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ABSTRACT

In this work we address a reverse audio engineering problem,
i.e. the separation of stereo tracks of professionally produced
music recordings. More precisely, we apply a spatial filtering
approach with a quadratic constraint using an explicit source-
image-mixture model. The model parameters are “learned”
from a given set of original stereo tracks, reduced in size and
used afterwards to demix the desired tracks in best possible
quality from a preexisting mixture. Our approach implicates
a side-information rate of 10 kbps per source or channel and
has a low computational complexity. The results obtained for
the SiSEC 2013 dataset are intended to be used as reference
for comparison with other approaches.

Index Terms— Informed source separation, low-order
statistics, professionally produced music recordings, spatial
filtering, stereo images

1. INTRODUCTION

Most if not all of today’s professionally produced music has
undergone two basic processes: mixing and mastering. Many
established music distribution formats, moreover, are strictly
stereo. While in the mastering stage the final mix is prepared
and transfered to a data storage device, mixing represents the
process that ends up in a summation of individually recorded
and edited audio from distinct mono or stereo sources into a
composite stereo mixture. The apparent placement of sources
between the speakers in a stereo sound field is also known as
“imaging” [1] in professional audio engineering. The notion
of spatial “images” in a source separation context can e.g. be
found in [2]. The separation of stereo images of individual or
grouped sources is the central point of the present paper.

For the reason that the total number of source channels is
usually greater than the number of mixture channels, mixing
is mathematically underdetermined. So, demixing constitutes
an ill-posed source separation problem that cannot be solved
without additional assumptions or prior information. We use
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the knowledge of the mixing process and low-order statistics
of the sources as additional information for our algorithm in
order to find the optimal solution. The content of the paper is
therefore an extension to our previous work on the informed
separation of mono sources [3]. We introduce a more general
source-image signal model based on common studio practice
and also generalize the mixture model to a sum of images of
mono and stereo sources. The demixing problem is likewise
addressed in an informed source separation context [4]. With
the proposed approach one can decompose the final mix into
distinct tracks or into the background and foreground objects
and in the same manner one can separate the vocal from the
instrumental track for karaoke.

The organization of the paper is as follows. The problem
at hand is given in Section 2. Section 3 illustrates the source-
image signal model, the estimation of model parameters, and
how the latter can be reduced in size. The extended mixture
model is discussed in Section 4. There it is also shown how a
source of interest and its image are separated using a linearly
constrained spatial filter. The proposed approach is evaluated
on five multitracks of changing sound complexity in Section
5. Section 6 concludes the paper with an outlook.

2. PROBLEM STATEMENT

The problem at hand is stated as follows. Given access to the
original stereo images of distinct sources, recover a subset of
the images in best possible quality from a mixture composed
of the original images using a source-image-mixture model.
The model parameters shall be estimated from the accessible
image signals and used during recovery. The amount of data
associated with the model parameters should furthermore be
kept to a minimum.

3. PARAMETRIC ANALYSIS

3.1. Source-image signal model

We model the signals in the complex subband domain. Each
subband signal is said to be a zero-mean circular symmetric
complex Gaussian stochastic process that evolves over time



n. The set of subband signal components at a given instant n
of a single source is deemed to be mutually independent, and
so is the set of sources. The sources are thus uncorrelated. A
source may be mono or stereo. The two channels of a stereo
source are considered pairwise independent, i.e. uncorrelated
too, as if a stereo source was comprised of two sources: one
mono source in the left channel and another mono source in
the right channel. A stereo source can thus be thought of as a
centered spatial image of an acoustic source that is recorded
with two independent microphones.

A mono source is assigned a location in the stereo sound
field via pan control, whereas a stereo source or its centered
image is positioned via balance control:

ui(n) = ailelsil(n) + airersir(n)

= ai ◦ si(n),
(1)

where ◦ denotes the Hadamard or entrywise product between
the time-invariant steering vector ai = [ ail air ]

T and the ith
stereo source si = [ sil sir ]

T. In the case of a mono source,
sil = sir = si. Accordingly, ui represents the stereo image
of the ith source. In (1), {el, er} is the standard basis of R2,
ai ∈ R2 and si(n) ∈ C2. The subband index k is omitted for
simplicity. The ith steering vector ai is defined as

ai ,
a′i
‖a′i‖

=

[
sin θi

cos θi

]
(2)

in the case of a mono source, or else as

ai ,
a′i
a′i,ref

, (3)

where

a′i,ref =

{
a′il if a′il > a′ir
a′ir otherwise

, (4)

in the case of a stereo source. In the above equations, super-
script ′ indicates unnormalized items.

3.2. Model parameter estimation

Consider the stereo image of a distinct source as given. From
the stereo signal, we can estimate the model parameters that
are used as prior information for source separation, which is
detailed in Section 4. These parameters describe the source’s
location and its instantaneous variance distribution. We apply
the following protocol.

