
INFORMED AUDIO SOURCE SEPARATION: A COMPARATIVE STUDY

Antoine Liutkus1 Stanislaw Gorlow2 Nicolas Sturmel3 Shuhua Zhang4

Laurent Girin4 Roland Badeau1 Laurent Daudet3 Sylvain Marchand5 Gaël Richard1

1 Institut Telecom, Telecom ParisTech, CNRS LTCI, France
2 LaBRI, CNRS, Univ. Bordeaux 1, Talence, France

3Institut Langevin, CNRS, ESPCI-ParisTech, Univ. Paris Diderot, Paris, France
4GIPSA-Lab, Grenoble-INP, Grenoble, France

5Lab-STICC, CNRS, Univ. Western Brittany, Brest, France

ABSTRACT
The goal of source separation algorithms is to recover the con-
stituent sources, or audio objects, from their mixture. How-
ever, blind algorithms still do not yield estimates of sufficient
quality for many practical uses. Informed Source Separation
(ISS) is a solution to make separation robust when the audio
objects are known during a so-called encoding stage. During
that stage, a small amount of side information is computed
and transmitted with the mixture. At a decoding stage, when
the sources are no longer available, the mixture is processed
using the side information to recover the audio objects, thus
greatly improving the quality of the estimates at a cost of ad-
ditional bitrate which depends on the size of the side infor-
mation. In this study, we compare six methods from the state
of the art in terms of quality versus bitrate, and show that a
good separation performance can be attained at competitive
bitrates.

1. INTRODUCTION

Active listening, which is the possibility to independently ma-
nipulate, mute or equalize audio objects within their mixture
[2, 10] has recently aroused much interest. In the context
of music signal processing, an audio object can be identified
with a sound source such as an instrument or a singing voice.
All audio objects are mixed together into a mixture, which is
possibly multichannel as in the common stereophonic case.
From a practical point of view, active listening scenarios re-
quire the availability not only of the mixture, but also of the
audio objects. Whereas some studies concentrate on a coding
strategy [5, 11] to convey the audio objects, others focus on a
source separation approach [13, 12, 9, 6]. The common idea
of all these techniques is to make use of the mixture in order
to reduce the required bitrate to transmit the audio objects.
Indeed, a straightforward solution would be to separately en-
code the audio objects using audio coders. This solution is
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however not optimal in terms of bitrate because it amounts
to encode several times the same information: once within
the mixture and once alone for the transmission of the au-
dio objects. Indeed, transmission of the mixture is considered
mandatory in most cases.

Source separation consists in separating different signals
from their mixture. Unfortunately, the performance of blind
source separation, i.e. given the mixtures only, is still very de-
pendent on the signals considered and does not systematically
provide separated signals of sufficient quality for active listen-
ing applications. In informed source separation (ISS), source
separation is improved by transmitting to the separation mod-
ule some additional side information that strongly enhances
the quality of the estimates. The general block diagram of
ISS is presented in Fig. 1. Given the (mono) audio objects
and the multichannel mixture, a small side information Θ is
computed in the encoding stage and transmitted with the mix-
ture. In the decoding stage, it allows to recover the objects
given the mixture only. Many strategies can fit in this general
framework, which are mainly distinguished by the assump-
tions made on the signals and by the corresponding separation
algorithms. Indeed, it can be seen from Fig. 1 that the gen-
eral ISS structure is independent from the separation method
used at the decoder. Several approaches can hence be found
in the literature [12, 11, 9, 6] and their common objective is to
maximize the perceptual quality of the estimates while mini-
mizing the size of the side information. Typical bitrates of the
methods under study lie around 5-15kbps per object, which
is very competitive compared to bitrates achieved by usual
perceptual coders.

The purpose of this study is to present the general ideas of
informed source separation and to briefly present four differ-
ent techniques from the state of the art as well as to give the
corresponding references. Then, all those techniques are eval-
uated on the same corpus in an extensive comparative evalu-
ation. It is structured as follows. First, we present the frame-
work considered and some notations in Section 2. Then, an
overview of the different techniques under study is presented
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Fig. 1. High level block diagram of ISS. During the encod-
ing stage, both the objects and the mixture are known and a
small side information is computed. At the decoding stage,
this information is used to perform robust source separation

in Section 3. Finally, an experimental comparison of all these
techniques is found in Section 4, which allows to grasp some
of the specificities of each method.

