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ABSTRACT
Sound applications based on sinusoidal modeling highly depend
on the efficiency and the precision of the estimators of its analysis
stage. In a previous work, theoretical bounds for the best achiev-
able precision were shown and these bounds are reached by effi-
cient estimators like the reassignment or the derivative methods.
We show that it is possible to break these theoretical bounds with
just a few additional bits of information of the original content, in-
troducing the concept of “informed analysis”. This paper shows
that existing estimators combined with some additional informa-
tion can reach any expected level of precision, even in very low
signal-to-noise ratio conditions, thus enabling high-quality sound
effects, without the typical but unwanted musical noise.

1. INTRODUCTION

For decades, researchers have spent lots of efforts improving the
precision of sound analysis, since it is often crucial for the per-
ceived quality of the sound transformations. And yet this quality
is not sufficient for demanding applications.

One approach is to try to improve the analysis methods even
further, without guarantee of success though. Indeed, theoretical
bounds may exist, indicating the minimal error (i.e. maximal qual-
ity) reachable without extra information (blind approach).

Another approach is to inject some information. This can be
prior knowledge about the sound sources and / or the way the hu-
man auditory system will perceive them (computational auditory
scene analysis approach). But this information can also come from
a manual annotation (semi-automatic analysis). Moreover, when
access to the compositional process is given, another option is to
use some bits of the ground truth as additional information in or-
der to help the analysis process. This is the concept of “informed
analysis” (in opposition to the blind approach), used recently to
improve sound source separation [1]. Of course, using the whole
information would be cheating. Here, we intend to determine and
use only the minimal amount of information.

Where this information should be added then? It could be any-
where in the analysis / transformation / synthesis chain. We would
like to quantify the minimal amount of information necessary to
achieve a specific task (e.g. some audio effect) with a desired level
of quality. The measurement of the quality could be done at the
end of the processing chain, using either objective measurements
based on signal-to-noise ratios or subjective listening tests.

Here we want to measure and improve the quality of the sinu-
soidal modeling approach, of great interest for sound transforma-
tions as shown by McAulay and Quatieri [2] for speech signals and
Serra and Smith [3] for musical sounds. We start by the analysis
stage, and we want to evaluate its quality objectively.

Sinusoidal analysis usually consists of two steps: peak pick-
ing (short-term analysis) and partial tracking (long-term analysis).
Whereas evaluating partial tracking is still an open issue [4], the
evaluation of the peak picking has a clear theoretical background,
since the Cramér-Rao lower bounds (CRBs) give the minimal error
variance for unbiased estimators of the peak parameters.

To go below these bounds, the only solution is to add some
information. An interesting approach could be to use prior knowl-
edge about the sound structure, giving constraints among the pa-
rameters of the different sinusoids. Here, we prefer to stay at the
most general level, with no priors on the sound sources. We will
take advantage of a few bits of the ground truth to improve the
quality of the estimation of the parameters of each sinusoid.

The present work should be regarded as a proof of concept
of informed sound analysis. We focus on the estimation of the
frequency of the sinusoids, a well-studied problem. Even with a
rather naive approach we show that we can go below the theoreti-
cal bounds, which means that we are able to extract the sinusoids
with a much better precision than without information, allowing
musical applications with a sufficient quality.

Starting with the most studied problem (frequency estimation)
of the first analysis step (peak picking) of the sinusoidal modeling
chain, we expect that the precision gain should propagate through
the chain and improve the overall quality. For example, accurate
spectral peaks would ease the partial tracking step, and so on.

Of course, as a long-term research, we should optimize quali-
tatively and quantitatively the additional information at each stage
of the complete analysis / transformation / synthesis chain.

This paper is organized as follows. Section 2 explains the
classic frequency estimation using the reassignment method and
recalls the theoretical lower bounds for the estimation error. Sec-
tion 3 then presents our new approach, namely “informed estima-
tion”, consisting in taking advantage of a few bits of additional
information to derive a more precise estimate. This improvement
is illustrated by our experimental results in Section 4.

2. CLASSIC FREQUENCY ESTIMATION

Sinusoidal modeling involves a complete analysis / transformation
/ synthesis chain. The estimation of the frequency of each sinusoid
is often the very first step. Thus, for high-quality sound transfor-
mations, the precision of this estimation is crucial in practice. Yet,
theoretical considerations show that this precision is limited.