First, we compute the zero-lag cross-covariance between
the left and the right channel and normalize it by the product
of average power in each channel using the root mean square
(RMS) as measure:

corr [uil(n), uir(n)] =
cov [uil(n), uir(n)]

RMSil(n)RMSir(n)
. (5)

In our case, corr is identical with Pearson’s correlation. Thus
when varn {corr [uil(n), uir(n)]} → 0, the associated source
is considered as mono and the pan angle is estimated as

θ̂i = arccot

∑
n RMSir(n)∑
n RMSil(n)

, (6)

where arccot is the arccotangent and var is the variance. In
the reverse case, when the source is stereo, its power balance
is estimated as

âi,¬ref =

∑
n RMSi,¬ref(n)∑
n RMSi,ref(n)

with ai,ref = 1, (7)

where ref ∈ {l, r} is the channel with the greater RMS value
and ¬ref is the complementary channel.

The instantaneous variance distribution of the ith source
signal over subbands is given by

φijk(n) = E
[
|sijk(n)|2

]
, (8)

where E is the expectation and {φijk(n)}k is the short-time
power spectral density (STPSD) of the jth channel at instant
n. For a mono source, φijk = φik. The STPSD is estimated
using the short-time Fourier transform (STFT) according to

φ̂ijk(n) = |Sij(k, n)|2 with j ∈ {l, r}, (9)

or φ̂ik(n) = |Si(k, n)|2, where {Sil(k, n), Sir(k, n)}k is the
spectrum of a stereo source and {Si(k, n)}k the spectrum of
a mono source, respectively. Individual spectra are obtained
from the corresponding images by

Si(k, n) =
[
sin θ̂i cos θ̂i

]
uik(n) (10)

in the case of a mono source, or else by

Si,ref(k, n) = ui,ref,k(n) (11a)

and

Si,¬ref(k, n) =


ui,¬ref,k(n)

âi,¬ref
if âi,¬ref 6= 0

0 otherwise
(11b)

in the case of a stereo source.

3.3. Parameter quantization and coding

The pan angle θ of a mono source is rounded to the nearest
integer value using a mid-tread uniform quantizer defined as

Q(x) = ∆ ·
⌊
x

∆
+

1

2

⌋
, (12)

where ∆ is the step size and b·c represents the floor function.
The balance parameter ai,¬ref for a stereo source is encoded



using an A-law or µ-law compressor together with a uniform
quantizer as in (12). For a given input x ∈ [0, 1], the A-law
compressor output is

CA(x) =


A · x

1 + logA
if x < 1

A

1 + log (A · x)

1 + logA
otherwise

, (13)

where A is the compression parameter and log is the natural
logarithm. The output of the µ-law compressor is

Cµ(x) =
log (1 + µ · x)

log (1 + µ)
, (14)

where µ is the associated compression parameter. Using A-
law or µ-law compression, the signal-to-noise ratio (SNR) is
kept constant over the entire range of ai,¬ref [5]. The STPSD
of a mono source or a channel of a stereo source is quantized
on an ERB-like frequency scale according to

φ̄iz(n) =
1

ub (z)− lb (z) + 1

ub (z)∑
k=lb (z)

φ̂ik(n), (15)

where lb (z) = inf {k | zk = z}, ub (z) = sup {k | zk = z},
z is the quantization index and

zk = b21.4 log10 (4.37fs/Nk + 1)c. (16)

In (16), fs is the sampling rate and N is the STFT size. The
average power values are then converted from linear scale to
logarithmic scale and quantized using (12). These values are
encoded using differential pulse-code modulation (DPCM) in
combination with Huffman coding. The difference between
adjacent power values is calculated in the direction of time or
frequency or between channel pairs depending on what gives
the lowest entropy.

4. SEPARATION OF STEREO IMAGES

4.1. Mixture model and spatial covariance matrix

The mixture is considered to be obtained by superposition of
distinct stereo images that were created according to (1). To
account for professionally produced music recordings, si(n)
is regarded as having undergone prior processing in the form
of linear and nonlinear audio effects [6]. The mixture signal
is thus formulated as

xk(n) =
∑
i∈I

ai ◦ sik(n)

=
∑
p∈P

ap · spk(n) +
∑
q∈Q

aq ◦ sqk(n),
(17)

where set P = {i ∈ I | ∀n[silk(n) = sirk(n)]} represents the
mono sources, while Q = {i ∈ I | ∃n[silk(n) 6= sirk(n)]} =
I \ P represents the stereo sources, respectively.

The local mixture spatial covariance matrix is given by

Rxx,k(n) = E
[
xk(n)xH

k (n)
]

=
∑
p∈P

apa
T
p · φpk(n)

+
∑
q∈Q

aqa
T
q ◦Φqk(n),

(18)

where {φpk(n)}k is the pth mono source’s STPSD and

Φqk(n) =

[
φq,ll,k(n) φq,lr,k(n)

φ∗q,lr,k(n) φq,rr,k(n)

]
, (19)

where ∗ denotes complex conjugation. In (19), {φq,ll,k(n)}k
and {φq,rr,k(n)}k are the qth stereo source’s left- and right-
channel STPSDs, while {φq,lr,k(n)}k is the short-time cross
spectral density (STCSD). Due to the assumed independence
of the left and the right channel of a stereo source, φq,lr,k(n)
is zero for all q, k and n, so that

Φqk(n) = diag [φqlk(n), φqrk(n)]. (20)

Using (18) and (20), the mixture spatial covariance matrix is
reconstructed from the mixing coefficients and the STPSDs.
In the following it is shown how the summation of the stereo
images can be “undone” by means of spatial filtering.