2. FRAMEWORK AND NOTATION

In the following, we assume that the M audio objects are de-
fined as M regularly sampled times series sm of the same
length Nn. Furthermore, we suppose that a mixing process
produces a K-channel mixture {yk}k=1···K from the audio
objects. The Short-Term Fourier Transform (STFT) is written
using capital letters, e.g. Sm (ω, t) and its squared modulus
using bold capital letters, e.g. Sm (ω, t). (ω, t) is called a
Time-Frequency (TF) bin, where ω and t respectively stand
for the frequency and frame index. Nω and Nt are, respec-
tively, the number of frequency bins and the number of frames
of each transformed signal.

We consider linear and time-invariant mixing processes,
since they are handled by all the techniques we review for
ISS, contrarily to more complex models such as non-punctual
or non-linear mixing [4, 15]. Thus, each audio object m is
supposed to be mixed into each channel k through the use of
a constant mixing filter akm. When akm reduces to a sin-
gle gain coefficient, the mixing is called instantaneous. We
assume that akm are sufficiently short compared to the length
of each frame so that the mixing process can be approximated
in the STFT domain as:

Y (ω, t) ≈ A (ω)S (ω, t) (1)

where

S (ω, t) = [S1 (ω, t) · · ·SM (ω, t)]
>

Y (ω, t) = [Y1 (ω, t) · · ·YK (ω, t)]
>

are M × 1 and K × 1 vectors gathering respectively all au-
dio objects and all channels of the mixture at TF bin (ω, t).
Akm (ω) is the frequency response of filter akm at frequency
bin ω. The K ×M matrix A (ω) is called the mixing matrix.
The objective of ISS is to compute some side information Θ
that allows to recover good estimates ŝm of the audio objects
given the mixture {yk}k=1···K . For the computation of Θ, we
assume that yk, sm and A are all available.

3. FOUR SEPARATION METHODS

In this section, we briefly present the four different techniques
for ISS that we compare in the following. Because of the
space limitation, we cannot give the details concerning the
models, which can be found in the corresponding references.

3.1. Local inversion

The first technique considered [12] is called “Local Inversion”
in the following. It relies on the assumption that most audio
signals can be considered sparse in the STFT domain, i.e. that
only a small amount of TF bins have a significant magnitude,
all others being close to zero. Consequently, for a given TF
bin, it is much likely that only a subset of the objects have a
noticeable energy. If we assume that at most K sources are
active at some TF bin (ω, t), (1) becomes invertible locally
for those sources, all others being set to zero.

For each TF bin, the technique then amounts to look for
the combination of active objects that minimizes the squared
error between S (ω, t) and its reconstruction, among the

M !
K!(M−K)! possible combinations. The side information Θ is
thus the combination of active objects for each TF bin. The
computational complexity of this method is O (NωNtM). A
further refinement on [12] which permits variable bitrates is
to send the combination of active objects only for TF bins
whose magnitude lies above a perceptual threshold.

3.2. MMSE of locally stationary Gaussian processes

A second technique is based on the work in [9]. The sources
are assumed to be locally stationary Gaussian processes. In
that case, the TF coefficients of the mixtures can also be con-
sidered as Gaussian and the optimal MMSE estimator of the
source signals is provided by the mean of the posterior (Gaus-
sian) distribution of the sources given the mixtures [4], which
writes:

µpost (ω, t) =

(diagS (ω, t))A (ω)
H
(
A (ω) diagS (ω, t)A (ω)

H
)−1

Y (ω, t) .

(2)

The side information considered by this method are A
and the spectrograms Sm of the sources. [9] proposes to
compress Sm using either image compression, e.g. JPEG, or
Nonnegative Matrix Factorization (NMF). The corresponding
techniques are denoted “MMSE-NMF” and “MMSE-JPG”
respectively in the following. If the original Sm are used,
the technique is called “Oracle MMSE”. The complexity of
MMSE techniques is O

(
NωNtK

3
)
.

