has proven to be very useful for analysis / synthesis programs based on spectral
modeling. Even if we have not investigated it yet, we believe that our technique could be used for lossy
but perceptually lossless compression, using quantization and taking advantage of psychoacoustic
phenomena such as masking.

3.8 Perspective: Analyzing the Spectral Parameters

In this section, we show how the reanalysis of the parameters coming from initial analysis could
turn out to be extremely useful not only to enhance the compression ratio, but also to perform very
interesting musical processing on the tremolo or vibrato of the sounds for example. This reanalysis
provides us with further research topics since it turns out to be of great interest for pitch tracking and
source separation for example.

3.8.1 Spectrum of a Spectrum

In our FTn analysis method (see Section 3.3), we take advantage of two Fourier transforms computed
in parallel. We show here that the use of two Fourier transforms in sequence is of great interest too.

More precisely, we consider the magnitude spectrum of the Fourier transform of the magnitude
spectrum of the Fourier transform of the signal. Let us denote by “Fourier of Fourier transform” this
combination of the two Fourier transforms.

Note that this transform is not the same as the well-known “cepstrum”, which is the (inverse)
Fourier transform of the logarithm of the spectrum resulting from the Fourier transform.

This transform is well-suited for pitch-tracking, that is for computing the fundamental frequency
of the sound, even if it is missing or “virtual”.

For example, if we consider an harmonic sound, its Fourier transform has a series of peaks in its
magnitude spectrum corresponding to the harmonics of the sound, at frequencies close to multiples of
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the fundamental frequency F . Some harmonics may be missing, even the fundamental itself. Anyway,
the Fourier of Fourier transform of an harmonic sound shows a series of peaks, and the first and most
prominent one corresponds to the fundamental frequency F of the harmonic sound, and its amplitude
is the amplitude A of the sound (more precisely the sum of the amplitudes of the harmonics of the
sound). Figure 3.30 illustrates this.

In the spectrum resulting from the first Fourier transform (FT), the index of a bin iFT is related
to the analyzed frequency f . More precisely, if Fs is the sampling rate and N the size of the Fourier
transform, we have:

iFT = f
N
Fs

(3.43)

When considering an harmonic sound whose fundamental frequency is F , the magnitude spectrum
shows a series of uniformly-spaced peaks (unless some harmonics are missing). The distance between
two consecutive harmonics is F , which corresponds to a period of ∆ bins where:

∆ = F
N
Fs

(3.44)

In the spectrum resulting from the Fourier transform of the magnitude spectrum of the first Fourier
transform (FT(FT)), the greatest local maximum of magnitude (apart from the one corresponding to
bin 0) is located at the bin corresponding to index:

iFT(FT) =
1
∆

N
2

(3.45)

In Equation 3.45 we consider that the size of the second Fourier transform is again N. This is no
mandatory though. It is then possible to recover the fundamental frequency from the value of this
index:

F =
Fs/2

iFT(FT)
(3.46)

The same reasoning also works for single sinusoids or rippled noises (even if some ripples are miss-
ing). Figure 3.31 illustrates this. As a consequence, the Fourier of Fourier transform turns out be be
extremely well-suited for determining the pitch of the sounds, as well as the volume. We have also
verified this for natural sounds, as shown in Figure 3.32. It is important to note that the amplitude
corresponding to the iFT(FT) index is close to the sum of the amplitudes of the harmonics constituting
the sound, that is the amplitude A in the SAS model. One can also obtain instead a good approxima-
tion of the RMS amplitude, by replacing the amplitudes by their squares in the magnitude spectrum
prior to the second Fourier transform, and by replacing the amplitudes by their square roots in the
magnitude spectrum resulting from this second transform.

3.8.2 Analysis of Partials Evolutions

Performing a spectral analysis on the parameters of the partials is of great interest too. More formally,
we consider the classic sinusoidal model, where the audio signal a is given by equations:

a(t) =
P

∑
p=1

ap(t)cos(φp(t)) (3.47)

dφp

dt
(t) = 2π fp(t) i.e. φp(t) = φp(0)+ 2π

∫ t

0
fp(u) du (3.48)
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Figure 3.30: The power spectrum of an harmonic sound (left) together with the power spectrum
resulting from the Fourier transform of this first spectrum (right). There might be missing harmonics
(dashed).
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Figure 3.31: The power spectrum of a rippled noise (left) together with the power spectrum resulting
from the Fourier transform of this first spectrum (right). There might be missing ripples (dashed).
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Figure 3.32: Fourier of Fourier. From top to bottom are the original signal (singing voice, sampled
at Fs = 44100 Hz), its magnitude spectrum, and the magnitude spectrum resulting from the Fourier
transform of the previous magnitude spectrum (N = 2048, but only the first 256 bins are displayed).
One can clearly see in this spectrum the prominent peak corresponding to the fundamental frequency
of the original sound.
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where P is the number of partials and the functions fp, ap, and φp are the instantaneous frequency,
amplitude, and phase of the p-th partial, respectively. Since the amplitude and frequency of each
partial can be considered as band-limited signals, we now decompose them within a similar sinusoidal
model. More formally:





ap(t) = aap,0(t)+ ∑
Pap

n=1 aap,n(t)cos(φap,n(t))

dφap ,n

dt (t) = 2π fap,n(t) i.e. φap,n(t) = φap,n(0)+ 2π
∫ t

0 fap,n(u) du

(3.49)

and 



fp(t) = a fp,0(t)+ ∑
Pfp

n=1 a fp,n(t)cos(φ fp,n(t))

dφ fp,n

dt (t) = 2π f fp,n(t) i.e. φ fp,n(t) = φ fp,n(0)+ 2π
∫ t

0 f fp,n(u) du

(3.50)

where aap,0 and a fp,0 are extremely slow time-varying functions, band-limited to a frequency much
lower than the smallest fap,n and f fp,n frequencies (n > 0), in practice a few Hz. These aap,0 or
a fp,0 parameters define the macroscopic variations in, respectively, amplitude or frequency – that is
the “envelopes” – whereas the other parameters (for n > 0) reflect the microscopic variations. This
decomposition is illustrated in Figures 3.33, 3.34, and 3.35. By performing a spectral analysis, we
can extract from each amplitude or frequency parameter of each partial an envelope together with
pseudo-partials, ( fap,n,aap,n) or ( f fp,n,a fp,n) (for n > 0), respectively, that are in fact the evolutions
of the spectral parameters resulting from the reanalysis of the parameter of the partial. Thus the
analysis of the evolutions of the partials results in other (pseudo) partials, very slow time-varying. In
this further analysis level we can find similarities among the parameters. For example, a sound with
tremolo or vibrato will show such similarities among the partials. It is possible to reduce the amount
of data needed to represent a sound by sharing this redundant information. One can also remove the
vibrato or tremolo in a voice, in order to get a “flat” sound, or do the opposite. This possibility of
removing or adding the vibrato or tremolo is very useful for clean musical transformations, specially
for time-stretching.

3.8.3 Analysis of the SAS Parameters

Regarding the parameters of the SAS model, we can perform the same decomposition as in Equations
3.49 and 3.50 on the A and F parameters. The tremolo and vibrato can thus be extracted from the
amplitude A and frequency F , respectively. However, the decomposition of the two-dimensional
parameters C and W is much more complicated. We are currently carrying out researches on this
topic.

3.8.4 Pitch Tracking

Determining the evolutions with time of the pitch of a sound is an important problem. This is indeed
extremely useful for controlling synthesizers from this pitch information and absolutely necessary for
pitch-synchronous algorithms such as PSOLA [Pee98].
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Figure 3.33: The amplitude of the first harmonic of an alto saxophone as a function of time (a1),
decomposed here as a macroscopic envelope (aa1,0) and microscopic variations. From top to bottom
are the amplitude function a1, the associated macroscopic envelope aa1,0, and the residual microscopic
variations. As a consequence the tremolo is separated from the envelope.
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Figure 3.34: Same decomposition as in Figure 3.33, but this time for the first 3 partials.
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Figure 3.35: The same decomposition as in Figure 3.33, but this time on a singing voice (mezzo
female voice). The amplitude of the first harmonic (top) is decomposed into a macroscopic envelope
and microscopic variations (bottom).
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Figure 3.36: The normalized amplitudes of the first 9 partials of a guitar sound. Partials 2, 3, 4, and
5 show very similar evolutions. Higher partials are well-suited for the decomposition illustrated by
Figure 3.33.
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Figure 3.37: The strongest partial (P2) among the dominant partials (P1, P2, and P4).

Various methods have been proposed for the determination of the pitch as a function of time
(pitch tracking). They use either the autocorrelation factor [Rab77], other physical [BP93, Lan90]
or geometric [CN96] criteria, least-square fitting [Cho97], pattern recognition [Bro92] or even neural
networks [SJ89].

We have seen previously that the Fourier of Fourier transform – the magnitude spectrum of the
Fourier transform of the magnitude spectrum of the Fourier transform of the signal – is well-suited
for pitch tracking, that is for computing the fundamental frequency of the sound, even if it is missing
or “virtual”.

We propose to use this Fourier of Fourier transform to perform pitch tracking. We have seen at
the beginning of this section that the fundamental frequency of the sound is given by the greatest local
maximum of magnitude (apart from the one corresponding to bin 0) in the spectrum resulting from
the Fourier of Fourier transform.

The problem is that for some sounds this maximum of energy is detected at the wrong place from
time to time. We propose to apply a peak-tracking strategy similar to partial tracking (see Section 3.4),
except that this time we deal with “pseudo-partials”, that is partials detected in the spectrum resulting
from the Fourier of Fourier transform. Figure 3.37 illustrates this. When two partials overlap at a
certain time t – such as P1 and P2 in this figure – the partial with the greatest amplitude is said to
be dominating. If this partial is longer and louder than the other, we forget the dominated partial.
In Figure 3.37, we remove P3 because it is always dominated by P2. Once all dominated partials
have been removed, we consider the strongest partial, which is the partial who is dominating for the
longer period. In Figure 3.37, P2 is the strongest partial. The frequency of the strongest partial gives
the evolutions in time of the fundamental frequency of the initial sound. We have implemented this
method in InSpect (see Section 3.6), and it has proven to be very accurate in practice.

3.8.5 Advanced Musical Transformations

Even if time-stretching is performed on a spectral sound, artifacts may occur in the presence of vibrato
or tremolo. In fact, if the sound is expanded in time, the vibrato and tremolo are slowed down, thus
producing a strange musical feeling. But if the sound is compressed in time, the vibrato and tremolo
are accelerated, and then artifacts occurs. More precisely, if the original sound has a vibrato at f Hz,
if it is time-compressed by a factor k then the vibrato of the resulting sound has a frequency of k f Hz.
The vibrato can then exceed the 20-Hz threshold of hearing and thus become audible. This results in
a modulation phenomenon.
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time
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Figure 3.38: The superposition of two harmonic sources. The partials of the first and second sources
are indicated with circles and squares, respectively. When two partials have the same frequency,
contamination occurs. This phenomenon occurs even twice here.

After Delprat and Arfib [AD99, AD98], we can remove vibrato and tremolo prior to the time-
stretching operation and add then the original vibrato and tremolo back into the stretched “flat” sound.

We propose to decompose the evolutions of the partials as in Equation 3.49 and 3.50. Whereas the
macroscopic envelope is then time-stretched using the classic method, the microscopic variations are
stretched without changing their frequency contents. As a consequence the frequency of the vibrato
(or tremolo) is conserved.

3.8.6 About Source Separation

We are also interested in separating sources in the SAS model, that is pseudo-harmonic sources. When
several sources are recorded together, the analysis stage produces a set containing their respective
partials. Source separation consists in recovering the evolutions of the partials of the different sources,
that is, in the SAS model:

{( f1,a1), · · · ,( fP,aP)}→
S⋃

s=1

{(As,Fs,Cs,Ws)} (3.51)

More precisely, let us consider the superposition of two SAS sources, so that we have S = 2 in Equation
3.51. Since the two sources are nearly harmonic, if all the frequencies of these partials are always very
different then it is quite easy to split the set of partials into two subsets – each containing the partials of
one of the sources – by considering the arithmetic relations among the partials within the two harmonic
sources. But this special case is rather scarce in practice. In fact, there are at least two partials with
close – or same – frequencies. Figure 3.38 shows a superposition of two harmonic sources where two
partials have exactly the same frequency, and this even happens twice here. In fact, this phenomenon
appears almost always within musical chords. Two partials belonging to two different sources are so
close in frequency that they lie in the same Fourier transform bin during the analysis stage, as shown
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Figure 3.39: The two partials pi and p j lie in the same Fourier transform bin m (left). As a conse-
quence they produce a Vi +V j complex value in the spectrum at the contaminated bin (right). Vi and
Vj are the complex values which should have been measured at this bin if, respectively, p j or pi had
been absent.

in Figure 3.39. This phenomenon is called contamination. The two partials, say pi and p j, produce
a Vi +V j complex value in the spectrum at the contaminated bin m. Vi and V j are the complex values
which should have been measured at this bin if, respectively, p j or pi had been absent. More precisely,
if W , N, and Fs are, respectively, the (continuous) spectrum of the analysis window, the width of the
Fourier transform, and the sampling rate of the analyzed sound, we have:

|Vi| = ai W

(
fi−m

Fs

N

)
(3.52)

|Vj| = a j W

(
f j−m

Fs

N

)
(3.53)

The evolutions of the two partials have been averaged into a single partial. The problem is then to
recover the evolutions of the two initial partials from this analyzed partial. The idea is to reanalyze
the evolutions in time of this contaminated partial. Although we have not investigated it in details yet,
we believe that the comparison with the analysis of the evolutions of the uncontaminated partials of
each source might help to recover which part belongs to which source.
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Chapter 4

Sound Synthesis

The spectral models described in Chapter 2 would be useless in practical applications without an
efficient synthesis method able to generate the audio signal from the model parameters, possibly in
real time. By synthesis we mean computation of the discrete audio signal in the time domain. Once
this discrete signal has been generated, it can be reconstructed in the real – physical – world using a
digital-to-analog converter (DAC), as seen in Chapter 2.

As in Chapter 3, the additive synthesis model plays a central role. Additive synthesis requires the
computation of a large number of sinusoidal oscillators. Our InSpect software tool is able to perform
additive synthesis, although this synthesis is not done in real time. Many synthesis methods have been
implemented in InSpect, thus providing a very convenient way of comparing their respective perfor-
mances. Section 4.1 presents the most interesting methods for additive synthesis. The fastest method
has been implemented in our ReSpect software tool. Section 4.2 explains the synthesis algorithm we
use, while Section 4.3 describes its implementation in ReSpect. ReSpect was designed specially for
the purposes of real-time spectral synthesis. It is controlled by a flow of additive parameters with a
slow rate. Section 4.4 shows how ReSpect manages to efficiently up-sample the variations of these
parameters using interpolating splines. Section 4.5 explains how psychoacoustic considerations can
help reducing the number of partials, thus speeding up the synthesis process. Section 4.6 then presents
the synthesis of sounds in the structured additive synthesis model, based on additive synthesis. Finally,
Section 4.7 explains the way of synthesizing noise as well.

