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ABSTRACT

When dealing with musical sounds, the short-time Fourier
transform prevails and sinusoids play a key role, according to
both acoustics (vibrating modes) and psychoacoustics (pure
tones). The values obtained when decomposing the signal on
the time-frequency atoms are usually assigned to their geo-
metrical center, leading to estimation errors for the sinusoidal
parameters. To correct this, one can exploit the amplitude
or phase information, use the derivatives of the analysis win-
dow, or those of the audio signal. This leads to three methods
(phase vocoder, spectral reassignment, derivative algorithm)
equally efficient: they are in fact different formulations of the
best analysis method based on the Fourier spectrum.

Index Terms— Sound analysis, sinusoidal modeling,
Fourier transform, spectral reassignment

1. INTRODUCTION

Additive synthesis can be considered as a spectrum model-
ing technique. It is originally rooted in Fourier’s theorem,
which states that any periodic function can be modeled as a
sum of sinusoids at various amplitudes and harmonically re-
lated frequencies. Sinusoidal modeling consists in consider-
ing the trajectories in time of the amplitude and frequency
parameters of each sinusoid present in the sound. This was
proposed by McAulay and Quatieri [1] for speech signals and
by Smith and Serra [2] for musical sounds. Sinusoidal mod-
eling leads to meaningful sound representations, suitable e.g.
for audio effects (time stretching, pitch shifting, etc.), audio
coding, source separation, or music transcription.

The sinusoidal model being parametric, an important
problem is to be able to estimate the model parameters as ac-
curately as possible, to get high quality sounds. In this paper,
we focus on estimators based on the Fourier spectrum and
well-suited for musical sounds, although other approaches
exist (e.g. see [3]) and other signals could also be considered.

After a presentation of sinusoidal modeling in Section 2,
Section 3 describes three methods for the estimation of the si-
nusoidal parameters, and Section 4 shows that they are all effi-
cient in practice and in fact equivalent in theory: they are dif-
ferent formulations of the best Fourier-based analysis method.

Together with Lagrange we studied in [4] the equivalence
of these estimators in the stationary case and only for one
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sinusoidal parameter (the frequency). This paper can be re-
garded as an extension, where spectral reassignment plays a
central role.

2. SPECTRAL SOUND MODELING

2.1. Sinusoidal Modeling

Let us consider here the sinusoidal model under its most gen-
eral expression, which is a sum of complex sinusoids / expo-
nentials (the partials) with slow time-varying amplitudes ap

and non-harmonically related frequencies ωp (defined as the
first derivative of the phases φp). The resulting signal s is thus

s(t) =
P∑

p=1

ap(t) exp(jφp(t)) (1)

where P is the number of partials. Since this paper focuses
on the statistical quality of the parameters’ estimators rather
than their frequency resolution, the signal model is reduced
to only one partial (P = 1). The subscript notation for the
partials is then useless. Let us also define Π0 as being the
value of a given parameter Π at time 0, corresponding to the
center of the analysis frame. The signal s is then

s(t) = exp

 (λ0 + µ0t)︸ ︷︷ ︸
λ(t)=log(a(t))

+j (φ0 + ω0t)︸ ︷︷ ︸
φ(t)

 (2)

where µ (the amplitude modulation) is the derivative of λ (the
log-amplitude), and ω (the frequency) is the derivative of φ
(the phase). Thus, the log-amplitude and the phase are mod-
eled by polynomials of degree 1, which can be viewed either
as truncated Taylor expansions of more complicated ampli-
tude and frequency modulations (e.g. tremolo / vibrato), or
either as an extension of the stationary case where µ0 = 0.

2.2. Spectral Analysis

The main problem we have to tackle now is the estimation of
the model parameters. This can be achieved, as in the station-
ary case, by using the short-time Fourier transform (STFT):

Sw(t, ω) =
∫ +∞

−∞
s(τ)w(τ − t) exp (−jω(τ − t)) dτ (3)

where Sw is the short-time spectrum of the signal s.
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Fig. 1. Magnitude spectrum of a harmonic sound, resulting
from a fast (discrete) Fourier transform (FFT). Each partial
causes a peak (e.g. see ◦) and will be considered individually.