3.3. Iterative beamforming

The third technique, abbreviated as MVDR+PP, is the TF
selective iterative spatial filtering algorithm presented in



[6]. It uses the minimum-variance distortionless response
(MVDR) beamformer [3] in the filtering stage and during
a post-processing stage, it readjusts the magnitudes of the
estimated signal spectra in order to comply with the imposed
equal-loudness constraint. The following modifications were
made with regard to [6]. First, the spatial covariance matri-
ces were approximated directly from the transmitted spectral
envelopes and the mixing coefficients according to

C̃XX (ω, t) = A (ω) diagŜ (ω, t)A (ω)
H
,

and no longer from the clustered data. Second, pairwise ex-
traction of the two most dominant signal components was
abandoned in favor of a one-by-one deflation strategy. In
addition, the side information was compressed with bzip21,
which uses Burrows-Wheeler block sorting text compression
technique and Huffman coding, to encode the bitstream. The
complexity of the MVDR+PP decoder is O

(
NωNtKM

2
)
.

3.4. Iterative sources reconstruction

This method is described in [14] and denoted ISS using Iter-
ative Reconstruction (ISSIR) in the following. The spectro-
grams Sm are quantized uniformly on a logarithmic scale to
yield S̄m and an activity map Wm is computed as:

Wm (ω, t) =

{
1 if Sm(ω,t)∑

m′ Sm′ (ω,t) > Tact
0 otherwise

.

where Tact is an activity threshold. The side information{
S̄m,Wm, A

}
is compacted using the bzip2 coder. At the

decoder, the method initially sets Ŝm =
√
S̄m

Y0

|Y0| and then
iterates NI times the following operations. First, the sources
are reconstructed and the error between left and right-hand
sides of (1) using Ŝm is computed. Second, this error is
uniformly distributed to the sources based on Wm. Finally,
a Griffin and Lim iteration [7] is performed. Two vari-
ants of the method are presented, one with single resolution
(2048 point STFT) denoted “ISSIR-Single” and one with
dual-resolution STFT (256 and 2048 points) with transient
detection, denoted “ISSIR-Dual”. The complexity of the IS-
SIR decoders are: O (NωNtKMNI) for ISSIR-Single and
O ((Nω,1Nt,1 +Nω,2Nt,2)KMNI) for ISSIR-Dual, where
Nω,iNt,i stands for the number of TF bins for each transform.

4. EVALUATION

The main goal of this study is to proceed to a comparison
of the objective performance of the four techniques for ISS
presented in Section 3, as well as to identify some promis-
ing research directions. To this purpose, a set of 14 excerpts
sampled at 44.1kHz or 48kHz from the Quaero database2 was

1http://www.bzip2.org
2www.quaero.org

gathered along with all their constitutive audio objects. Each
excerpt is approximately 30s long and composed of 5 to 10
objects. Two mixing scenarios were considered: linear in-
stantaneous and convolutive mixtures using fixed short filters
of order 200. In any case, the azimuth for all objects were dif-
ferent and separated by at least 5°. The filters used for mixing
were the Head Related Transfer Functions (HRTF) described
in [1].

The metrics considered are the Signal to Distortion Ratio
(SDR, in dB) of BSSEval [16] and the Perceptual Similarity
Measure (PSM, between 0 and 1) of PEMO-Q [8]. Whereas
SDR is widely used for the objective evaluation of the perfor-
mance of source separation algorithms, PEMO-Q is mostly
used within the audio coding community. Even if both met-
rics are intended to be related to the perceptual accuracy of
the estimates, SDR has been acknowledged as not sufficiently
taking musical noise into account [9], which motivates the
combined use of PSM. Further quantities of interest are the
encoding and decoding times for all excerpts.

All techniques were then run at various levels of quality,
in order to compare their respective rate-performance curves.
Since objective performance appears to be highly dependent
on the excerpt considered, all results are compared as in [9] to
those of the oracle MMSE estimate (2), which makes it pos-
sible to compare metrics across different excerpts. Of course,
performance of (2) should not be understood as a bound what-
soever, since it is limited by its use of the phase of the mix-
ture to compute estimates, a limitation which is overcome by
some of the techniques under study. Instead, it must be seen
as a handy way to make the performance of all methods as
independent as possible from the excerpt considered. Perfor-
mance of the MMSE Oracle estimate for both instantaneous
and convolutive mixtures can be found in Fig. 2.