4.1 Additive Synthesis

In the InSpect system (see Chapter 3), we are able to extract very precise information about the par-
tials of a sound, for use with additive synthesis [Moo77], using a high-precision Fourier analysis. The
output of such an analysis is a flow of parameter values for a bank of oscillators. Each oscillator
in the bank is responsible for exactly one partial. As opposed to methods based on the Fast Fourier
Transform (FFT), the frequencies of the oscillators are not fixed, but vary slowly according to the
parameter flow. This representation for sound introduced by McAulay and Quatieri [MQ86] is very
expressive musically. It has already been successfully used in software packages like Lemur [FH96]
and SMS [Ser97b]. Figure 4.1 illustrates this spectral representation. Additive synthesis deals with
sounds represented as sums of oscillations. Each oscillation is produced by a sinusoidal oscillator
whose frequency f and amplitude a vary slowly over time (see Figure 4.2). Such an oscillator is com-
monly called a partial (see Figure 4.1). We need an efficient synthesis algorithm, since the synthesis
requires the computation of a large number of oscillators. Always more sophisticated algorithms and
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Figure 4.1: Spectral representation, at time t, of a pseudo-periodic sound consisting of 13 partials.
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Figure 4.2: One period of an oscillation of frequency f and amplitude a.
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the always increasing power of modern computers now allow us to produce hundreds – if not thou-
sands – of simultaneous oscillators in real time, as demonstrated by our ReSpect synthesis software
tool (see Section 4.3).

We describe systems for generating sounds in real time. The input to the systems is a flow of
parameter values. These values control the frequency and amplitude of a bank of oscillators. The time
between two sets of parameter values in the flow is much larger than the time between two samples
of the resulting sound. The sound generation system must compute the instantaneous value of each
oscillator and then sum the results. The remainder of this section will focus on the synthesis of a single
oscillator. More formally, the following series of discrete samples must be generated in sequence:

s[n] = acos(n∆φ + φ0) where ∆φ =
2π f
Fs

(4.1)

The main problem is then to get sufficient performance out of the computation of each instantaneous
oscillator value s[n].

4.1.1 Software Oscillators

Of course computing directly the cosine function for each sample is not realistic. This would result in
a very accurate but extremely slow synthesis. In fact even the built-in cos function of the arithmetic
coprocessors of modern general-purpose processors is too slow to suit our needs. This function could
be used from time to time, but not for each sample.

The problem, then, is to find a very fast method for generating the sequence of samples for each
oscillator with as few operations as possible. There are essentially two possibilities. The first one is
based on table lookup and the second is based on incremental computation of a sample based on the
previous few samples.

The principle of table lookup is to precompute some values of the sine function, storing them into a
table, and to access this table using an index (representing time) at the synthesis stage. However table
lookup requires at least 1 addition and 1 multiplication, to update the index for the next sample and
to scale the oscillation to the correct amplitude, respectively. In order to achieve a reasonable quality,
sine tables either require interpolation among stored values (which is slow) or massive amounts of
memory (essentially one table for each frequency).

In the past, table lookup was a reasonably fast method. Memory was relatively fast and arithmetic,
especially on floating-point values, was much slower. As processors rapidly became faster and main
memory remained roughly the same speed, this technique became less interesting. At the same time,
progress was made with respect to the speed of floating-point arithmetic. On a modern processor,
a floating-point addition can be done in 1 cycle (pipelined) with a latency of around 3 cycles, and
a floating-point multiplication can be done in 1 or 2 cycles with a latency of around 5 cycles (for
the Pentium family processors). The trend is towards even faster arithmetic and higher clock speeds
whereas memory speed still remains roughly the same.

A natural choice, then, seems to be a method based on incremental floating-point arithmetic, using
a recursive algorithm.

Coupled Form

Let us consider complex numbers in the complex plane, and denote by (x[n],y[n]) = x[n] + j y[n].
As a consequence, the Euler notation is (cos(φ),sin(φ)) = e jφ and we have: s[n] = Re(Vn) with
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Figure 4.3: The trigonometric circle. Vn+1 results from the rotation of vector Vn by ∆φ.

Vn = a e j(n∆φ+φ0), where Re(x) is the real part of the complex number x. Figure 4.3 shows the trigono-
metric circle in the complex plane. The rotation by ∆φ of the Vn vector is equivalent to a complex
multiplication by e j∆φ of the complex number Vn. More formally:

Vn+1 = a e j((n+1)∆φ+φ0) = a e j(n∆φ+φ0) e j∆φ = Vn · e j∆φ

This equation is the key of the “coupled form” algorithm (see [GS85, SC92]), which can be defined
by this system: 




(x[0],y[0]) = (cos(φ0),sin(φ0))
(Cx,Cy) = (cos(∆φ),sin(∆φ))
(x[n + 1],y[n + 1]) = (x[n],y[n]) · (Cx,Cy)

(4.2)

i.e. {
x[n + 1] = x[n] ·Cx− y[n] ·Cy

y[n + 1] = x[n] ·Cy + y[n] ·Cx

The iterative computation of each sample s[n] = x[n] of the oscillator requires 4 multiplications and
2 additions, although this computation can be numerically unstable if performed in fixed-point arith-
metic.

Magic Circle

The “magic circle” algorithm (see [GS85, SC92]) is numerically stable and requires only 2 multipli-
cations and 2 additions per sample. For φ0 = π/2, it is easy to verify by induction, since sin(2u) =
2sin(u)cos(u), that the samples of s are given by x in the following system (for φ0 = 0 and using the
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sine function instead of the cosine one in Equation 4.1 though):




x[0] = 0
y[0] = cos(∆φ/2)
C = 2sin(∆φ/2)
x[n + 1] = x[n]+C · y[n]
y[n + 1] = y[n]−C · x[n + 1]

(4.3)

Many formulae have been proposed to lower the number of required multiplications and additions.
They all take advantage of well-known trigonometric formulae to reduce the complexity. However
the resulting methods use only the current value to compute the next one. A good idea is to take
advantage of a deeper recursion scheme.

Digital Resonator

Smith uses in [GS85, SC92] the “digital resonator” to perform the incremental computation of the
sine function using two previous values to compute the new one with only one multiplication and one
addition. This algorithm is optimal in terms of complexity. It is indeed impossible to achieve better
results, since an addition without multiplication or a multiplication without addition will produce,
respectively, only arithmetic or geometric progressions, far from to the expected sinusoids.

s[n] = acos(n∆φ + φ0) where ∆φ =
2π f
Fs

As a consequence, we have:

s[n + 1] = acos((n + 1)∆φ + φ0)

· · · = acos(n∆φ + φ0 + ∆φ)

· · · = acos(n∆φ + φ0)cos(∆φ)−asin(n∆φ + φ0)sin(∆φ)

and

s[n−1] = acos((n−1)∆φ + φ0)

· · · = acos(n∆φ + φ0−∆φ)

· · · = acos(n∆φ + φ0)cos(∆φ)+ asin(n∆φ + φ0)sin(∆φ)

thus

s[n + 1]+ s[n−1] = 2acos(n∆φ + φ0)cos(∆φ)

· · · = 2cos(∆φ)s[n]

· · · = C s[n]

where C = 2cos(∆φ)

Finally, the digital resonator algorithm can be summarized in the following system:




s[0] = acos(φ0)
s[1] = acos(∆φ + φ0)
C = 2cos(∆φ)
s[n + 1] = C · s[n]− s[n−1]

(4.4)

The incremental computation of each oscillator sample requires only 1 multiplication and 1 addition,
but can turn out to be numerically unstable.
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4.1.2 Using the Inverse Fourier Transform

In order to efficiently synthesize many sinusoids simultaneously, Freed, Rodet, and Depalle propose
in [FRD92, FRD93] to use the inverse Fourier transform, provided that the oscillator parameters
vary extremely slowly. The idea is to reconstruct the short-term spectrum of the sound at time t,
and then to apply the Inverse Fast Fourier Transform (IFFT or FFT−1) in order to obtain the temporal
representation of the sound, and finally to repeat the same computation further in time, thus performing
a kind of “inverse phase vocoder”.

Spectrum Approximation

The first step of the algorithm is to reconstruct the (short-term) spectrum of the sound at time t from
the spectral information given by the partials. More precisely, for each partial its effect in the spectrum
has to be reproduced.

Each partial leads to a spectral peak, and more precisely to a maximum of magnitude located in the
Fourier transform bin corresponding to its instantaneous frequency. A very important point is that this
is the case only if the frequency of the partial is a multiple of the lowest Fourier transform frequency.
Most of the time the neighbors of the main bin have significant magnitudes too (see Figure 4.4). The
number of neighbors depends on the “analysis” window (wr), as explained in Chapter 3. Figure 4.5
shows the power spectra of the Bartlett (triangular) and Hann windows. These two windows are good
choices for the overlap-add technique described later. In order to reconstruct the sinusoid with an error
below -40 dB, 12 bins (main peak and neighbors included) are required for the triangular window,
while only 6 bins are necessary for the Hann window. With 12 bins, the error using the Hann window
is below -60 dB, which is quite acceptable. Note that apart from the magnitudes, the computation
of the phases is also necessary. This can be done in a trivial way by using the zero-phase windowing
technique described in Chapter 3, provided that the phase information has been recovered from the
partials. Only the first half of the complex spectrum has to be reconstructed, since the other half is its
conjugate symmetric, because we expect a real-valued signal after the inverse Fourier transform.

Inverse FFT

When the (short-term) spectrum has been reconstructed, then the Inverse Fast Fourier Transform
(IFFT) can be applied in order to obtain the signal back into the time domain.

Many algorithms have been proposed in order to perform the FFT and its inverse as efficiently
as possible. Cooley and Tukey propose in [CT65] the well-known radix-2 (or “butterfly”) algorithm
listed below.

void
ifft_transform (COMPLEX *spectrum, REAL *samples, int N)
{

int i, j, d, k;

...

for (d=1; d<N; d+=d)
{
for (i=(N/2), j=0; i>0; )

{
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Figure 4.4: When the frequency of the partial is not a multiple of the lowest Fourier transform fre-
quency, the neighbors of the main bin have significant magnitudes too.
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butterfly (spectrum, j, d, N);
i--;
for (k=1; k<d; k++)

{
butterfly (spectrum, j+k, d, N);
i--;

}
j += 2*d;

}
}

...

}

static void
butterfly (COMPLEX *spectrum, int i, int d, int N)
{

double x;
COMPLEX w, tmp;

x = (double) ((i%d)*(N/(2*d)));
w.re = cos ( (2*M_PI*x) / N );
w.im = sin ( (2*M_PI*x) / N );

tmp.re = (spectrum[i+d].re * w.re) - (spectrum[i+d].im * w.im);
tmp.im = (spectrum[i+d].re * w.im) + (spectrum[i+d].im * w.re);
spectrum[i+d].re = spectrum[i].re - tmp.re;
spectrum[i+d].im = spectrum[i].im - tmp.im;
spectrum[i].re = spectrum[i].re + tmp.re;
spectrum[i].im = spectrum[i].im + tmp.im;

}

This algorithm is indeed very fast. If N is the size of the Fourier transform (N is a power of 2),
the complexity of the algorithm is O(Nlog2(N)). More precisely, the number of moves, additions,
and multiplications is proportional to Nlog2(N). Note also that this algorithm requires Nlog2(N)
computations of the sin (or cos) function, although these computations might be done using the digital
resonator, for example. Moreover, at the end of the algorithm the signal is stored as complex numbers
so N moves are necessary for extracting the real parts in order to reconstruct the vector of real-valued
samples. Another well-known feature of this algorithm is that the complex numbers get stored in
bit-reversed order at the end. To recover their real positions, the binary representation of their indices
must be mirrored, that is i = i0i1 · · · iN−1 → iN−1 · · · i1i0 = i′. This results in computation overhead,
reasonably small though.

Overlap-Add Technique

The inverse Fourier transform reconstructs small temporal frames of N samples. In order to avoid
clicks at the boundaries between successive frames, the overlap-add (OLA) technique [Pee98, PR99]
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Figure 4.6: The overlap-add technique. The temporal frame of signal s is obtained from its spectrum
S using the Inverse FFT (IFFT). Then, s is multiplied by the weighting function w if needed. Finally,
the weighted frame is added to the result, and the same algorithm is repeated N/2 samples later, and
so on.

is used. It consists in decomposing the signal into overlapping frames, for example by N/2 samples.
Each temporal frame of N samples is multiplied by a weighting window. This window must satisfy

the condition that the sum of all the weights of the different overlapped windows must be equal to 1.
As a consequence, the most commonly used window is the Bartlett (triangular) window, since it
obviously verifies this condition (see Figure 4.8). Figure 4.6 illustrates the overlap-add technique.
The temporal frame of signal s is obtained from its spectrum S using the Inverse FFT (IFFT). Then,
s is multiplied by the weighting function w. If the reconstruction window wr is different from the
overlap-add window wOLA, then just take w = wr/wOLA. Finally, the weighted frame is added to the
result, and the same algorithm is repeated N/2 samples later, and so on. To avoid this multiplication
by w for each frame, a good idea is to use the same window for the reconstruction of the peaks in the
short-term spectrum prior to the inverse Fourier transform, since the signal frame resulting from this
transform will then be already weighted by the appropriate overlap-add window.

We have seen previously that the Bartlett (triangular) window is not very interesting, since it
requires the computation of many Fourier transform bins for each partial. Because of the well-known
formula of trigonometry sin2(u)+ cos2(u) = 1, another (better) candidate is the sin2 window:

wsin2,N(n) =

(
sin

(
2πn
N

))2

(4.5)
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Figure 4.7: Temporal representation of the Bartlett (left) and Hann (right) windows.

However, let us consider the Hann window:

wHann,N(n) =
1
2

(
1− cos

(
2πn

N−1

))
(4.6)

If N is odd, then N/2 = (N− 1)/2 (since / stands for the Euclidean division among integers). If N
is even, just replace N− 1 by N in Equation 4.6, thus leading to a window very close to the original
Hann window. Then we have:

wHann,N(n) + wHann,N(n + N/2) =
1
2

[
1− cos

(
2πn

N−1

)]
+

1
2

[
1− cos

(
2π(n + (N−1)/2)

N−1

)]

· · · =
1
2

[
1− cos

(
2πn

N−1

)]
+

1
2

[
1− cos

(
2πn

N−1
+ π
)]

· · · =
1
2

[
1− cos

(
2πn

N−1

)]
+

1
2

[
1 + cos

(
2πn

N−1

)]

· · · = 1

As a consequence, this window satisfies the condition that the sum of all the weights of the different
overlapped window must be equal to 1 (see Figure 4.8). We propose then to use the Hann window for
the overlap-add technique. As seen previously, it is indeed a much better candidate for the reconstruc-
tion of spectral peaks.

4.1.3 Comparative Results

We have seen previously that either software oscillators or the FFT−1 technique can be used to perform
additive synthesis. In order to known which method should be used for a real-time implementation,
we propose to compare the respective performances of the digital resonator – the fastest software
oscillator – and the FFT−1 technique. Two considerations must be taken into account: quality and
complexity.

Quality

The digital resonator allows an extremely fine control of each oscillator, since its algorithm can be
modified to allow parameter variations (see Section 4.3). On the contrary, the FFT−1 technique works
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only when the oscillator parameters vary extremely slowly, and more precisely when they can be
considered as constant within the N samples of the Fourier transform. When these parameters vary
over time, then the spectrum gets distorted as explained in Chapter 3, and taking distortion into account
will be very costly for the algorithm in terms of computation time. As a consequence, the digital
resonator is much more flexible and seems the best choice regarding quality.

Complexity

As a first approximation, we will consider that all the different instructions take approximatively the
same computation time.

From the complexity point of view, the digital resonator requires 1 multiplication and 1 addition
per oscillator sample, that is 2P instructions for P partials.