Note that, as in [5], we use here a slightly modified defini-
tion of the STFT. Indeed we let the time reference slide with
the window, which is also the case in practice when the STFT
is implemented using a sliding fast Fourier transform (FFT).

For the sake of simplicity, all the mathematical derivations
will be done in the continuous domain. However, in practice
the signals are discrete (with some sampling frequency Fs).
The Fourier transform (FT) will then be replaced by its dis-
crete version (DFT) of size N , and the time will be expressed
in samples (sample n being at time n/Fs) and the frequency
in bins (bin m being at frequency mFs/N ).

Many instrumental sounds are harmonic, meaning that the
frequencies of the partials are multiple of some fundamental
frequency (related to our perception of pitch). The magnitude
of the Fourier spectrum exhibits then a series of peaks (see
Fig. 1). Each peak is a local maximum m in the magnitude
spectrum and corresponds to some partial.

Sw involves an analysis window w, usually symmetric
and band-limited in such a way that for any frequency cor-
responding to one specific partial, the influence of the other
partials can be neglected (in the general case when P > 1).

In the stationary case (µ0 = 0), the spectrum of the anal-
ysis window gets simply centered on the frequency ω0 and
multiplied by the complex amplitude

s0 = a0 exp(jφ0) = exp(λ0 + jφ0), (4)

as shown in Fig. 2, which can be regarded as a zoom on one of
the peaks of the preceding figure. In the non-stationary case
however, considering Equation (3) at estimation time 0, we
see that s0 gets multiplied by Γw(ω0 − ω, µ0) where

Γw(ω, µ0) =
∫ +∞

−∞
w(t) exp (µ0t + jωt) dt. (5)
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Fig. 2. Zoom on one peak: The analyzed sinusoid (dashed
line) is observed from the spectrum of the analysis window
through the discrete frequencies (solid lines) of the Fourier
transform, leading to several bins with significant energy (◦).

In the special case of using a Gaussian window for w, an an-
alytic formula can be derived. Else, it is always possible to
compute Γw directly from Equation (5).

Once the estimated amplitude modulation µ̂0 and fre-
quency ω̂0 are known, the amplitude and phase parameters
can eventually be estimated since

ŝ0 =
Sw(0, ωm)

Γw(ω̂0 − ωm, µ̂0)
, (6)

where ωm is the (discrete) frequency of the local maximum
of the magnitude spectrum where the partial is detected.

3. SINUSOIDAL ESTIMATION

The problem is yet to estimate the amplitude modulation and
frequency parameters. In this section, we present 3 methods
providing estimation functions µ̂ and ω̂ for these parameters.
In practice, for each detected partial at time 0 (center of the
analysis frame) and (discrete) frequency ωm, the estimates of
its parameters are given by:

µ̂0 = µ̂(0, ωm), (7)
ω̂0 = ω̂(0, ωm). (8)

3.1. Difference Method (Phase Vocoder)

The Fourier-based approach started together with computer
music, about 50 years ago. The phase vocoder introduced
by Flanagan and Golden [6] was already using the phase of
the Fourier spectrum to estimate the frequency of the partials,
and more precisely the phase difference of consecutive spec-
tra [7]. This simple yet efficient difference approach was gen-
eralized recently to the non-stationary case [8].



Thus Sw(t, ω) is the spectrum of the frame centered
at the desired (discrete) estimation time, and let S∓w (ω) =
Sw(t∓1/Fs, ω) be its left (previous, i.e. one sample before)
and right (next, i.e. one sample after) neighboring spectra,
respectively (Fs denoting the sampling frequency).