4.2. Image separation of a mono source

Let us assume that there are more than two active sources in a
time-frequency (TF) point (k, n). In this case, a mono source
component is separated from the mixture signal with the aid
of the power-conserving minimum-variance (PCMV) spatial
filter [3]

ŵpk(n) = R−1xx,k(n)ap

√
φpk(n)

aT
pR−1xx,k(n)ap

(21)

according to
ŝpk(n) = ŵT

pk(n)xk(n). (22)

The corresponding image component estimate is

ûpk(n) = ap · ŝpk(n). (23)

If the number of active sources is at most two, the demixing
becomes trivial given that the mixing system is known.

4.3. Image separation of a stereo source

A stereo source component is separated from the mixture in a
similar manner, where the left-channel and the right-channel
components are estimated simultaneously according to

ŝqk(n) = ŴT
qk(n)xk(n) (24)



with the PCMV spatial filter matrix being

Ŵqk(n) = R−1xx,k(n)Φ
1/2
qk (n)

· diag
{[

R−1xx,k(n)
]
ll
,
[
R−1xx,k(n)

]
rr

}−1/2

.
(25)

On the analogy of (23), the corresponding image component
estimate is given by

ûqk(n) = aq ◦ ŝqk(n). (26)

From (20) and (25), it can be seen that when multiple stereo
sources are present in the mixture, their component estimates
exhibit the same phase between different sources. Only their
spectral envelopes are shaped differently. Furthermore, when
the mixture is a combination of stereo sources only, Ŵqk(n)
in (25) is diagonal. As a result, sqjk(n) is separated from the
respective mixture channel using the mono PCMV filter:

ŝqjk(n) =

√
φqjk(n)∑

i∈I a
2
ijφijk(n)

xjk(n). (27)

5. PERFORMANCE EVALUATION

In this section, we evaluate our approach by applying it to a
subset of professionally produced music recordings from the
SiSEC 2013 [7] dataset. The task is to decompose an artistic
mixture into a subset of constituent images that represent the
sources of interest alias foreground objects and the image of
the background—where applicable. The term “background”
refers to the sum of background objects. The original images
are given as a reference.

5.1. Performance metrics

We use the evaluation criteria suggested by the SiSEC 2013
committee. These include the performance metrics from the
PEASS toolkit [8, 9] and the decoder runtime in seconds per
CPU clock rate in GHz. For every mixture, we also give the
side-information rate. Furthermore, we include PEMO-Q [10,
11] in our evaluation.

5.2. Experimental design

We use the following testing framework. With respect to the
STFT, we employ a 2048-point fast Fourier transform (FFT)
with a Kaiser-Bessel derived window of the same length and
a 50-% overlap between succeeding frames. The pan angle θ̂
is quantized and coded with 7 bits, while the balance â¬ref is
quantized with 16 bits using the A-law compander with an A
of 87.6. The STPSD is quantized with 6 bits per power value
using a 76-band nonuniform frequency scale. The probability
mass function of the difference between contiguous STPSD
values is modeled with a Laplace (µ, b) distribution with µ̂ =

−0.2 and b̂ = 2. The simulations are run in MATLAB on an
Intel Core i5-520M 2.4-GHz CPU.

5.3. Experimental results

The results of the experiment are summarized in Table 1. As
can be observed, the image-to-spatial distortion ratio (ISR) is
between 6.66 and 17.4 dB for a stereo source, and is greater
or equal to 18.5 dB for a mono source. Similarly, the highest
source-to-artifacts ratio (SAR) is obtained for a mono source,
which is 27.7 dB. The target-related perceptual score (TPS)
shows a weak correlation not only with both the ISR and the
SAR, but also with PEMO-Q’s perceptual similarity measure
PSMt, which then again does not take spatial hearing effects
into account. The lowest TPS is at 52 %. The measured side-
information rate is around 10 kbps per mono source or stereo
channel. The execution time of the algorithm is low and also
faster than real time.

6. CONCLUSION AND OUTLOOK

In this paper we presented an extension to our previous work
on the informed separation of audio sources. By generalizing
the mixture model to a sum of stereo images, we have shown
how a particular source of interest or its image can be filtered
out from a stereo mixture using prior information. From our
source-image model we inferred that the pursued approach is
most effective when the foreground objects are in mono and
only the background object is in stereo. This was validated by
the fact that the best separation results with regard to the ISR
were obtained for mono sources. The observed inconsistency
between different performance metrics makes listening tests
indispensable, however.

The sound clips that were used in the experiment can be
downloaded from http://www.labri.fr/˜gorlow/eusipco13/. A
comparison with other approaches will be made available on
the SiSEC 2013 website.
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