To achieve sufficient quality with the FFT−1 technique, we have seen that the computation of at
least 12 spectral bins per partial is necessary. Then, neglecting the moves for complex-to-real con-
version and bit-reversal, the inverse FFT requires kNlog2(N) instructions. Note that the computation
is done twice per sample, because of the overlap-add technique. As a consequence, the optimistic
number of instructions per sample for the FFT−1 method with P partials is 2kNlog2(N). Theoretically
determining the exact value of k is extremely difficult because of the features of modern processors
such as the caches or pipelines for example. However, in practice, with the Fastest Fourier Transform
in the West (FFTW) implementation [FJ98] by the MIT, we measure k = 30 on the Intel Pentium
II processor. We use FFTW (version 2.1.3) for benchmarking, although the radix-2 algorithm given
above is nearly as fast in this case. More precisely, with a processor at 300 MHz, the IFFT takes
2/5 of the time for N = 256, and this ratio is proportional to log2(N). In the meanwhile, the digital
resonator could have synthesized 240 partials, since we show in Section 4.3 that it is able to generate
in real time roughly 2 oscillators per MHz of clock speed, that is 600 simultaneous partials on a 300
MHz machine. Note that this time is used by the FFT−1 method even if only one partial has to be
synthesized, which is not the case with the digital resonator. Of course, when the number of partials
increases, the FFT−1 method should be more efficient in theory, since for each partial the number of
instructions needed to reconstruct its effect in the spectrum is a constant, and not proportional to N as
in the digital resonator algorithm.

However things are not so simple in practice, since the reconstruction of a spectral peak (and its
neighbors) is very costly. For example, the rectangular or Hann windows require the computation
of the sinc function, that is the sin function computed in a non-incremental way plus a division. Of
course other windows could be used, such as the truncated Gaussian one which requires the evaluation
of the power function. . .

As a consequence it appears that the digital resonator is more efficient. Freed has probably come
to the same conclusion. Indeed, while he was at the origin of the FFT−1 method, he proposes together
with Hodes in [HF99] to use the digital resonator for additive synthesis as well. At the same time,
we were presenting our ReSpect software tool for real-time additive synthesis, based on the digital
resonator too. The main difference is that we perform all our computations using floating-point arith-
metic in double precision, whereas Hodes and Freed use a 16-bit fixed-point arithmetic, and thus have
to face numerical imprecision.



4.2. SYNTHESIS ALGORITHM 163

4.2 Synthesis Algorithm

Although other methods have been proposed [FRD92, FRD93], we chose to generate each oscillator
using the simple recursive description of the digital resonator. It allows us to compute for the discrete
signal s the sequence

s[n] = acos(2π f Tsn + φ0)

for each n incrementally, where a is the amplitude and f the frequency, while Ts = 1/Fs is the sampling
period in seconds. Using this formula, the value of some sample s[n] can be expressed as a function
of the two previous samples s[n−1] and s[n−2] like this:

s[n] = 2cos(2π f/Fs) · s[n−1]− s[n−2] (4.7)

As shown previously, this method is indeed more flexible and very efficient. It allows us to have
an extremely fine control of each oscillator and the incremental computation of the samples of an
oscillator, given any frequency and any amplitude, with only one floating-point multiplication and
one floating-point addition per sample, which on most platforms comes to only a few clock cycles.

However, this formula is not very well adapted to our needs. It has two major problems. The
first is that the parameters are fixed, whereas they need to vary over time, and the second is that
numerical imprecision may cause the values to drift. While the numerical instability could be fixed,
the necessity for such parameter adjustments seems to make this formula useless. There are similar
formulae that take into account the possibility of linear (and exponential) evolutions of the amplitude,
but we are unaware of any fast formula that takes into account linear variation of the frequency as well.
Furthermore, if we change from linear interpolation, even those formulae would become useless.
In any case, formulae that take into account the variations of the both parameters are much more
expensive to compute, at least double the cost of the one above.

The solution we propose in [SM99, MS99] and described in this section is able to adapt the fast
formula of the digital resonator so that the parameters may evolve and that drift is avoided, thus
leading to a high-quality and very efficient synthesis technique since our solution represents only a
very small percentage overhead compared to the original digital resonator.

The algorithm is based on two crucial observations. First, our experiments indicate that abruptly
changing the amplitude by a reasonable amount does not introduce any audible noise or distortion.
Similarly, changing the frequency by a reasonable amount also does not introduce any audible impact
on the quality of the sound. Notice that an abrupt change in phase might have such an impact. But as
long as the phase stays the same, we may change the frequency by quite a lot. The second observation
is that the slope of our parameter values, i.e. their speed of variation, is going to be relatively small
compared to what would still go undetected.

With this in mind, we can now present our method. Based on two consecutive parameter values,
determine the slope of the evolution of the parameter values. The slope is defined to be the difference
in parameter values divided by the number of signal samples between two parameter points. In our
case, there can be up to 1000 samples in such an interval for a sampling rate of 44100 Hz. From
experimental data, we know the maximum allowable difference in parameter values we can have
without creating any audible distortion or noise. Divide this value with the slope previously obtained.
The result of the calculation is the number of samples that can be generated without any adjustment
of the parameters.

Experiments show that we frequently get intervals of 100 samples or more between necessary
adjustments of parameter values. Thus, even if the computation to adjust parameter values is consid-
erably more expensive than that of generating a sample, we are still within a few percents of extra cost
compared to maximum speed when parameters do not evolve at all.
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Figure 4.9: Variation of the amplitude of an oscillator and the resulting audio signal. Between two
parameter changes, some interpolated values are computed (4 in this example). And between two
interpolated values, many samples are computed.

4.2.1 Changing the Control Parameters

The additive synthesis parameters vary over time. In theory, both frequency and amplitude can vary
slightly between each new computed sample. The reason is that parameter evolution is expressed
as an interpolation between values in the parameter flow. So even though we compute thousands of
samples between two parameter values in the flow, because we interpolate, we must be prepared to
adjust both the frequency and the amplitude of our oscillators at each sample.

In fact, as mentioned above, we do not need to adjust the parameters at each sample, but only
every 100 samples or so. In the current implementation of ReSpect, the frequency and amplitude of
each oscillator is updated every 64 samples at 44100 Hz. Figure 4.9 shows how our method handles
the variations of the parameters. The parameters of the partials are sent to ReSpect about 172 times
per second, which corresponds to a period of 256 samples at 44100 Hz, and the parameters of the
oscillators are adjusted every 64 samples. For now we may assume that the instantaneous values of
the parameters are found by linear interpolation between the values present in the flow. Other systems
are possible. In particular, we propose in Section 4.4 to consider the parameter values as the samples
of a continuous-time signal with a frequency of at most half the one defined by the time between
parameter values.

Now let us focus on the way the parameters of the oscillators are changed (every 64 samples).
Changing the amplitude is obvious. It is just a matter of changing a, provided that this value is
known. The amplitude can be changed from a1 to a2 by a simple multiplication of the two last values
of the oscillator by a2/a1. Changing the frequency is easy too, since it is only a matter of recomputing
2cos(∆φ) = 2cos(2π f/Fs) with the new value of f . The phase must not be changed since it must
remain continuous.
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Given 3 previously-computed values of the oscillator:

s[n−1] = acos(φ−∆φ)

s[n] = acos(φ)

s[n + 1] = acos(φ + ∆φ)

it is possible to recover the amplitude a and the phase φ of the sine at sample n. Indeed, we have:

s[n−1]− s[n + 1] = 2asin(φ)sin(∆φ)

((s[n−1]− s[n + 1])/2)2 +(sin(∆φ)s[n])2 = a2(sin(∆φ))2

and finally:

a =

√(
s[n−1]− s[n + 1]

2sin(∆φ)

)2

+(s[n])2 (4.8)

Since ∆φ = 2π f/Fs with 0 < f < Fs/2, we have 0 < ∆φ < π and sin(∆φ) 6= 0. Then, recovering the
phase is easy:

φ = arccos

(
s[n]

a

)
(4.9)

Finally, changing the oscillator parameters can be done using this algorithm:

1. Get the amplitude using Equation 4.8. Of course we may store the current amplitude of each
partial to avoid recomputing it, provided that no drift – due to numerical instabilities – has
occurred;

2. Either just scale the last 2 values of the oscillator to match the new amplitude while keeping
phase continuity, or recover the phase from the last samples using Equation 4.8 and recompute
the two initial values according to this phase and the new amplitude.

4.2.2 Avoiding Discontinuities

We already mentioned that it is possible to adjust (for instance) the amplitude by a reasonable amount
without introducing any distortion. But we can actually do even better.

Amplitude

Such amplitude adjustments are more audible the greater the absolute value of the current sample to
be computed. The reason for this is that the difference in amplitude is multiplied by the value of the
signal:

a1 cos(φ)→ a2 cos(φ)

The smaller the signal, the smaller the (potentially audible) difference in the amplitude difference.
This phenomenon is shown in Figure 4.10. The idea is then to change the amplitude at the right
moment to guarantee the continuity of the signal. The best time for changing a from a1 to a2 is when
cos(φ) is close to zero. More precisely, the best and worst cases are, respectively:

• best case: φ≡ π
2 (π)

• worst case: φ≡ 0 (π)
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Figure 4.10: Changing the amplitude either when the signal is minimal (left) or maximal (right). It
appears that the left case is much better, since it avoids amplitude discontinuities (clicks).

Figure 4.11: Changing the frequency either when the signal is minimal (left) or maximal (right). It
appears that the right case is better, since it avoids derivative discontinuities (clicks again).

Frequency

The frequency parameter has the inverse problem.

dφ
dt

= 2π f1→ 2π f2

An abrupt change in the frequency is more likely to be audible when the value of the signal sample
is small. The reason for this is that the derivative of the signal changes as a result of a change in
frequency, and the derivative is zero when the absolute value of the signal is the greatest. This phe-
nomenon is shown in Figure 4.11. The idea is then to change the frequency at the right moment to
guarantee the continuity of the first derivative of the signal. Since we have

d(acos(φ))

dt
=−a

dφ
dt

sin(φ)

the best time for changing f from f1 to f1 is when sin(φ) is close to zero. More precisely, the best and
worst cases are, respectively:
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time

Figure 4.12: Algorithm loop. Either the amplitude or frequency are changed (points), then some
oscillator samples are computed (blocks).

• best case: φ≡ 0 (π)

• worst case: φ≡ π
2 (π)

Enhanced Algorithm

With this in mind, we can improve the situation even further. The idea is then to delay changes in
amplitude until the signal value is close to zero, and to delay changes in frequency until the abso-
lute value is maximal. This algorithm allows us to obtain performance very close to the maximum
theoretical value for fixed parameter values while providing a higher synthesis quality.

Naturally, if we had to test the value in each iteration to determine whether it is close to zero or,
on the contrary, close to maximal, we would lose at lot of computational power. Such a test would
take time comparable to the computation of a sample, which would slow us down by a factor close to
2.

Fortunately, we can avoid that problem, and here is how. When parameters are adjusted, we
precompute the number of iterations before the next update is necessary. This computation makes
sure that the phase after the next block of iterations is optimal. By optimal we mean that it should be
close to 0 or π for the frequency and close to π/2 or 3π/2 for the amplitude. The computation of the
samples is then started for a known number of iterations. When that computation finishes, we know it
is the optimal time to adjust one of the parameter.

To avoid a test for the loop counter in each iteration, the loop is unfolded a sufficient number of
times so that the time taken by this test is negligible.

Finally, the enhanced algorithm consists in forever repeating the following loop, illustrated in
Figure 4.12:

• May change either amplitude or frequency;

• Compute some oscillator samples;

• May fix oscillator instability.

4.2.3 Synthesizing Low Frequencies

The problem with low frequencies is that the optimal update times for the parameters are too scarce.
For example, an oscillator with f = 50 Hz and a sampling rate of Fs = 44100 Hz has update times
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Figure 4.13: Approximation of a sinusoid with a piecewise-linear function consisting of 12 points.
This approximation is shown on a quarter of a period, so only 4 points are displayed. The original
values of the cosine function as well as its first derivative are conserved for the phases which are
integer multiples of π/2 (black points).

occurring every 441 samples, which is much more than the minimal update period of 64 samples
decided above.

We envisage to address this problem while reducing the complexity of the algorithm at the same
time. The idea is to approximate the low-frequency sinusoids by piecewise-linear functions. It is
indeed possible to make such an approximation, provided that enough points are used. Figure 4.13
suggests that only 12 points per period are sufficient of a decent quality. The update times correspond
then to these points, which are close enough in time to guarantee frequent parameters updates, and dis-
tant enough to preserve the performance of the algorithm, which in the case of a linear approximation
requires only one addition – and no multiplication – per sample. When the parameters are changing,
the next target point in the approximation is computed with the new parameters, and reached by linear
interpolation as usual, thus guaranteeing signal continuity.

4.2.4 Numerical Imprecision

It is well known that the fast formula that we use for generating samples does not behave very well
with respect to loss of precision in numerical calculations. If iterations are carried out for a long time,
drift in the value of the frequency can cause the sound to be severely distorted.

Numerical stability is not a real problem since we can measure and adjust the parameters regularly
and often enough to avoid any drift, and rarely enough to preserve performance. Since our method re-
quires us to adjust our parameters every so often, say every 100 samples or so, we may take advantage
of this periodicity to recompute our initial samples from scratch, i.e. using trigonometric functions.
This way, we would not only adjust our parameters, but also compensate for any possible drift due to
numerical imprecision. Should computing the trigonometric functions be expensive at this frequency,
it can be done at a much lower frequency than is required to adjust parameters. It just happens to be
convenient to do both at the same time.

Fortunately, distortion phenomena will only appear after a considerable number of iterations, in
particular since we carry out our calculations using floating-point arithmetic in double precision. We
have tested the numerical precision for 109 samples, corresponding to a partial length of more than
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6 hours at 44100 samples per second. No amplitude drift was measured, even with a very small
amplitude of 10−6, corresponding to -120 dB (the least audible amplitude). A drift in phase was
measured, but this is not a problem since only the frequency matters to our ears.

In fact the problem is only with extremely small amplitudes. A solution is either to force the
partial to die when its amplitude is too low or to compute a “normalized” resonator – that is with
its amplitude equal to 1 – and use another multiplication to scale the amplitude to a. Both solutions
have been tested. Since the digital resonator using floating-point arithmetic in double precision is
stable enough, it is better to use the first solution and avoid this multiplication. In the second case,
the synthesis of the 64 oscillator samples between the parameter adjustments is (in C programming
language):

c = 2 * cos ((2*M_PI*f)/SAMPLING_RATE);

for (i=0; i<STEP; i++) /* STEP is 64 */
{
double snew = sn * c - sn_1;
*samples++ += a * sn; /* this multiplication could be avoided */
sn_1 = sn;
sn = snew;

}

4.3 ReSpect Software Package

ReSpect (“Respect Spectrum”) [MS99, Mar00b] is a sound synthesis program specially designed in
order to perform the real-time additive synthesis of sounds from their spectral representation. It is
mainly an implementation of the synthesis algorithm described in Section 4.2. ReSpect can gener-
ate many oscillators simultaneously and behaves as a virtual sound card accepting spectral sounds.
ReSpect is freely distributed [Mar00b] according to the GNU General Public License (GPL) [FSF91].

4.3.1 Implementation

ReSpect is a module for the Linux operating system and works on top of the free version of the Open
Sound System (OSS) [wwwb] included in the kernel source tree at the moment. The problem with
OSS is that it does not support recent sound cards. We expect to switch to the Advanced Linux Sound
Architecture (ALSA) [Kys00, wwwa] very soon. The problem is that ALSA lacks some low-level
functionalities which are required by our module. For example, ReSpect must be able to open the
hardware sound card, and to install a call-back function in order to be warned when the output buffer
of the sound card is getting empty, in order to avoid clicks in the output signal.

The aim of the ReSpect module is to provide the user with a virtual sound card accepting spectral
sounds. Since ReSpect runs in the kernel space, it does not depend on the scheduler of the user space.
As a consequence it can perform the real-time synthesis of spectral sounds with high priority and low
latency. Since ReSpect has a direct hardware access, we can guarantee that there will be no click
during a live performance using ReSpect. In the worst case we will hear a steady sound for a few
milliseconds if the spectral information does not arrive on time at the device driver.
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Figure 4.14: Overview of the ReSpect architecture.