Since the log-amplitude and phase differences correspond
to the real and imaginary parts of the logarithm of spectral
ratios, respectively, let us define:

∆λ(S1, S2) = log |S1| − log |S2|
= < (log (S1/S2)) , (9)

∆φ(S1, S2) = ∠S1 − ∠S2

= = (log (S1/S2)) (10)

(S1 and S2 denoting two arbitrary complex spectra).
Since we can measure the amplitude of the spectra, we can

compute the left and right estimates of the amplitude modu-
lation, and retain their mean as the final estimation:

µ− = ∆λ(Sw, S−w ) · Fs,

µ+ = ∆λ(S+
w , Sw) · Fs,

µ̂ = (µ− + µ+)/2. (11)

Similarly, with the measured phase of the spectra, we can
compute an estimation of the instantaneous frequency:

ω− = ∆φ(Sw, S−w ) · Fs,

ω+ = ∆φ(S+
w , Sw) · Fs,

ω̂ = (ω− + ω+)/2. (12)

In practice, we are looking for positive frequencies and since
the phase is measured modulo 2π, after each call to the ∆φ

function we must apply the phase unwrapping procedure of
the phase vocoder, i.e. adding 2π to the result if lower than 0.

3.2. Spectral Reassignment

Reassignment was first proposed by Kodera et al. [9] and
was generalized by Auger and Flandrin [10] to improve time-
frequency representations. Usually, the values obtained when
decomposing the signal on the time-frequency atoms are as-
signed to the geometrical center of the cells (center of the
analysis window and bins of the Fourier transform). The re-
assignment method assigns each value to the center of gravity
of the cell’s energy. The method uses the knowledge of the
first derivative w′ – obtained by analytic differentiation – of
the analysis window w in order to adjust the frequency inside
the Fourier transform bin. This approach was generalized for
the amplitude modulation in the non-stationary case (see [5]).

The complex short-time spectrum – resulting from the
STFT – is, in the polar form:

Sw(t, ω) = a(t, ω) exp (jφ(t, ω)) (13)

where the instantaneous amplitude a and phase φ are real-
valued functions of time t and frequency ω. By considering
Equation (3), we can easily derive:

∂

∂t
log (Sw(t, ω)) = jω − Sw′(t, ω)

Sw(t, ω)
(14)

where w′ denotes the derivative of w. Then, since the am-
plitude modulation (resp. frequency) is the derivative of the
amplitude (resp. phase), from Equations (13) and (14), we
obtain the reassigned parameters:

µ̂(t, ω) =
∂

∂t
< (log (Sw(t, ω)))

= −<
(

Sw′(t, ω)
Sw(t, ω)

)
, (15)

ω̂(t, ω) =
∂

∂t
= (log (Sw(t, ω)))

= ω −=
(

Sw′(t, ω)
Sw(t, ω)

)
. (16)

3.3. Derivative Method

Together with Desainte-Catherine in [11], we proposed to use
the signal derivatives to estimate the sinusoidal parameters
in the stationary case; and with Depalle in [5], we general-
ized this derivative method to the non-stationary case. Indeed,
considering Equation (2), since the derivative of an exponen-
tial is an exponential, we have:

s′(t) = (µ0 + jω0) · s(t) and thus

<
(

s′

s

)
= µ0 and =

(
s′

s

)
= ω0.

For this method to work in the case of a signal made of several
partials, we have to switch to the spectral domain and define:

µ̂ = <
(

S′w
Sw

)
, (17)

ω̂ = =
(

S′w
Sw

)
, (18)

where S′w is the short-time spectrum of the signal derivative
s′. As shown in [5], in practice this (discrete) derivative s′

can be obtained by convolving the discrete signal s by the
following differentiator filter:

h[n] = Fs
(−1)n

n
for n 6= 0, and h(0) = 0 (19)

of infinite time support. Thus, in practice, we multiply h by a
(finite-length) Hann window. This results in a high-pass filter,
and can lead to estimation problems in the high frequencies
(above approx. 3/4 of the Nyquist frequency), fortunately
above the audible limit (16kHz).

So, for each partial m detected in the (discrete) Fourier
spectrum at time t and frequency ωm, together with Equations
(7) and (8), we have now 3 ways to estimate the amplitude
modulation and frequency parameters of the partial:

• the difference approach with Equations (11)-(12),

• the reassignment approach with Equations (15)-(16),

• the derivative approach with Equations (17)-(18).