For a given technique, a given excerpt and a given bi-
trate, the estimated audio objects were first compared to the
original. Second, the obtained scores were averaged so as
to obtain the metric for this technique, excerpt and quality.
Third, the metrics obtained by the oracle estimate on the
same excerpt were subtracted so as to obtain the differen-
tial metric ∆ (method, excerpt, bitrate). Finally, for a given
method, the ∆ of all excerpts were merged together and the
scatter plot (bitrate,∆) was smoothed to obtain one single
rate-performance curve. With 10 quality settings for each of
the 6 techniques considered on the 14 excerpts using both in-
stantaneous and convolutive mixing, this evaluation involved
computing metrics for 1680 groups of 5 to 10 stems. All
results for both instantaneous and convolutive mixtures are
given in Fig. 2.

From this figure, many noticeable facts may be under-
lined. First, the availability of a side information Θ yields
a strong improvement of the performance obtained by source
separation methods both in terms of SDR and PSM. Percep-
tually, original and estimated audio objects are hardly dis-
tinguishable, provided the bitrate is sufficient. This fact is
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Fig. 2. Results for instantaneous and convolutive mixtures.

confirmed by objective results obtained by all methods above
5 − 10kbps. ISS thus indeed yields estimates of sufficient
quality for active listening applications. Such bitrates are
quite low compared to those achieved by traditional percep-
tual coders.

Concerning the difference between the methods, it can be
noticed that the performance of MMSE techniques is bounded
by their limitative assumptions on the signals. Indeed, they
use the phase of the mixture for estimation, as well as the
assumption that energies of the objects are additive, which
may not be true in many cases. These issues are addressed
by other methods. Through its iterative reconstruction, IS-
SIR implements phase consistency of TF representations and
MVDR+PP can be seen to outperform even Oracle MMSE in
terms of PSM thanks to its exploitation of spatial constraints
in the model. Local inversion can be seen to outperform all
other methods in terms of SDR. Still, it yields some musi-
cal noise, due to the TF bins set to 0 in the reconstruction,
a fact which is highlighted in the PSM results. Performance
of ISSIR is seen to be a bit lower than other methods, but it
is mainly because its current implementation does not benefit

from the availability of several channels in the mixture. A no-
ticeable fact about ISSIR and MMSE methods is that they are
operational for mono mixtures as well as for mixtures setting
the same mixing filters to different objects, which is not the
case for Local Inversion nor for MVDR+PP methods. Con-
cerning computing time, Local Inversion is by far the most
computationally efficient method in both instantaneous and
convolutive mixtures. While MMSE and ISSIR Single de-
coding methods can be seen to be possibly implemented in
real time in any case, MVDR+PP currently requires more op-
timization for convolutive mixtures, as does ISSIR Dual for
both instantaneous and convolutive mixtures.

Several interesting directions for research can be outlined.
First, most techniques share a very similar side information.
Indeed, a coded version of the spectrogram of the mixtures
or a related quantity is often required at the decoder. Hence,
we are currently exploring crossovers between methods on
this point, particularly through the use of the NMF/JPG lossy
compression approach. Second, constraints on spatial infor-
mation as in MVDR+PP or on the phases as in ISSIR do yield
a sensible improvement of the perceived quality. The corre-



sponding ideas may be transferred to other methods as well.

5. CONCLUSION

In this paper, we provided a unified presentation of Informed
Source Separation. The challenge of ISS is to permit recov-
ery of audio objects within their mixture through the use of a
small side information Θ. Several methods for this purpose
were presented that share the same common principle: Θ is
chosen as the set of all parameters needed to perform source
separation at the decoder. An extensive evaluation of the six
techniques presented was done that allowed for the first time
to compare the methods using the same corpus and the same
metrics.

Noticeable results of this evaluation include the fact that
ISS is highly efficient for recovering audio objects at a low
bitrate (5− 15kbps per object) and also that many crossovers
between existing methods can be considered. It is interesting
to mention that any audio separation method whose param-
eters can be encoded in a small amount of bits may be an
interesting candidate for ISS.
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