4.3.2 Device Driver Protocol

When ReSpect is installed as a module in the UNIX kernel, the resynthesis is controlled by writing
in a special device driver: /dev/respect. This driver maintains an ordered list of the active partials
currently synthesized. Each partial p is represented by a ( fp,ap) pair of floating-point numbers in
double precision. Recall that the functions fp and ap are the frequency and amplitude of the p-th
partial, respectively. The number of synthesized partials can vary over time. When a partial dies,
the special (0,0) pair is placed at its position in the partials list. After that, the partial does not exist
anymore. When a new partial appears, its is simply appended to the partials list. When the pairs are
written into the device driver, the following protocol must be respected in sequence:

1. For each partial p, write its ( fp,ap) pair.
If a partial dies, the (0,0) pair is written.

2. For each new partial, write its pair.

3. Write the (−1,−1) end-marker pair.

This steps should be repeated for each temporal frame, at a frequency depending on the sampling
period. Since we are in the spectral model, the frequency corresponding to this period can be as low
as 40 samples per second. Although it will be generalized in the near future, ReSpect currently accepts
only rates of 44100/(64∗4)≈ 172 and 44100/64≈ 689 samples per second.

Let us denote by P(n), B(n), and D(n) the number of partials, respectively, present, born, and
dead during the n-th frame. We have P(n + 1) = P(n)−D(n) + B(n + 1). An incoherent number of
partials in a frame is a clue to protocol violation and in this case the device closes automatically. Here
is an example respecting the device protocol:

{
int audio;
int i, j;
double end_marker = -1;

partial *active[MAX_NUMBER_OF_PARTIALS];
int nactive = 0;
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/* open the device of ReSpect */

audio = open ("/dev/respect", O_WRONLY);

/* play n frames */

for (i=0; i<=n; i++)
{
int nclosed;
partial *dst, *src;

/* add new partials (births) */

{ for each new partial p, do: active[nactive++] = p; }

/* play active tracks */

nclosed = 0;

dst = src = active;

for (j=0; j<nactive; j++)
{
double f, a;
partial p = *src;

if ( death of partial p )
{
f = 0;
a = 0;
nclosed++;

}
else

{
f = ( frequency of p at time i )
a = ( amplitude of p at time i )
*dst++ = p; /* p still active */

}

src++;

write (audio, &f, sizeof(double));
write (audio, &a, sizeof(double));

}

write (audio, &end_marker, sizeof(double));
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performance Pentium II Pentium III

standard code 2 > 4
pipeline optimization 3 > 6

Table 4.1: The number of partials that can be synthesized in real time by ReSpect. The values are
given in partials per MHz of CPU clock. The sampling rate of the synthesized sound is Fs = 44100
Hz.

nactive -= nclosed;
}

/* close the device of ReSpect */

close (audio);
}

4.3.3 Performances

The method for fast additive synthesis we have presented above is indeed very efficient. The follow-
ing performances are given for the ReSpect implementation for Linux PC using the Intel Pentium
processor. We have successfully obtained close to optimal performance. Currently, with this imple-
mentation, we are able to generate roughly 2 oscillators per MHz of clock speed on Intel Pentium
II processors. In other words, we obtain the simultaneous generation of around 800 oscillators in
real time on a 400 MHz machine. At the time these lines are written, the Pentium III 800 MHz is
available, and the 1 GHz machines are announced. As a consequence, for most sounds in the additive
synthesis model, our system is already capable of faithfully resynthesizing signals from their spectral
representations in real time. However, we keep on optimizing ReSpect and its synthesis algorithm.

By switching to recent processors, we could take advantage of SIMD (Single Instruction, Multiple
Data) architectures. For example the Pentium III has news instructions that allow the simultaneous
computation of 4 floating-point additions or multiplications. In theory the algorithm should be 4
times faster, although we have not verified this in practice yet. The problem with these new Pentium
instructions is that they work in single precision. To adapt them for double precision – needed by
the digital resonator – we lose half of the speed. Table 4.1 gives the number of partials that can be
synthesized in real time by ReSpect. The speed of the computation can be increased by optimizing the
use of the pipeline of these processors. Figure 4.15 illustrates this. However the resulting algorithm
is very processor-dependent, and the optimization of the algorithm for a wide variety of processors
would be a tough work.

4.4 Fast Resampling Using Interpolating Splines

The additive synthesis parameters are slow-varying functions of time. More precisely, these functions
can be regarded as (control) signals which are band-limited in frequency with a maximal frequency
under the lowest audible frequency, that is 20 Hz approximatively. As a consequence we do not
assume a linear variation of the parameters. We intend to do even better to obtain a high quality with
a low rate for the parameter flow. Considering the parameter values as the samples of a band-limited
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Figure 4.15: Taking advantage of the pipeline can reduce the computation time. Example of non-
pipelined instructions (top) and pipelined ones (bottom). Ticks on the time axis correspond to proces-
sor cycles.

signal allows us to reduce the frequency of the updates of the parameter flow of the device. Since the
maximal frequency is under 20 Hz, in theory sampling the parameters 40 times per second or so is
sufficient (see Chapter 2). In practice we use a value of about 172 times per second, in order to be able
to encode fast variations for partials with high frequencies. Psychoacoustic experiments show that the
maximal frequency of the control signal is not a constant, but a function proportional to the frequency
of the controlled signal. More precisely, to avoid modulation phenomena, the maximal frequency of
the control signal is about 0.35% of the frequency of the controlled partial (see Chapter 1), that is 70
Hz for 22 kHz (considered as the highest audible frequency).

4.4.1 Resampling Process

The control parameters are sent to the device only every 256 samples of the output signal. Since the
parameters of the oscillators must be updated every 64 samples, the discrete signals of the control
parameters must be up-sampled by a factor 4.

As mentioned in Chapter 2, this up-sampling can be done using a reconstruction filter whose
impulse response r is a sinc function multiplied by a bell-shaped window w, for example the Hann
window. This typical shape for the impulse response was called “Mexican hats” in Chapter 2. More
formally, we have:

r(t) = w(t)sinc(t) (4.10)

with

sinc(t) =
sin(πt)

πt
(and sinc(0) = 1) (4.11)

The discrete Hann window of size N is defined by equation:

wHann,N[n] =
1
2

(
1− cos

(
2πn

N−1

))
(4.12)

Using a convolution would severely degrade the performance of our synthesis algorithm. The problem
is then to compute the intermediate values of the parameters in an efficient way, since we do not intend
to use a reconstruction filter as in Chapter 2. We propose instead to use an approximation of the ideal
reconstruction.
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4.4.2 Cardinal Splines

The principle of the splines is to use polynomials to approximate or interpolate functions. We are
interested in interpolation splines for uniform reconstruction. The cardinal splines are interpolating
uniform splines widely used in computer graphics [FvDFH95a]. The s signal can be reconstructed
from its samples using equation:

s(pTs + t) =
3

∑
i=0

ci(t)s[p−1 + i] (0≤ t < 1) (4.13)

where the ci functions are, for cubic splines, the following Hermite blending functions:

c0(t) =
1
2

(−t + 2t2− t3) (4.14)

c1(t) =
1
2

(2−5t2 + 3t3) (4.15)

c2(t) =
1
2

(t + 4t2−3t3) (4.16)

c3(t) =
1
2

(−t2 + t3) (4.17)

These four polynomial functions are represented in Figure 4.16. Since the well-known Horner method
can be used to perform the computation of the polynomials, the reconstruction is very efficient. This
reconstruction turns out to be of very good quality too. The reason for this quality is that these
Hermite functions constitute indeed a piecewise-polynomial approximation of the impulse response
of a reconstruction filter, while Equation 4.13 is a small convolution between the discrete signal and
this approximation. More precisely, the comparison between the Hermite functions and the (truncated)
ideal sinc function is shown in Figure 4.17. Since the Hermite functions constitute another “Mexican
hat”, let us consider the windowing function that has been multiplied to the sinc function to obtain
it. By dividing the Hermite functions by the sinc function, we get the functions of this “cardinal
window” (see Figure 4.18). It is indeed very different from the Hann window we use in Chapter 2.
But the time-domain representation is not so important. Figure 4.19 shows a comparison between the
cardinal and Hann windows in the frequency domain. It appears that the cardinal window is not such
a good low-pass filter in comparison to the Hann window.

Cubic cardinal splines in conjunction to the Horner method for the evaluation of the polynomials
result in a very efficient resampling technique with a sufficient precision. However we believe that it
is possible to design specific splines well-suited for our purposes, and we are currently working on
this.

4.5 Psychoacoustic Considerations for Synthesis Speed-Up

We have seen in Section 4.3 that we are able to synthesize hundreds – if not thousands – of sinusoidal
oscillators in real time. An harmonic sound with a F = 50 Hz fundamental frequency requires a
maximal number of 440 partials (since 22 kHz is the highest audible frequency). While we have
not investigated this in details yet, we believe that a number of oscillators not much larger than that
is enough for nearly all possible sounds, even polyphonic ones. The reason is that as the number
of oscillators grows, the smallest distance between two oscillators is going to get smaller. When
this distance is sufficiently small, either we get a psychoacoustic phenomenon known as masking
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Figure 4.16: Hermite blending functions for cardinal cubic splines.

[ZF81, ZF90, ZZ91], or else the two oscillators can be combined into one without altering the sound.
It would then seem that there is an upper bound on the number of such oscillators that we need in
order to produce most sounds. We are already very close (if not already past) this number with the
method presented in Section 4.3. In fact, this number is certainly much lower, since the masking
phenomenon begins when two partials of the sound lie in the same critical band (see Chapter 1).
Since the whole audible spectrum can be decomposed using only 24 bands, the masking phenomenon
appears inevitably in a sound with more than 24 partials (since then two partials are bound to lie within
the same band).

4.5.1 Masking Phenomenon

Masking is a psychoacoustic phenomenon described in Chapter 1. Consider the case of two sinusoids
of frequency fM and fm, and amplitude aM and am, respectively. Assume that aM > am. In first
approximation, the masking threshold looks like a triangle in the Bark-dB scale, as shown in Figure
4.21. If fm is close to fM, the sound m is masked by the sound M and becomes inaudible. Garcia and
Pampin use in [GP99] this masking phenomenon to reduce the number of sinusoids of a sound in the
additive model. We propose to use a similar technique, but this time not for compression purposes, but
for synthesis efficiency only. The masking phenomenon is also used in the MPEG-II Layer 3 audio
compression [BB95, Pan95, HBEG95]. We do not want to compress the spectral sounds, because we
need all the partials – even the inaudible ones – for the musical transformations (see Chapter 2). But
masked partials can be removed at the synthesis stage, since they will not be heard.

Garcia and Pampin use a simple masking model to evaluate the signal-to-mask ratio (SMR) of
each partial. This model consists of:
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Figure 4.17: Cardinal splines blending functions (a) versus sinc function (b).
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F

Figure 4.20: Masked partials in an harmonic sound. The two partials under the masking threshold can
be removed at the synthesis stage, since they will not be heard.

∆
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Figure 4.21: Masking of a sinusoid of frequency fm by another sinusoid of frequency fM. The masking
effect is maximal when fm and fM are close. As a first approximation we can consider that the masking
threshold is close to a triangle in the Bark-dB scale, although it is not exactly the case in practice,
especially for the top of the triangle.
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• The difference ∆ between the level of the masker and the masking threshold (-10 dB);

• The masking curve towards lower frequencies (left slope: 27 dB/Bark);

• The masking curve towards higher frequencies (right slope: -15 dB/Bark).

4.5.2 Enhanced Algorithm

Before the synthesis algorithm itself, another algorithm can be added in order to reduce the number
of partials to be synthesized. This algorithm is very simple. It consists in scanning the partials, sorted
by decreasing amplitudes. Then, for each partial we compute the signal-to-mask ratio SMR for each
of its neighbors. If SMR < 0 then we remove the neighbor from the set of partials.

From the complexity point of view, this algorithm can be up to quadratic if no partials are masked.
In such a case, for every partial the whole set of partials is scanned – for nothing – and the worst
complexity is O(P2), where P is the number of partials.

Fortunately, this algorithm is equivalent to another one, which has a linear complexity. The idea
is to construct a global masking level, uniformly sampled in the Bark scale. At the beginning of the
algorithm, this masking level is set to 0 (−∞ dB). All the partials are then scanned by decreasing
amplitudes. For each partial, if its level is above the masking level corresponding to its frequency then
it is removed from the set of partials. If it is not masked, then its own masking level is accumulated
into the global masking level (the maximum values in the two levels are considered).

This algorithm requires the sampling of the global masking level, with a sufficient number of
samples to ensure a good precision. The problem is that this computation must be worth doing in a
real-time synthesis algorithm. It must take less time eliminating the useless (inaudible) partials than
synthesizing them anyway. We are currently working on making this algorithm very efficient.

Further research includes exact determination of other psychoacoustic phenomena such as tempo-
ral masking and other related ones that may help us decrease the number of oscillators needed, and
thereby increasing performance.

As a consequence, in a few years most people will have a PC with sufficient power on their desks
to generate any sound in real time based on our method.

4.6 Structured Additive Synthesis

The synthesis of sounds in the Structured Additive Synthesis (SAS) model (see Chapter 2) consists in
first reconstructing the partials of the classic additive synthesis model from the structured parameters,
then synthesizing them using the method described above.

4.6.1 Computation of the Additive Parameters

The computation of the additive parameters is done periodically. We currently use a rate of about 172
samples per second to match ReSpect requirements. But this will be much lower in the near future,
since the SAS parameters are band-limited to a frequency much lower than 172/2 = 86 Hz. In fact
they are band-limited to only 20 Hz.

Let us consider a sound in the SAS model: S = (A,F,C,W). The number of partials to generate at
time t is:

P(t) =

⌊
Fmax

F(t)

⌋
(4.18)
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where Fmax is the highest audible frequency (about 22 kHz). Then, for each of the P partials, the
additive parameters have to be calculated.

Frequencies

The frequency of the p-th partial is given by the following equation:

fp(t) = W (pF(t), t) (4.19)

Amplitudes
Of course we have:

ap(t) = A(t) C( fp(t), t)

provided that C is normalized, that is:

P

∑
p=1

C( fp(t), t) = 1

In fact this normalization can only be done on the fly at the resynthesis stage, and we have:

ap(t) =





A(t) Cnorm( fp(t), t)

A(t) C( fp(t),t)

∑P
p=1C( fp(t),t)

√
2ARMS(t) C( fp(t),t)√

∑P
p=1 (C( fp(t),t))2

(4.20)

depending on whether or not we are considering the RMS amplitude ARMS (see Chapter 2).

4.6.2 Simultaneous SAS Sources

A sound in the SAS model is always a monophonic source. The problem is now to be able to play
polyphonic sounds, that is sets of monophonic sources. Each SAS source maintains a set of active
partials. The size of this set is given by Equation 4.18. At each synthesis frame, the instantaneous
frequency and amplitude of each partial are recomputed using Equations 4.19 and 4.20. Of course
the number of active partials may vary over time. If this number increases, then new partials are born
(and must be added at the end of the stream of partials according to the protocol of ReSpect). If this
number decreases, then some partials die.

The SAS software library was specially designed for the manipulation of sounds in the SAS model.
In the SAS library, there is a very tricky and efficient algorithm to interleave the partials of the sources
into a single stream respecting the protocol imposed by ReSpect. Its complexity is a linear function
of the number of partials.

Roughly speaking, the synthesis engine maintains an ordered set – a list – of references to the
active partials among the different SAS sources. The trick is that each partials contains a reference
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to its entry in this list. When a partial is born, a new entry is allocated for it at the end of the engine
list. When a partial dies, its entry is set to the NULL value, and then got recycled at the next synthesis
frame. Recycled means that the cell in the list corresponding to this hole is removed when the list is
browsed for the computation of the ReSpect frame. The engine list is in fact implemented inside an
array in a very efficient way.