Once these parameters are known, the others (amplitude and
phase) can be estimated in turn using Equation (6).



4. COMPARING THE ESTIMATORS

Now the question is: Which is the best approach?

4.1. Experimental Results

To quantitatively evaluate the precision of theses approaches
for the estimation of all the model parameters, we ran the
same experiments as in [5, 8].

We consider discrete-time signals s, with sampling rate
Fs, each consisting of 1 complex exponential generated ac-
cording to Equation (2) with an initial amplitude a0 = 1, and
mixed with a Gaussian white noise. In our experiments, we
set the sampling frequency Fs = 44100Hz, the FFT size N =
511, and the signal-to-noise ratio (SNR) goes from −20dB to
+100dB by steps of 5dB. For each SNR and for each analy-
sis method, we test several parameter combinations: 99 fre-
quencies (ω0) linearly distributed in the (0, 3Fs/8) interval, 9
phases (φ0) linearly distributed in (−π,+π), and 5 amplitude
modulations (µ0) linearly distributed in [−100,+100]. For
the analysis window w, we use the symmetric Hann window.
We focus on the variance of the estimation error over this test
set (the mean being zero for unbiased estimators). We then
compare the difference method (D), the reassignment method
(R), and two variants of the derivative method: The estimated
derivative method (ED), where the derivative s′ is estimated
using the differentiator filter of Equation (19) of size 1023;
and the theoretic derivative method (TD), where the exact
derivative is used for s′ – since it is analytically known for
the test signals. The results of the TD method can be regarded
as the best performance the ED method could achieve, at the
expense of a longer differentiator filter though.

When looking at the results of these experiments (see
Fig. 3), we see that all these methods are very efficient, close
to the the Cramér-Rao bounds (CRB), which are the limit
to the best possible performance achievable by an unbiased
estimator given a data set (see [5]).

In the high SNRs, the ED method is biased because of the
approximation of the derivative by the finite-length differen-
tiator filter. Applying the spectral reassignment on the dis-
crete spectrum causes a bias, as noticed by Hainsworth [12],
degrading the performances of the R method. Perhaps sur-
prisingly, the simplest D method is the most efficient.

4.2. Theoretical Equivalences

4.2.1. Reassignment and Derivative

In [4], the reassignment (Section 3.2) and derivative (Section
3.3) methods were proven to be theoretically equivalent, at
least as regards the estimation of the frequency in the station-
ary case. In [5], we generalized the proof of the equivalence
to the non-stationary case, and for the estimation of both the
frequency and the amplitude modulation. More precisely, we
introduce ρ = τ − t which gives another (equivalent) expres-
sion for the STFT (see Equation (3)):

Sw(t, ω) =
∫ +∞

−∞
s(t + ρ)w(ρ) exp (−jωρ) dρ (20)

from which we can derive

∂

∂t
log (Sw(t, ω)) =

S′w(t, ω)
Sw(t, ω)

. (21)

By considering Equation (21) instead of Equation (14) in Sec-
tion 3.2 (reassignment approach), we would have obtained the
equations of Section 3.3 (derivative approach). Thus the re-
assignment approach is equivalent to the derivative approach,
at least in the continuous case. A different proof, based on
integration by parts, can be found in [13].

4.2.2. Reassignment and Difference

It turns out that the reassignment approach is also equiva-
lent to the difference approach in the discrete case. Indeed,
in the phase vocoder approach the parameters are estimated
by first-order differences, approximating the differentiation of
the spectrum of Equations (15)-(16) in the discrete-time case.

5. CONCLUSIONS

Although the three approaches we presented in Section 3
are equivalent in theory, the small differences observed in
practice in Section 4.1 are due to a bias of the reassignment
method in the discrete case, and of the derivative method
when using a finite-length differentiator filter. The most ef-
ficient approach turns out to be the simplest one, based on
first-order differences, i.e. a rather crude approximation of
differentiation. . . But further investigations are necessary,
since in theory the reassignment method (resp. the derivative
method) requires the analysis window (resp. time signal) to
be differentiable, which are a priori different conditions.
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