4.6.3 SAS Library Overview

The SAS library was specially designed for the manipulation of sounds in the SAS model.

SAS Frames
The SAS sounds consist of a sequence of frames, which are the result of the uniform sampling in time
of the SAS parameters. The sas_frame type is available in the SAS library:

typedef
struct sas_frame
{

sas_value A;
sas_value F;
sas_envelope C;
sas_envelope W;

}
*sas_frame;

The envelopes are vectors resulting from the uniform sampling in frequency of functions. The library
provides basic functions for their manipulation, such as resampling operations or the reconstruction
of the associated continuous-frequency functions.

SAS Sources
The SAS sounds are represented by the sas_sound type. Basic operations on these sounds are avail-
able, such as:

• Creating and deleting sounds:

sas_sound sas_sound_make (double rate, int size);
void sas_sound_free (sas_sound sound);

• Gathering information:

double sas_sound_rate (sas_sound s);
int sas_sound_size (sas_sound s);

• Getting / Setting frames inside sounds:

sas_frame sas_sound_get (sas_sound s, int i);
void sas_sound_set (sas_sound s, int i, sas_frame f);

• Loading or saving a sound:

sas_sound sas_load (char *name);
int sas_save (sas_sound sound, char *name);



4.6. STRUCTURED ADDITIVE SYNTHESIS 183

SAS Synthesis
The following functions allow the user to enter or leave the SAS synthesis engine, respectively:

bool sas_enter (void);
void sas_leave (void);

The value returned by sas_enter() indicates whether or not the initialization of the engine was
successful.

For the synthesis itself, the library uses synthesis handlers (sas_handler type) which are handlers
to active SAS sources, that is sounds that are currently played. There are functions to create or delete
a handler:

sas_handler sas_create (void);
void sas_delete (sas_handler source);

and an update function to refresh the parameters of each source at each synthesis frame:

int sas_update (sas_handler source, sas_frame frame);

Once all the sources have been updated, a synthesis function is called:

int sas_player (void);

The following program plays two SAS sounds simultaneously:

#include <stdlib.h>
#include <stdio.h>
#include <sas.h>

#define MIN(_X_,_Y_) ((_Y_)<(_X_)?(_Y_):(_X_))

int
main (void)
{

int i, n;
sas_sound s1, s2;
sas_handler h1, h2;

/* load sources */

s1 = sas_load ("source1.sas");
s2 = sas_load ("source2.sas");

/* enter SAS engine */

if (!sas_enter())
{
fprintf (stderr, "can’t open spectral device!\n");
exit (1);

}
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/* create synthesis handlers */

h1 = sas_create ();
h2 = sas_create ();

n = MIN (sas_sound_size(s1), sas_sound_size(s2));

/* play n frames */

for (i=0; i<n; i++)
{
sas_update (h1, sas_sound_get (s1, i));
sas_update (h2, sas_sound_get (s2, i));

sas_player ();
}

/* delete handlers */

sas_delete (h1);
sas_delete (h2);

/* leave SAS engine */

sas_leave ();

/* free sources */

sas_sound_free (s1);
sas_sound_free (s2);

/* the end */

exit (0);
}

4.7 Noise Synthesis

The SAS model can be extended to include noise (see Chapter 2). However, the synthesis method
for noises is very different, since they are not made of partials. The method for noise synthesis
described in this section is similar to the one used in SMS [Ser89, Ser97b]. The only difference is that
the spectral envelope is not a piecewise-linear approximation as in SMS, but the continuous color C
parameter of the SAS model.
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Figure 4.22: The discrete spectrum is reconstructed from the uniform sampling of the noise envelope
(bins 1 to N−2, since bins 0 and N−1 correspond to the DC component, always set to 0).

4.7.1 Spectrum Approximation

The spectrum of a noise can be approximated by a spectrum with peaks very close in frequency
[ZF81]. When the distance between two adjacent peaks does not exceed 1% (10 Hz around 1000 Hz),
this is indeed a very good approximation. As a consequence, with a sufficient number of bins, the
inverse Fourier transform can synthesize noise. The idea is to set the value of the DC component (bin
0 and N− 1) to 0, then for the other bins (AC components) to use amplitudes given by the spectral
envelope (color C in the SAS model). The phases for all bins are chosen randomly at each synthesis
frame. In fact only the first half of the spectrum has to be reconstructed, since a necessary condition
for the resulting signal to be real-valued is that the other half must be its conjugate symmetric (see
Chapter 1). Figure 4.22 illustrates the reconstruction of the spectrum from the spectral envelope.

4.7.2 Inverse FFT

Once the spectrum has been approximated, the Inverse Fast Fourier Transform (IFFT) is applied in
the same way as in the Inverse FFT method of Section 4.1.

4.7.3 Overlap-Add Technique

The same overlap-add technique as in Section 4.1 is then used to avoid clicks. Although the Bartlett
(triangular) window is often used in practice, we use the Hann window since it reduces some of the
synthesis artifacts produced by the overlap-add synthesis, thus leading to a better perceptive quality.
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Chapter 5

Applications and Perspectives

Applications of the SAS model (see Chapter 2) are numerous in the fields of computer music for
creation and education. This chapter presents some of these in-progress applications, some of them
being in a very early stage while already providing us with promising research topics for the near
future.

Section 5.1 presents some of the applications of the SAS model to sound exploration and design.
One of the advantages of this model is its aptitude for creating hybrid sounds from the combination
of several sounds. Section 5.2 shows the use of the SAS model for musical composition. Since this
model favors the unification between music and sound at a sub-symbolic level [Lem93], it enables
composers to modify both the micro-structure and the macro-structure of musical pieces in a multi-
scale composition and thus to perform musical compositions on several time scales in a continuous
manner. A new sound synthesis language for musical composition has been implemented and should
provide a way to validate and enrich the model. Section 5.3 deals with the use of the SAS model
for interactive control. A pedagogical tool for early-learning electro-acoustic music is based on this
model. It provides sound controls that are well-suited for young children because they are based
on sound listening rather than signal synthesis. This tool can also be used for real-time musical
performances, and it is in fact the first step to a new visual language for music. Finally, Section 5.4
introduces in-progress applications of the SAS model to singing voice. This model is indeed well-
suited for the representation of vowels and allows us to control in time the volume and the pitch as
well as the timbre itself.

5.1 Sound Design

Concrete music [Sch94] is traditionally composed using sampled sounds manipulated with sound
editors based on the simple cut-and-paste operation. The representation of sound as a time signal
offers no precise control of the musical parameters such as the volume, pitch or duration. Moreover,
as mentioned in Chapter 2, these parameters are interdependent in the temporal representation of
sound.

Using the SAS model, we propose to leave the collage art for the sculpture of sound. The SAS
model constitutes a solid base for investigating scientific and musical research on the notion of timbre.
This model is of great interest for exploring sounds and creating hybrids.

187
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Figure 5.1: The didjeridoo shows characteristic variations of the color parameter C. A formant is
nearly constant in the low frequencies, while another one keeps on moving up and down across the
higher frequencies.

5.1.1 Exploring Sounds

Since there is a close correspondence between the parameters of the SAS model and real music percep-
tion, it is possible to analyze sounds and inspect their inner structures from an educational standpoint
for example. It is of course possible to eliminate analysis entirely and create new sounds directly
using the parameters of the model. For example, the didjeridoo is an Aboriginal musical instrument
which shows characteristic variations of the color parameter, as illustrated in Figure 5.1. It is rather
simple, in the SAS model, to design a sound perceived as it had been produced by a real didjeri-
doo. In order to manipulate the two-dimensional parameters of the SAS model (color C and warping
W ), grey-scale pictures can be used to represent the parameter value as a function of both time and
frequency (see Figure 5.2). This way of editing these two-dimensional parameters has turned out to
be very convenient, even if a three-dimensional plot of the associated surface – the parameter value
being the elevation of the surface – is also useful since the eye is less sensitive than the ear. Those –
often very large – surfaces can be rendered using specific algorithms. Many of them can be found for
example in [FvDFH95b].

5.1.2 Using Hybrid Sounds

As mentioned in Chapter 2, one of the advantages of the SAS model is its aptitude for creating hy-
brid sounds from the combination of several sounds. Regarding sound hybridization, our ProSpect
software tool opens new horizons for both researchers and composers. The SAS model permits to
consider sound as a musical material well-suited for “musical sculpture” using curves [Arf98], and
not as “black boxes” on which abstract functions are applied. We are developing a sound synthesis
language based on SAS – part of our ProSpect software package – in close collaboration with com-
posers of electro-acoustic music. This language has been used directly – that is without additional
software tool or GUI – during the compositional process of the fourth fragment of the piece “Sept
Couronnes pour Goethe” [Riv99] by Rivet in 1999. More precisely, hybrid sounds were used in this
piece either to draw a link between different families of sounds or to renew listening within a certain
family of sounds. These hybrid sounds turned out to be extremely useful during the compositional
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Figure 5.2: Representation of the SAS color parameter as a grey-scale level as a function of both time
(horizontal axis) and frequency (vertical axis). The lowest (zero) and highest levels are displayed as
white and black, respectively. The corresponding sound is the a vowel sung over three notes. We
can clearly see the evolutions of the color with pitch, and more precisely the three notes of different
pitches as well as the two short transition areas between these three notes.
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warpingcello-like metallic

Figure 5.3: Using warping to make a family of hybrid sounds, to go from a family of sounds to another
one.

process.

5.2 Musical Composition

Since the very beginning of the research in the field of computer music [Moo90, Roa96], two main
trends are developing simultaneously but separately. The first trend deals with symbolic musical
structures and is based on the intentions of the composer in order to allow always more sophisti-
cated musical abstractions. This research on symbolic modeling of music is issued from the work of
Hiller [HI59] on automatic composition. Musical pieces are defined using atoms (notes) and musical
structures represented using various paradigms such as object-oriented, functional or constraint-based
programming. The organization in time of these musical structures [PC98] is also studied in details.
Software tools in this symbolic domain are numerous and quite powerful. However their power comes
up against the boundary separating the note from the sound, since they cannot penetrate the opaque
sounds – considered as “black boxes” – in order to efficiently control the micro-structure of the sym-
bolic atoms. The second trend considers computers as instruments for musical sound synthesis [Pie83]
rather than tools for assistance for musical composition. While the research related to music mainly
concerns musical analysis and composition, the research related to sound deals with sound modeling,
analysis, synthesis, and transformation in order to directly manipulate the inner structures of sound.
This research on the sound structure is issued from the work of Risset and Mathews on the analysis of
musical instrument tones [RM69].

The families of software programs in the field of assistance for musical composition follow this
sound / music dichotomy. The composers have to manipulate different kinds of software tools in
order to compose musical pieces and they must entirely manage every interaction between the sounds
and the musical macro-structures within their pieces. This is done at the expense of uncomfortable
switches from one representation to the other, indeed even from one software tool to the other. Even
in many languages for musical sound synthesis [BPS97] like CSound [Ver86, Ver92] or MPEG-4
Structured Audio [VGS98], music and sound are clearly separated into score and instrument files,
even if the arbitrary boundary between those files is far from being obvious from the programmer’s
point of view. . .
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guitar alto saxophone

A

F

C
W Id1 Id1

Figure 5.4: Examples of instrumental sounds in the SAS model. From top to bottom are displayed
the four parameters of the SAS model: the amplitude and frequency as functions of time A(t) and
F(t), the color as a function of frequency only C( f ), since it does not vary much over time for the
examples considered here, and finally the warping which satisfies W ( f , t) = f because both sounds
are harmonic.

5.2.1 Unifying Sound and Music

We propose to focus on the perception of the sound rather than its physical cause, in order to unify
sound (microscopic) and music (macroscopic). We propose as well to consider the musical intentions
of the instrumentalists instead of their physical actions on the instruments.

We also propose to try unifying musical writing and sound control in order to permit musical
composition on several time scales in a continuous manner [DCM99b, DCM99a]. The SAS model
was specially designed for this purpose. It is based on parameters close to both perception and musical
terminology, and permits a correspondence between microscopic (sound) and macroscopic (music)
structures. We have experienced that this unification enables migrations of the control among the
different levels, from the microscopic (sound) to the macroscopic (music) one, thus enriching the
palette of the composer.

The ear is an arithmetic analyzer while the human mind is a symbol manipulator. But the sub-
symbolic representation assumes that there is more to mental representation than just symbols. For
example, when we imagine a chord we do not recall the symbols, but we hear it internally. By defining
the sound as the temporal evolutions of parameters close to both perception and musical terminology,
the SAS model favors the unification between music and sound at a sub-symbolic level.

The SAS parameters are closely related to the musical ones. Figure 5.4 shows the results produced
by InSpect (see Chapter 3) on a guitar and an alto saxophone. Regarding the guitar, one can observe
a fast decreasing of the amplitude. The small increase of the frequency (portamento) at the end is due
to a pull performed on the string by the instrumentalist. Regarding the saxophone, one can clearly see
a tremolo (sinusoidal amplitude variation) as well as a small vibrato (sinusoidal frequency variation).
It appears on these examples that the color is nearly constant over time and that these instruments are
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Figure 5.5: Singing voice in the SAS model. The corresponding sound is the same a vowel sung over
three notes as in Figure 5.2. The color parameter is displayed here until the half of the first note only.

perfectly harmonic (thus W = Id1). Figure 5.13 shows possible colors for French vowels, and Figure
5.5 represents the a vowel sung over three notes. One can note, then, that the distinction between
sound and musical parameters is not clear anymore. Indeed, considering the examples of Figure 5.4,
the portamento done by the guitarist is both a sound and musical parameter. The same remark can be
done for the tremolo and the vibrato of the saxophone. Regarding the singing voice example illustrated
in Figure 5.5, one can clearly read the dynamic and the melody of the song in, respectively, the A and
F parameters of the sound. The arbitrary distinction between music and sound parameters tends to
simply disappear.

The SAS model is intended for composers willing to write pieces while using the possibility to
modify the inner structures of the sounds, using the same vocabulary. The rate of the modification
of the model parameters determines the musical scale we are modifying, ranging from the musical
macro-structures – traditionally notated – to the control of the timbre itself [Vag94], and this in a
continuous manner, that is without encountering a boundary between music and sound.

We consider only monophonic sound sources, which should be spatialized [Bla97]. By the way,
the position in space is a parameter which should be as musical as physical. The parameters of the
SAS sound model are very close to the musical parameters and macro-structures. Most musical sound
transformations can be expressed as more or less rapid variations of the model parameters. We show
the proximity between sound parameters, musical ones, and musical macro-structures, as well as their
use for multi-scale composition.
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Tempo Amplitude Frequency Color Warping

Writing Dynamic, Melody, Orchestral Chords,
(0-≈8 Hz) Crescendo Trill Sonority Aggregates

Control Tremolo, Vibrato, Spectral Spectral
(≈8-20 Hz) Roughness Scintillating Envelope Harmonicity

Hearing listening
(20-22 kHz) only

Figure 5.6: Some relations between musical terminology and the four SAS parameters, for different
ranges of variation rates.

0 22k
Hz

controlwriting

8 20

hearing ultrasounds

Figure 5.7: Frequency scale for the rate of the parameter variations.

Multi-Scale Composition

Most musical transformations can be simply expressed as SAS parameter variations. Depending on
the rate of these variations, composers can modify both the micro-structure and the macro-structure
of musical pieces in a multi-scale composition [Vag98, DCM99b, DCM99a]. When the variations are
slow enough, they can be written on a score. This is the domain of writing. When they are too fast to
be written, we enter the domain of control (or interpretation). Figure 5.6 gives a brief summary of the
relations between musical terminology and SAS for these two domains.

Time, Tempo, and Rhythm

The frequency domain can be schematically split into four main areas, as shown in Figure 5.7. A
similar division has already be done by Vaggione [Vag96, Vag98]. Above 22 kHz are the ultrasounds,
whose frequencies cannot be perceived by the human auditory system. Our auditory area is located
approximatively between 20 Hz and 22 kHz. These frequencies are too fast to be precisely controlled
by human beings. The SAS parameters are functions of time and can therefore be considered as
control signals. In no way they could vary with a frequency much greater than 20 Hz, since in this
case their variations might be audible, thus disrupting the inner structures of the sounds: This is the
modulation phenomenon, basis of famous nonlinear synthesis techniques [Moo85b, Cho73, Arf79],
but undesirable here since it questions the perceptive consistency of the parameters.

Consequently all the controls made within the SAS model will be below the threshold of hearing,
thus being “slow time-varying”. More precisely, we will consider them as band-limited to a frequency
below 20 Hz. Below 8 Hz, corresponding to a tempo of about 500 beats per minute, it is possible
to notate the parameter variations in a concise way. This is the area of writing, widely used in the
compositional process. Above 8 Hz, one enters the area of control, interpretation, and “effects”.

The SAS model covers both the control and writing domains: From sound (microscopic scale) to
music (macroscopic scale) it is only a matter of speed of variation for the perceptive parameters.

Moreover the control of time and its associated macro-structure – rhythm – can be done very
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easily as a time-stretching like this: t ′ = k(t) t. We speak about temporal expansion or compression
for k, respectively, lower or greater than 1.

Amplitude, Loudness, and Dynamic

We have already mentioned the close link between amplitude and loudness in Section 2. The fastest
amplitude variations contribute to the “roughness” of the sound, whereas slower variations constitute
the dynamic of the music. Indeed the crescendo or decrescendo reflect, respectively, the increase or
decreasing of the loudness, and thus of the amplitude. One can easily modify the amplitude of a sound
using a simple formula such as: A′(t) = k(t) A(t). If k is a constant, we get a simple amplification.
If k is a sinusoid with a frequency around 10 Hz, the musical effect obtained is a tremolo with the
corresponding frequency. If the variations of k are slow and monotonous (mathematically speaking),
we get a fade-in or a fade-out for, respectively, an increasing or a decreasing function. The terms
amplification, tremolo, fade-in and fade-out, as well as many others deal with more or less rapid
variations of the amplitude. This is a matter of scale in the rate of variation of the A parameter.

Frequency, Pitch, and Melody

There is also a close link between frequency and pitch. The fastest frequency variations contribute
to the “scintillating” sound sensation, whereas slower variations constitute the melody of the music.
One can easily modify the frequency of a sound using a simple formula such as: F ′(t) = k(t) F(t).
If k is a constant, we get a simple transposition. If k is a sinusoid with frequency around 10 Hz, the
musical obtained is a vibrato with the corresponding frequency. If the variations of k are slow and
monotonous (again mathematically speaking), we get a glissando or a portamento. If these variations
are not monotonous – and quite fast – then we obtain a trill instead. The terms transposition, vibrato,
glissando, portamento, trill, as well as many others deal with more or less rapid variations of the
frequency. Again, this is only a matter of scale in the rate of variation of the F parameter.

Color and Timbre

Although loudness and pitch are the most common parameters in the occidental music – indeed the
only parameters (apart from duration) represented in the traditional music notation – we must not
forget the color, which is essential for oriental musics. For harmonic sounds, the variations over time
of the color completely constitute the “timbre”, whose definition is probably the most difficult but
also the most interesting. From a musical point of view, one can note the importance of the orchestral
sonority, each instrument having its own colors which blend more or less harmoniously with the
others. One can also speak about the coloration induced by broadcasting systems or concert halls for
example. The modification of the color (coloration) can be done like this: C′( f , t) = F ( f , t) C( f , t).
If F is constant over time then we get classic filtering (F is the frequency response – the color – of
the filter). If F varies over time, we can create very interesting hybrid sounds.

Warping and Harmonicity

Harmonicity plays a key role in musical harmony [MP80a, MP80b]. For example a nearly-harmonic
chord gives a sensation of frequency, but also of inharmonicity. These sensations are related to the
F and W parameters of the resulting sound. In order to model such a chord, one can for example
organize the model in a hierarchy by extending it with symbolic structures such as the union. A chord
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Figure 5.8: A musical piece composed using BOXES.

(polyphony) of N sources can then be expressed like this:

N⋃

i=1

{(Ai,Fi,Ci,Wi)}

For a nearly-harmonic chord, it is possible to get A, F , C, and W parameters resulting from those of
the different sources, by considering for example the N (Fi,Ai) pairs and by using the same structuring
methods as the ones described in Chapter 3. Harmonicity is probably the least-known of the four SAS
parameters, and would certainly deserve a full study.

5.2.2 BOXES Software Package

BOXES [Beu00, MB00] is a digital audio sequencer with constraints developed by Beurivé. It is an
experimental software tool in the field of assistance for musical composition, dealing with spectral
models available in ProSpect and thus inheriting from ProSpect the possibility for advanced sound
transformations as well as real-time synthesis. Besides the possibility to manipulate spectral sounds,
BOXES innovates in the field of assistance for musical composition by proposing an original mech-
anism for edition based on hierarchical structures together with interactive updates using constraints,
which can greatly facilitate the compositional process. Constraints are also successfully used in Mu-
sicSpace [PD99] by Pachet and Delerue for the control of music spatialization.

In BOXES the graphical representation of a spectral sound consists of two time points (start,
end), a series of amplitude values (corresponding to the A parameter of the SAS model), and a series
of frequency values (corresponding to the F parameter of the SAS model). Operations on sound
allow to change time points (onset and duration), amplitude, and frequency. The sounds within a
musical piece are organized in a hierarchical structure (representing chords, melodies, groups, tracks,
etc.), as shown in Figures 5.8 and 5.9. Music composition is performed with high-level structures
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Figure 5.9: A hierarchical structure (top) and its decomposition in several sub-structures, which can
in turn be decomposed, and so on.

(not necessary tracks) and manipulations. The hierarchical structure can be updated interactively
by the mean of constraints placed on time points, amplitudes or frequencies of the sounds within
the structure. However the synthesis process does not immediately take these updates into account
yet. Among the constraints available for interactive updates we can cite temporal constraints (such
as “before”, “overlap”, etc.) or proportionality constraints (proportional amplitudes, proportional
frequencies, etc.) for example.

5.3 Interactive Control

While music composition could be done in a non-interactive way, musical performances or virtual
instruments require an interactive control of sound.

5.3.1 Visual Language for Music

Sound synthesis often consists in implementing a sound generator using a language derived from
MUSIC V for the definition of the synthesis algorithms. In this case the parameters manipulated by
the composer are interconnections between modules such as oscillators, adders, multipliers, filters,
etc. The synthesis possibilities are numerous, but the parameters manipulated by the composer are
only remotely related to the musical parameters as perceived by a listener.

An interesting research field is the definition of a visual language for music. We are thinking about
a structure consisting of interconnected processing nodes with flows of sound parameters between
two adjacent nodes. This structure is already well-known since it is present in musical software
architectures such as Kyma [Sca89, Sca87], Max [Tod96] or jMax [DCMS99, Déc00] for example.
However we propose to consider flows of SAS parameters instead of flows of sound samples in the
temporal model. Since the manipulations are then made on a stream of spectral parameters with a low
rate, they are indeed quite efficient. Another important point is that the flows of control parameters
can also be expressed in the SAS model, thus eliminating the need for other kinds of data flows (such
as MIDI events). This visual language already exists as a tool for the purposes of education called
Dolabip.
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control
synthesis

Figure 5.10: The structure of Dolabip. The first part (left) is an hardware device sending data to a
software tool (right). This tool interprets the control data according to its inner structure – consisting of
interconnected processing nodes – and plays the resulting sound. Musical control and sound synthesis
are performed in real time.

5.3.2 Dolabip Project

Since the SAS model is based on perceptive and musical criteria, we think it is well-suited for
computer-assisted early-learning music. Dolabip is a multi-field project whose objective is the cre-
ation of a meta-instrument to be used for early-learning electro-acoustic music. Practical experience
in nursery school is lead by a musician, a teacher, a psychologist, and a music teaching specialist.

This project is composed mainly of two parts (see Figure 5.10). The first one is an hardware
device consisting of potentiometers and buttons well-suited for manipulation by children. The second
one is a software tool producing sounds according to the data sent by the device. The software tool
allows the user to change the way the data get interpreted. The development teams of the software
and hardware parts build tools that are necessary for experimenting the pedagogical program.

The software tool relies on an tree-like structure composed of interconnected processing nodes.
Flows of SAS parameters travel between adjacent nodes. This structure represents the expression
computing the sound from the data either statically stored in memory or dynamically sent in real time
by the external control devices (manipulated by the children). The SAS parameters produced by the
root of the tree constitute a sound in the SAS model, which is then synthesized in real time. This real-
time synthesis is performed using ReSpect (see Chapter 4), which guarantees that there will be no click
during the live performance: In the worst case the sound will remain steady for a few milliseconds
if the spectral information does not arrive on time. The teachers can dynamically edit (compose) the
whole structure using a graphical editor (see Figure 5.11 for a snapshot). Many processing nodes have
been developed. Table 5.1 summarizes the simplest operations available. Of course designing a new
kind of processing node is extremely easy. Computer scientists and musicians program new nodes
and arrange them in order to produce interesting musical structures. The children can then control the
sound in real time and learn about the structures of the sound while playing.

5.4 About Singing Voice

Applications to singing voice are also in progress, since the SAS model is well-suited for the repre-
sentation of vowels, allowing the control in time of the volume and the pitch as well as the timbre
itself. Many synthesis methods for singing voice have been proposed. References can be found in a
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Figure 5.11: Snapshot of the graphical editor of Dolabip.

operation SAS parameter

amplification, tremolo A
transposition, vibrato F

filtering, color changing C
warping W

Table 5.1: Examples of basic operations proposed in Dolabip together with the SAS parameters they
modify.
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survey by Georgaki [Geo99a, Geo99b]. These methods often deal with the physical modeling of the
vocal tract. Again we propose to focus on the perception of the sound rather than its physical cause.

5.4.1 Advanced Modeling

In the Western musical notation, the continuous flow of sound is quantized in a score, and – a contin-
uum being quantized – information is necessarily lost. The information not carried in the score can be
recovered through a set of rules. A performer can use these – sometimes implicit – rules of musical
interpretation to reconstitute an acceptable stream of sound. The knowledge that enables human per-
formers to interpret music notation is extremely difficult to represent in a formal way. Synthesizing
music from only the information manifested in a traditional score – omitting the information supplied
by the performer – results in a wooden rendition which one strains even to call “musical”.

Where before music description was mainly considered within the context of musical expression,
the computer has now forced us to consider it from a conceptual point of view. Between the com-
poser’s imagination and the listener’s imagination there is the performer. Clearly, a set of instructions
serves to reconstruct the music that the composer originally imagined. We can consider that the role
of the musician with respect of the score is to interpret the sediment back into a vivid representation,
thus controlling the instrument and producing a stream of parameters for the sound model in charge
for the reproduction of sound in the real – physical – world. As a consequence, once a model has
been defined for sound, other models have then to be defined also for both the instrument and the
performer. Figure 5.12 illustrates this. Such an attempt has already been done, on the top of the SMS
sound model, for the saxophone by Ramon López de Mántaras [dM98]. Physical models are modeling
instruments but most of them are based on the temporal representation of sound, inheriting from it all
its limitations (see Chapter 2).

Once models are defined for sounds, instruments, and performers, then the music notation – often
symbolic and discrete by nature – can be translated into a sub-symbolic and continuous flow of control
parameters by the performer model, translated in turn into a flow of parameters for the sound model.
This advanced modeling approach is very general and we envisage interesting researches on this
topic for the near future, especially for the singing voice, where the performer and its instrument are,
respectively, the singer and the human voice. For example, we aim at designing a program being able
to sing simple scores in a realistic way.

5.4.2 Synthesis of Singing Vowels

From a score, we envisage to synthesize a singing voice interpreting this score in a realistic way.
We have implemented a software program that extracts the frequency (pitch) and amplitude (volume)
parameters contained inside pure musical files, such as MIDI files [MMA96]. The output of this
program is a set of (Fi,Ai) pairs faithfully reflecting the evolutions of these parameters for each note of
the sequence. The MIDI norm [IMA88, MMA96] has severe dysfunctions [Moo87, Moo88, MM86],
especially in terms of expressiveness and timbre control. Several extensions have been proposed for
MIDI [IMA91, Rob92, Sch91], as well as a new protocol called ZIPI [McM94, MZW94, Wri94a,
Wri94d, Wri94b, Wri94c]. By using the MIDI protocol, our initial evolutions of volume and pitch are
crude and lack expressiveness. We have a basic model of the performer (singer), in order to know how
a real singer performs the transitions among notes of different pitches and among different vowels,
as well as the way tremolo and vibrato may occur as time passes by. After the use of this performer
model, we get variations of the frequency and amplitude parameters that are much more realistic.
We then use a very simplified model of the human voice. We consider that the color is a function
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Figure 5.12: Advanced modeling. The composer writes instructions expressed within a musical lan-
guage – often symbolic and discrete by nature – then translated into a sub-symbolic and continuous
flow of control parameters by the performer model, translated in turn into a flow of parameters for the
sound model.
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Figure 5.13: Examples of colors for some French vowels (only the evolution with frequency C( f ) is
represented, since C does not vary much over time in these examples).

of the vowel and of the fundamental frequency only, thus considering that it does not depend on
the amplitude. Although we have already managed to produce satisfactory sounds with this very first
attempt of advanced modeling (see above), presenting these results in details will be a little premature.
We intend to start a real work on singing voice in the near future. However we briefly present some
of our experiments in the remainder of this section.

Vowels. Since a voiced vowel is an harmonic sound, its timbre is totally defined by the color pa-
rameter in the SAS model. The difference between two vowels with both the same volume and the
same pitch is this color parameter C. Figure 5.13 illustrates this. For a given vowel it appears that
its color does not vary much over time if its pitch remains constant. But when the pitch is changing
the color usually changes too. Color as a function of the fundamental frequency can be determined
from the analysis of recordings. For that purpose we use “sirens”, that is vowels with a pitch which is
continuously first rising then falling.

Removing/Adding Vibrato/Tremolo. We can remove vibrato and tremolo using the reanalysis of
the spectral parameters as indicated in Chapter 3. This removal should be done prior to time-stretching
to avoid artifacts. Adding vibrato or tremolo is easier, although we have to take into account the
changes in color resulting from the variations of the pitch.

Voiced/Unvoiced Vowels. As mentioned in Chapter 2, it is possible to extend the SAS model to
handle noise as well, the amplitude A and color C parameters being still valid. If we generate a noise
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using these parameters resulting from a voiced vowel (A,F,C,W) in the SAS model, we obtain the
same vowel, but this time it is unvoiced.

Transitions among Vowels. We already know, from the analysis, how the transitions should be done
for the same vowel but with different pitches. We can then analyze the way these transitions occur
among different vowels. More precisely, in order to study the transitions among two different vowels,
we have analyzed the recordings of a singing voice going from a vowel to another one while keeping
the pitch constant. The problem is now to enable simultaneous variations of both pitch and vowel
timbre. This cannot be done directly from analysis since the corresponding analysis would require
a too large amount of recordings. However we believe that we can deduce these variations from the
previous constant-vowel and constant-pitch experiments and by using an appropriate morphing, taking
formants into account. Singing voice really provides us with new perspectives of research for the near
future.



Conclusions and Future Work

We wanted to be able to reproduce a wide variety of natural sounds – specially instrumental sounds
and singing voice – and transform them in a way both musically expressive and computationally
efficient. We also needed to be able to play the resulting sounds in real time.

For these purposes, we proposed to focus on spectral sound models based on additive synthesis,
and more precisely on sinusoidal models. There were three main problems with these models. First,
these models deal with a huge number of parameters involving a large amount of data. The problem is
that these parameters are physically valid but only remotely related to musical parameters as perceived
by a listener. As a consequence, it is extremely difficult to create or edit realistic sounds within these
models. Second, these models need an accurate analysis method in order to represent existing sounds,
and the accuracy of the analysis method is extremely important since the perceived quality of the
resulting spectral sounds depends mainly on it. The classic short-term Fourier analysis is not enough
accurate, and neither are many of its improvements which have been proposed recently. Third, these
models require the computation of a large number of sinusoidal oscillators during the synthesis stage.
The problem is to find a very fast method for generating the sequence of samples for each oscillator
with as few operations as possible. Many implementations are done using hardware devices. However
we were looking for an hardware-independent algorithm for real-time synthesis.

In this document, we proposed solutions in order to minimize these problems. First, we have
introduced in Chapter 2 the Structured Additive Synthesis (SAS) model. This model imposes con-
straints on the additive parameters, thus giving birth to structured parameters as close to perception
and musical terminology as possible. This model parameters enable to independently modify musical
parameters such as pitch, loudness or duration, and constitute as well a solid base for investigating
scientific research on the notion of timbre. Since there is a close correspondence between the SAS
model parameters and perception, the design and control of musical sound transformations get simpli-
fied. Many effects thus become accessible not only to engineers, but also to musicians and composers.
Among these effects are time-stretching, cross-syntheses or morphing. Moreover, the SAS model fa-
vors the unification between music and sound at a sub-symbolic level [Lem93], thus breaking the
arbitrary boundary between sound and music. Second, we have presented in Chapter 3 the most ac-
curate spectral analysis methods. Wavelet-based analyses have been ruled out since they appear to be
ill-suited for the musical sound transformations we wanted, mainly because their frequency resolution
is so bad for the high frequencies that high harmonics cannot be extracted. Since the classic short-
term Fourier analysis was not accurate enough to suit our needs, we have studied the improvements
to this analysis that have been proposed recently. Their accuracy was better, but still insufficient in
most cases. We proposed to use signal derivatives in order to perform high precision Fourier analysis.
Precisely, our method extends the classic short-time Fourier transform by also considering the signal
derivatives, which effectively leads to efficient spectral parameters extraction, and thus allows precise
modifications of the inner structures of the sounds. FTn takes advantage of the first n signal derivatives
in order to improve the precision of the Fourier analysis not only in frequency and amplitude but also
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in time, thus minimizing the problem of the trade-off of time versus frequency in the classic short-time
Fourier transform. Third, we have made in Chapter 4 a survey of hardware-independent methods for
real-time synthesis. Even if the use of the inverse Fourier transform could be satisfactory, we thought
that we could design an even faster synthesis algorithm by using the digital resonator [GS85, SC92].
The problem with this method was to allow the spectral parameters to vary over time while avoiding
signal discontinuities as well as numerical imprecision. However we managed to design an algorithm
for real-time synthesis based on the digital resonator. It can generate hundreds – if not thousands – of
simultaneous sinusoidal oscillators in real time.

As a consequence, we now have a sound model both musically expressive and computationally
efficient, together with an accurate analysis method as well as an efficient algorithm for real-time
synthesis. Moreover, this model has numerous applications in the fields of creation and education, as
shown in Chapter 5. We are even thinking about a model of singing voice based on the SAS model
for the near future.

Practical implementations in the field of analysis / transformation / synthesis of spectral sounds are
rare. Very few – if any – were available with sources as free software programs. We have developed
InSpect, ProSpect, and ReSpect for the purposes of sound analysis, transformation, and synthesis,
respectively. All these free software programs are available online [Mar00b]. ProSpect is a free
software platform that allows the manipulation of sounds in various sound models. It is a research tool
also useful for creation. InSpect is a software program for sound analysis. We have implemented many
analysis methods in the same program, thus providing a very convenient way to make comparisons.
We have also compared many synthesis algorithms, and the fastest has been implemented in ReSpect,
our software tool for real-time sound synthesis. These software programs would certainly deserve to
be rewritten as end-user programs and fully documented in order to be usable by non-specialists.

Of course many improvements could still be done. Moreover, some interesting research topics
would certainly deserve full studies. Regarding the sound model, it appears that structuring a model
in order to facilitate the design of some kinds of sound transformations gives rise to both restrictions
on the sounds that can be represented and impossibilities for other kinds of transformations. More
precisely, the SAS model can only reproduce monophonic sources with no noise and no transients.
Moreover, reverberation, echoing or even the simple mixing of two sounds are impossible to achieve
in this model. We believe that adding a hierarchical structuring on the top of our model would ease
the manipulation of musical sound. This would make more things possible, like echoing or mixing for
example. Moreover, adding noise and possibly transients to the model would allow the modeling of a
wider variety of sounds. Regarding analysis accuracy, we are convinced that taking phase distortion
into account in our analysis method would improve the accuracy in both frequency and amplitude,
thus probably leading to the most accurate analysis method ever proposed so far. Distortion would
also provide us with the derivatives of the parameters – frequency and amplitude – of the partials,
thus allowing us to design an enhanced partial-tracking strategy. We also believe that the perspective
of reanalyzing the spectral parameters themselves is a possible key to very difficult problems such
as pitch tracking, lossless compression or even source separation. Regarding synthesis efficiency, we
believe that we are already close to the minimal number of operations required per oscillator. We
are now thinking about reducing on the fly the number of partials to be synthesized, by taking into
account psychoacoustic phenomena such as the different aspects of masking. We also aim at designing
an enhanced algorithm especially for modern SIMD (Single Instruction, Multiple Data) architectures.

Let us conclude with a sentence by Risset [Ris88]:

“Avec l’ordinateur, on peut bâtir un son de structure physique arbitraire :
mais ce qui importe, c’est son effet sensible.”
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which means – in English – that although we can build sounds with arbitrary physical structures using
a computer, only the way they are perceived really matters. That is why perception is so important. We
are convinced that the voice plays a central role [Pay00], and we intend to continue further research
on the synthesis of singing voice.
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Annexe A

Numerical Results from Analysis

This appendix lists the numerical results referenced in Chapter 3. All the short-time analysis me-
thods use a sliding window with a hop size of 64 samples. The sampling rate is 44100 Hz. The
following formulae correspond to the synthetic examples used for the tests.

oscillator with linearly-increasing frequency :

a(t) = A0 sin

(
2π
(

F1 +
(F2−F1)

D
t

)
t

)

– D = 5 s (duration)
– A0 = 0.8 (base amplitude)
– F1 = 440 Hz (from frequency)
– F2 = 1660 Hz (to frequency)

oscillator with vibrato :
a(t) = A0 sin(2π(F0 + A1 sin(2πF1t))t)

– A0 = 1 (base amplitude)
– F0 = 2000 Hz (base frequency)
– A1 : vibrato amplitude (depth)
– F1 : vibrato frequency (rate)

oscillator with tremolo :
a(t) = (A0 + A1 sin(2πF1t))sin(2πF0t)

– A0 = 0.5 (base amplitude)
– F0 = 2000 Hz (base frequency)
– A1 : tremolo amplitude (depth)
– F1 : tremolo frequency (rate)
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window DFT Brent DFT1

rectangular 256 4.67 (50.0615) 2.12 (21.6893) 3.01 (36.2808)
512 2.36 (24.8117) 1.05 (10.5738) 1.52 (17.8342)

1024 1.18 (12.4679) 0.52 (5.2677) 0.76 (8.8946)
2048 0.58 (6.2141) 0.27 (2.7187) 0.38 (4.4740)

Hann 256 4.66 (49.9861) 0.19 (1.9592) 0.04 (0.4101)
512 2.36 (24.7995) 0.10 (0.9851) 0.01 (0.0890)

1024 1.18 (12.4665) 0.05 (0.4918) 0.00 (0.0632)
2048 0.58 (6.2138) 0.02 (0.2334) 0.01 (0.1207)

Hamming 256 4.66 (49.9925) 0.19 (1.9623) 0.36 (4.2860)
512 2.36 (24.8003) 0.10 (0.9839) 0.19 (2.2264)

1024 1.18 (12.4666) 0.05 (0.4893) 0.10 (1.1356)
2048 0.58 (6.2139) 0.02 (0.2163) 0.05 (0.5945)

Blackman 256 4.66 (49.9860) 0.09 (0.8684) 0.02 (0.1935)
512 2.36 (24.7995) 0.04 (0.4339) 0.01 (0.0725)

1024 1.18 (12.4665) 0.02 (0.2042) 0.00 (0.0548)
2048 0.58 (6.2138) 0.01 (0.0955) 0.01 (0.0915)

Gauss 256 4.66 (49.9860) 0.01 (0.1067) 0.01 (0.1307)
512 2.36 (24.7995) 0.00 (0.0035) 0.00 (0.0648)

1024 1.18 (12.4665) 0.00 (0.0030) 0.00 (0.0427)
2048 0.58 (6.2138) 0.00 (0.0028) 0.00 (0.0496)

TAB. A.1 – Error on frequency measured by the DFT without peak interpolation, the DFT plus parabo-
lic peak interpolation using the Brent method, and the DFT1 method. The average error on frequency
in percents (as well as the standard deviation) is given for different analysis window types and widths.
The analyzed signal is a single sinusoidal oscillator whose frequency is linearly increasing from 440
Hz to 1660 Hz while its amplitude remains constant at 0.8. This sound lasts 5 s and Fs = 44100 Hz.

window DFT Brent DFT1

rectangular 256 12.82 (0.1355) 10.62 (0.1097) 11.14 (0.1229)
512 12.66 (0.1342) 10.52 (0.1089) 11.05 (0.1223)

1024 12.84 (0.1354) 10.68 (0.1100) 11.00 (0.1209)
Hann 256 5.19 (0.0550) 1.30 (0.0138) 0.09 (0.0011)

512 5.13 (0.0547) 1.29 (0.0137) 0.06 (0.0007)
1024 5.20 (0.0552) 1.30 (0.0138) 0.09 (0.0010)

Hamming 256 6.33 (0.0670) 1.60 (0.0170) 0.98 (0.0114)
512 6.25 (0.0665) 1.59 (0.0169) 1.00 (0.0116)

1024 6.34 (0.0671) 1.58 (0.0168) 1.04 (0.0119)
Blackman 256 4.06 (0.0431) 0.46 (0.0044) 0.05 (0.0005)

512 4.01 (0.0429) 0.45 (0.0044) 0.05 (0.0005)
1024 4.07 (0.0433) 0.38 (0.0040) 0.07 (0.0007)

Gauss 256 2.26 (0.0241) 0.00 (0.0001) 0.02 (0.0003)
512 2.23 (0.0238) 0.00 (0.0000) 0.02 (0.0002)

1024 2.25 (0.0240) 0.00 (0.0000) 0.03 (0.0003)

TAB. A.2 – Error on amplitude measured by the DFT without peak interpolation, the DFT plus parabo-
lic peak interpolation using the Brent method, and the DFT1 method. The average error on amplitude
in percents (as well as the standard deviation) is given for different analysis window types and widths.
The analyzed signal is the same as in Table A.1.
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window width Triangular DFT1

Frequency 512 0.02 (0.1596) 0.01 (0.1251)
1024 0.01 (0.0780) 0.00 (0.0496)

Amplitude 512 0.00 (0.0000) 0.03 (0.0004)
1024 0.00 (0.0000) 0.04 (0.0004)

TAB. A.3 – Error on frequency (top) and amplitude (bottom) measured by the triangular algorithm and
the DFT1 method. The average error in percents (as well as the standard deviation) is given for the
triangular-frequency analysis window with different widths, thus favoring the triangular algorithm.
The analyzed signal is the same as in Tables A.1 and A.2.

window noise level (SNR) Brent DFT1

Hann 512 0% (∞ dB) 0.10 (0.9851) 0.01 (0.0890)
12.5% (18 dB) 0.10 (1.0119) 0.02 (0.2199)
25% (12 dB) 0.10 (1.0979) 0.04 (0.4155)
50% (6 dB) 0.12 (1.3796) 0.07 (0.8062)
100% (0 dB) 104.68 (1148.1205) 0.14 (1.5677)
200% (-6 dB) 104.68 (1148.1205) 0.31 (3.2974)

Gauss 512 0% (∞ dB) 0.00 (0.0035) 0.00 (0.0648)
12.5% (18 dB) 0.03 (0.3922) 0.03 (0.3836)
25% (12 dB) 0.07 (0.7820) 0.06 (0.7543)
50% (6 dB) 0.13 (1.6027) 0.13 (1.5451)
100% (0 dB) 104.71 (1148.1205) 0.28 (2.9523)
200% (-6 dB) 104.68 (1148.1205) 0.57 (7.0350)

TAB. A.4 – Error on frequency measured by the Brent and the DFT1 methods. The average error on
frequency in percents (as well as the standard deviation) is given for two different analysis windows.
The analyzed signal is the same as in Table A.1, but white noise has been added.

window noise level (SNR) Brent DFT1

Hann 512 0% (∞ dB) 1.29 (0.0137) 0.06 (0.0007)
12.5% (18 dB) 1.36 (0.0140) 0.27 (0.0027)
25% (12 dB) 1.45 (0.0148) 0.51 (0.0053)
50% (6 dB) 1.82 (0.0174) 1.06 (0.0104)

100% (0 dB) 33.54 (0.2706) 2.14 (0.0213)
200% (-6 dB) 166.99 (1.3387) 4.34 (0.0411)

Gauss 512 0% (∞ dB) 0.00 (0.0000) 0.02 (0.0002)
12.5% (18 dB) 0.35 (0.0035) 0.35 (0.0035)
25% (12 dB) 0.69 (0.0065) 0.69 (0.0068)
50% (6 dB) 1.39 (0.0137) 1.39 (0.0137)

100% (0 dB) 26.66 (0.2181) 2.67 (0.0274)
200% (-6 dB) 153.49 (1.2308) 5.20 (0.0526)

TAB. A.5 – Error on amplitude measured by the Brent and the DFT1 methods. The average error on
amplitude in percents (as well as the standard deviation) is given for two different analysis windows.
The analyzed signal is the same as in Table A.1, but white noise has been added.
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noise level (SNR) Triangular DFT1

Frequency 0% (∞ dB) 0.02 (0.1596) 0.01 (0.1251)
12.5% (18 dB) 0.08 (0.8404) 0.05 (0.5247)
25% (12 dB) 0.15 (1.6040) 0.09 (1.0478)
50% (6 dB) 0.30 (3.2333) 0.19 (2.0833)

100% (0 dB) 0.54 (6.1822) 0.40 (4.1836)
200% (-6 dB) 0.95 (11.4686) 0.75 (9.0680)

Amplitude 0% (∞ dB) 0.00 (0.0000) 0.03 (0.0004)
12.5% (18 dB) 0.45 (0.0046) 0.37 (0.0036)
25% (12 dB) 0.89 (0.0089) 0.73 (0.0074)
50% (6 dB) 1.80 (0.0176) 1.49 (0.0151)

100% (0 dB) 3.49 (0.0359) 3.01 (0.0298)
200% (-6 dB) 13.90 (0.0720) 5.93 (0.0602)

TAB. A.6 – Error on frequency (top) and amplitude (bottom) measured by the triangular algorithm
and the DFT1 method. The average error in percents (as well as the standard deviation) is given for the
512-point triangular-frequency analysis window, thus favoring the triangular algorithm. The analyzed
signal is the same as in Table A.1, but white noise has been added.

Brent 0 10 100 500 1000

5 0.06 (1.2567) 0.06 (1.1570) 0.05 (0.9948) 0.03 (0.8006) 0.05 (1.1319)
10 0.06 (1.2567) 0.06 (1.1514) 0.05 (1.0003) 0.09 (1.9749) 0.14 (3.0581)
15 0.06 (1.2567) 0.06 (1.1438) 0.05 (1.1928) 0.16 (3.8312) 0.47 (9.2539)
20 0.06 (1.2567) 0.06 (1.1368) 0.07 (1.6800) 0.24 (5.9975) 0.97 (19.6803)
25 0.06 (1.2567) 0.06 (1.1341) 0.11 (2.4322) 0.46 (10.1610) 1.73 (35.2973)

DFT1 0 10 100 500 1000

5 0.01 (0.1278) 0.01 (0.1434) 0.01 (0.3612) 0.09 (2.5012) 0.33 (8.5786)
10 0.01 (0.1278) 0.01 (0.1689) 0.04 (0.8669) 0.34 (8.9992) 0.86 (19.2479)
15 0.01 (0.1278) 0.01 (0.2235) 0.07 (1.6689) 0.63 (15.1601) 1.14 (24.2318)
20 0.01 (0.1278) 0.01 (0.3108) 0.12 (2.7400) 0.87 (19.9062) 1.52 (32.3986)
25 0.01 (0.1278) 0.02 (0.4290) 0.18 (4.0701) 1.07 (24.3429) 2.19 (46.7466)

TAB. A.7 – Error on frequency measured by the Brent and the DFT1 methods. The analyzed signal is
a single sinusoidal oscillator whose frequency is 2000 Hz modulated by a vibrato while its amplitude
remains constant at 1. This sound lasts 5 s and Fs = 44100 Hz. The average error on frequency in
percents (as well as the standard deviation) is given for different vibrato rates and depths. The analysis
window is the 512-point Hann window. A boundary indicates when the error is greater than 0.1%.
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Brent 0 10 100 500 1000

5 0.00 (0.0027) 0.00 (0.0062) 0.00 (0.0611) 0.01 (0.3068) 0.03 (0.5931)
10 0.00 (0.0027) 0.00 (0.0224) 0.01 (0.2281) 0.05 (1.1077) 0.10 (1.9568)
15 0.00 (0.0027) 0.00 (0.0500) 0.02 (0.5041) 0.11 (2.3255) 0.18 (3.7395)
20 0.00 (0.0027) 0.00 (0.0884) 0.04 (0.8860) 0.17 (3.8389) 0.26 (5.8628)
25 0.00 (0.0027) 0.01 (0.1375) 0.06 (1.3700) 0.23 (5.5375) 0.39 (8.5628)

DFT1 0 10 100 500 1000

5 0.01 (0.1278) 0.01 (0.1393) 0.01 (0.2228) 0.03 (0.8780) 0.09 (2.2849)
10 0.01 (0.1278) 0.01 (0.1478) 0.02 (0.4120) 0.10 (2.4800) 0.33 (8.7983)
15 0.01 (0.1278) 0.01 (0.1658) 0.03 (0.7333) 0.20 (4.6218) 0.56 (12.8834)
20 0.01 (0.1278) 0.01 (0.1964) 0.05 (1.1742) 0.36 (9.5308) 0.77 (16.6990)
25 0.01 (0.1278) 0.01 (0.2414) 0.08 (1.7355) 0.49 (11.9566) 0.94 (19.4474)

TAB. A.8 – Same comparison as in Table A.7, but this time with a truncated Gaussian window.

Brent 0 10 100 500 1000

5 0.78 (0.0078) 0.88 (0.0105) 1.10 (0.0148) 1.61 (0.0192) 6.26 (0.0757)
10 0.78 (0.0078) 0.88 (0.0105) 0.92 (0.0123) 6.26 (0.0754) 18.33 (0.2150)
15 0.78 (0.0078) 0.88 (0.0105) 0.76 (0.0099) 12.35 (0.1453) 27.96 (0.3175)
20 0.78 (0.0078) 0.87 (0.0105) 0.87 (0.0111) 18.24 (0.2117) 34.39 (0.3829)
25 0.78 (0.0078) 0.87 (0.0105) 1.38 (0.0168) 23.22 (0.2661) 38.90 (0.4276)

DFT1 0 10 100 500 1000

5 0.09 (0.0009) 0.08 (0.0009) 0.18 (0.0026) 2.22 (0.0288) 7.38 (0.0897)
10 0.09 (0.0009) 0.08 (0.0009) 0.44 (0.0059) 7.34 (0.0893) 19.50 (0.2256)
15 0.09 (0.0009) 0.08 (0.0010) 0.86 (0.0111) 13.45 (0.1585) 28.79 (0.3232)
20 0.09 (0.0009) 0.09 (0.0011) 1.40 (0.0177) 19.24 (0.2219) 35.16 (0.3867)
25 0.09 (0.0009) 0.10 (0.0012) 2.07 (0.0258) 24.13 (0.2735) 39.56 (0.4305)

TAB. A.9 – Error on amplitude measured by the Brent and the DFT1 methods. The analyzed signal
and analysis window are the same as in Table A.7. The average error on amplitude in percents (as well
as the standard deviation) is given for different vibrato rates and depths. A boundary indicates when
the error is greater than 0.1% (which is always the case here for the Brent method).
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Brent 0 10 100 500 1000

5 0.00 (0.0000) 0.00 (0.0000) 0.02 (0.0002) 0.42 (0.0051) 1.60 (0.0195)
10 0.00 (0.0000) 0.00 (0.0000) 0.07 (0.0008) 1.60 (0.0194) 5.49 (0.0657)
15 0.00 (0.0000) 0.00 (0.0000) 0.15 (0.0018) 3.34 (0.0403) 10.14 (0.1193)
20 0.00 (0.0000) 0.00 (0.0000) 0.27 (0.0032) 5.43 (0.0649) 14.68 (0.1700)
25 0.00 (0.0000) 0.01 (0.0001) 0.41 (0.0049) 7.68 (0.0909) 18.79 (0.2146)

DFT1 0 10 100 500 1000

5 0.04 (0.0004) 0.03 (0.0004) 0.06 (0.0007) 0.50 (0.0060) 1.81 (0.0224)
10 0.04 (0.0004) 0.03 (0.0004) 0.11 (0.0014) 1.78 (0.0219) 5.88 (0.0704)
15 0.04 (0.0004) 0.03 (0.0004) 0.20 (0.0025) 3.65 (0.0442) 10.59 (0.1240)
20 0.04 (0.0004) 0.03 (0.0004) 0.32 (0.0040) 5.83 (0.0695) 15.14 (0.1743)
25 0.04 (0.0004) 0.04 (0.0004) 0.48 (0.0058) 8.11 (0.0958) 19.20 (0.2182)

TAB. A.10 – Same comparison as in Table A.9, but this time with a truncated Gaussian window.

Brent 0 0.125 0.25 0.375

5 0.06 (1.2567) 0.06 (1.2563) 0.06 (1.2549) 0.06 (1.2506)
10 0.06 (1.2567) 0.06 (1.2552) 0.06 (1.2495) 0.06 (1.2334)
15 0.06 (1.2567) 0.06 (1.2534) 0.06 (1.2411) 0.06 (1.2084)
20 0.06 (1.2567) 0.06 (1.2510) 0.06 (1.2305) 0.06 (1.1806)
25 0.06 (1.2567) 0.06 (1.2482) 0.06 (1.2188) 0.06 (1.1566)

DFT1 0 0.125 0.25 0.375

5 0.01 (0.1278) 0.01 (0.1821) 0.01 (0.3091) 0.02 (0.5291)
10 0.01 (0.1278) 0.01 (0.2920) 0.03 (0.5860) 0.05 (1.0589)
15 0.01 (0.1278) 0.02 (0.4220) 0.04 (0.8882) 0.07 (1.6346)
20 0.01 (0.1278) 0.03 (0.5654) 0.05 (1.2141) 0.10 (2.2570)
25 0.01 (0.1278) 0.03 (0.7210) 0.07 (1.5638) 0.12 (2.9186)

TAB. A.11 – Error on frequency measured by the Brent and the DFT1 methods. The analyzed signal
is a single sinusoidal oscillator whose frequency remains constant at 2000 Hz while its amplitude is
0.5 modulated by a tremolo. This sound lasts 5 s and Fs = 44100 Hz. The average error on frequency
in percents (as well as the standard deviation) is given for different tremolo rates and depths. The
analysis window is the 512-point Hann window. A boundary indicates when the error is greater than
0.1%.
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Brent 0 0.125 0.25 0.375

5 0.00 (0.0027) 0.00 (0.0027) 0.00 (0.0027) 0.00 (0.0027)
10 0.00 (0.0027) 0.00 (0.0027) 0.00 (0.0027) 0.00 (0.0028)
15 0.00 (0.0027) 0.00 (0.0027) 0.00 (0.0028) 0.00 (0.0032)
20 0.00 (0.0027) 0.00 (0.0028) 0.00 (0.0029) 0.00 (0.0052)
25 0.00 (0.0027) 0.00 (0.0028) 0.00 (0.0035) 0.00 (0.0099)

DFT1 0 0.125 0.25 0.375

5 0.01 (0.1278) 0.01 (0.1817) 0.01 (0.3078) 0.02 (0.5252)
10 0.01 (0.1278) 0.01 (0.2880) 0.03 (0.5747) 0.04 (1.0282)
15 0.01 (0.1278) 0.02 (0.4080) 0.04 (0.8514) 0.07 (1.5393)
20 0.01 (0.1278) 0.02 (0.5331) 0.05 (1.1320) 0.09 (2.0552)
25 0.01 (0.1278) 0.03 (0.6608) 0.06 (1.4152) 0.11 (2.5744)

TAB. A.12 – Same comparison as in Table A.11, but this time with a truncated Gaussian window. The
error is always lower than 0.1% for the Brent method.

Brent 0 0.125 0.25 0.375

5 0.78 (0.0039) 0.79 (0.0039) 0.82 (0.0040) 0.89 (0.0042)
10 0.78 (0.0039) 0.81 (0.0039) 0.91 (0.0039) 1.21 (0.0038)
15 0.78 (0.0039) 0.85 (0.0040) 1.07 (0.0044) 1.77 (0.0049)
20 0.78 (0.0039) 0.89 (0.0046) 1.48 (0.0062) 2.91 (0.0081)
25 0.78 (0.0039) 1.08 (0.0057) 2.18 (0.0092) 4.45 (0.0129)

DFT1 0 0.125 0.25 0.375

5 0.09 (0.0004) 0.07 (0.0005) 0.12 (0.0007) 0.23 (0.0010)
10 0.09 (0.0004) 0.18 (0.0010) 0.39 (0.0019) 0.80 (0.0029)
15 0.09 (0.0004) 0.36 (0.0020) 0.83 (0.0040) 1.73 (0.0059)
20 0.09 (0.0004) 0.63 (0.0034) 1.44 (0.0068) 3.02 (0.0101)
25 0.09 (0.0004) 0.96 (0.0052) 2.22 (0.0103) 4.67 (0.0155)

TAB. A.13 – Error on amplitude measured by the Brent and the DFT1 methods. The analyzed signal
and analysis window are the same as in Table A.11. The average error on amplitude in percents (as
well as the standard deviation) is given for different tremolo rates and depths. A boundary indicates
when the error is greater than 0.1% (which is always the case here for the Brent method).
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Brent 0 0.125 0.25 0.375

5 0.00 (0.0000) 0.02 (0.0001) 0.04 (0.0002) 0.08 (0.0002)
10 0.00 (0.0000) 0.06 (0.0003) 0.14 (0.0007) 0.30 (0.0010)
15 0.00 (0.0000) 0.14 (0.0007) 0.32 (0.0015) 0.68 (0.0022)
20 0.00 (0.0000) 0.24 (0.0013) 0.57 (0.0026) 1.20 (0.0039)
25 0.00 (0.0000) 0.38 (0.0020) 0.88 (0.0040) 1.87 (0.0061)

DFT1 0 0.125 0.25 0.375

5 0.04 (0.0002) 0.03 (0.0002) 0.05 (0.0003) 0.10 (0.0004)
10 0.04 (0.0002) 0.07 (0.0004) 0.16 (0.0008) 0.33 (0.0012)
15 0.04 (0.0002) 0.15 (0.0008) 0.34 (0.0016) 0.72 (0.0025)
20 0.04 (0.0002) 0.26 (0.0014) 0.60 (0.0028) 1.26 (0.0042)
25 0.04 (0.0002) 0.40 (0.0021) 0.92 (0.0043) 1.94 (0.0064)

TAB. A.14 – Same comparison as in Table A.13, but this time with a truncated Gaussian window.
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Abstract

Sounds are physical phenomena belonging to the physical world. In order to manipulate digital
sounds using a computer, we need a sound model, that is a formal representation for audio signals.
Sound modeling draws the link between the real – analogical – and mathematical – digital – worlds.

Spectral models based on additive synthesis provide general representations for sound well-suited
for expressive musical transformations. We introduce the Structured Additive Synthesis (SAS) model
which imposes constraints on the additive parameters in order to make these transformations both
computationally efficient and musically intuitive, in accordance to perception and musical termino-
logy. This model breaks the arbitrary boundary between sound and music. Its applications in the fields
of creation and education are numerous.

A new analysis method is proposed in order to accurately extract the spectral parameters for
the model from existing sounds. This method extends the classic short-time Fourier analysis by also
considering the derivatives of the sound signal, and it can work with very short analysis windows. Mo-
reover, the reanalysis of the spectral parameters turns out to be extremely useful for difficult problems
such as lossless compression or source separation for example.

Finally, a very efficient synthesis algorithm – based on a recursive description of the sine function
– can reproduce sound in real time from the model parameters. This algorithm allows an extremely
fine control of the partials of the sounds while avoiding signal discontinuities as well as numerical
imprecision, and with a nearly optimal number of operations per partial. We consider psychoacoustic
phenomena such as masking in order to reduce on the fly the number of partials to be synthesized.

We have also developed the InSpect, ProSpect, and ReSpect free software programs for the pur-
poses of sound analysis, transformation, and synthesis, respectively.
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Résumé

Une représentation mathématique est nécessaire à la manipulation informatique des phénomènes
physiques que sont les sons. La modélisation sonore jette un pont entre le monde réel, physique,
analogique et le monde formel, mathématique, numérique.

Les modèles spectraux basés sur la synthèse additive fournissent des représentations formelles
pour les sons bien adaptées à leur manipulation informatique (performance) et musicale (expressivité).
Cette thèse propose le modèle de Synthèse Additive Structurée (SAS) qui contraint les paramètres
additifs pour une manipulation efficace et plus intuitive, en accord avec la perception et le vocabulaire
musical. Ce modèle brise la frontière arbitraire entre musique et son, et ses applications à la création
et à la pédagogie sont nombreuses.

Une nouvelle méthode d’analyse sonore est proposée afin d’extraire avec une grande précision les
paramètres spectraux du modèle à partir de sons naturels. Cette méthode étend l’analyse de Fourier
à court terme classique en tirant parti des dérivées mathématiques du signal sonore et nécessite en
pratique de petites fenêtres d’analyse. De plus, la réanalyse des paramètres spectraux se révèle être
utile pour des problèmes difficiles comme la compression sans perte ou la séparation de sources par
exemple.

Enfin, un algorithme de synthèse très efficace, basé sur une description récursive de la fonction si-
nus, permet de reproduire en temps réel les sons à partir de leur modélisation. Cet algorithme autorise
le contrôle précis des partiels des sons tout en évitant les discontinuités du signal et les instabilités nu-
mériques, avec un nombre d’opérations par partiel quasi-optimum. La réduction à la volée du nombre
de partiels à synthétiser, en tirant parti de phénomènes psychoacoustiques comme le masquage, est
aussi envisagée.

Les logiciels libres InSpect, ProSpect et ReSpect sont également proposés pour, respectivement,
l’analyse, la transformation et la synthèse sonore.
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