2.1. Sinusoidal Model

Additive synthesis can be considered as a spectrum modeling tech-
nique. It is originally rooted in Fourier’s theorem, which states
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that any periodic function can be modeled as a sum of sinusoids at
various amplitudes and harmonically related frequencies. In this
paper we consider the sinusoidal model under its most general ex-
pression, which is a sum of complex exponentials (the partials)
with time-varying amplitudes ap and non-harmonically related fre-
quencies ωp (defined as the first derivative of the phases φp). The
resulting signal s is thus given by:

s(t) =

PX
p=1

ap(t) exp(jφp(t)). (1)

The amplitudes and frequencies may evolve within an anal-
ysis frame (non-stationary case) under first-order amplitude and
frequency modulations. Furthermore, as the present study focuses
on frequency precision (i.e. accurately measuring this parameter)
rather than frequency resolution (i.e. resolving closely-spaced si-
nusoids), the signal model is reduced to only one partial (P = 1).
The subscript notation for the partials is then useless. We define
then Π0 as being the value of the parameter Π at time 0, corre-
sponding to the center of the analysis frame. The signal s is then
given by:

s(t) = exp

0BBB@ (λ0 + µ0t)| {z }
λ(t)=log(a(t))

+j

„
φ0 + ω0t+

ψ0

2
t2

«
| {z }

φ(t)

1CCCA (2)

where µ0 (the amplitude modulation) is the derivative of λ (the
log-amplitude), and ω0 (the frequency), ψ0 (the frequency modu-
lation) are respectively, the first and second derivatives of φ (the
phase). Thus, the log-amplitude and the phase are modeled by
polynomials of degrees 1 and 2, respectively (see [5] for the cor-
responding synthesis method). These polynomial models can be
viewed either as truncated Taylor expansions of more complicated
amplitude and frequency modulations (e.g. tremolo / vibrato), or
either as an extension of the stationary case (where µ0 = ψ0 = 0).

2.2. Reassignment Method

This paper focuses on the estimation of the frequency ω0. As men-
tioned in [6, 7], there are many estimators. Many efficient ones are
based on the short-time Fourier transform (STFT):

Sw(t, ω) =

Z +∞

−∞
s(τ)w(τ − t) exp (−jω(τ − t)) dτ (3)

where Sw is the short-time spectrum of the signal s. This involves
an analysis window w, band-limited in such a way that for any
frequency corresponding to one specific partial (corresponding to
some local maximum in the magnitude spectrum), the influence
of the other partials can be neglected (in the general case when
P > 1). We use the zero-centered (symmetric) Hann window of
duration T , defined on the [−T/2; +T/2] interval by:

w(t) =
1

2

„
1 + cos

„
2π

t

T

««
. (4)

The reassignment method, first proposed by Kodera, Gendrin,
and de Villedary [8, 9], was generalized by Auger and Flandrin
[10] for time and frequency. By considering Equation (3), one can
easily derive:

∂

∂t
log (Sw(t, ω)) = jω − Sw′(t, ω)

Sw(t, ω)
(5)

where w′ denotes the derivative of w. Since the frequency is the
derivative of the phase φ = =(log(Sw)), we then obtain the reas-
signed frequency ω̂:

ω̂(t, ω) =
∂

∂t
= (log (Sw(t, ω))) = ω −=

„
Sw′(t, ω)

Sw(t, ω)

«
. (6)

In practice, for a partial p corresponding to a local maximum m of
the (discrete) magnitude spectrum at the (discrete) frequency ωm,
the estimate of the frequency is given by ω̂0 = ω̂(0, ωm).

The reassignment method seems currently the best STFT-based
method in terms of efficiency and estimation precision, at least re-
garding frequency (see [6]). The generalized derivative method [7]
could be used too, as well as high-resolution methods [11]. In all
cases, the precision is close to optimal. The high-resolution meth-
ods improve the frequency resolution, but not the estimation pre-
cision, which is always limited by the Cramér-Rao lower bound.

2.3. Theoretical Bound

In practice, we consider discrete-time signals s, with sampling rate
Fs, consisting of 1 complex exponential generated according to
Equation (2) with an initial amplitude a0, and mixed with a Gaus-
sian white noise of variance σ2 – the signal-to-noise ratio (SNR) is
then a0/σ. To make the parameters independent of the sampling
frequency, in the remainder of this paper we normalize µ and ω
(by Fs).

The analysis frames we consider are of odd lengthN = 2H+
1 samples (the duration of the analysis window being T = N/Fs),
with the estimation time 0 set at their center. In Equation (3), the
continuous integral turns into a discrete summation overN values,
with an index from−H to +H (the fast Fourier transform is used).

When evaluating the performance of an estimator in the pres-
ence of noise and in terms of the variance of the estimation error,
an interesting element to compare with is the Cramér-Rao bound
(CRB). The CRB is defined as the limit to the best possible perfor-
mance achievable by an unbiased estimator given a data set. For
the model of Equation (2), for the five model parameters, these
bounds have been derived by Zhou et al. [12]. We will restrict
our study to the frequency parameter, and consider the asymptotic
version (for a large N and a high number of observations) of the
corresponding bound.

Djurić and Kay [13] have shown that the CRB depends on the
time sample n0 at which the parameters are estimated, and that the
optimal choice in terms of lower bounds is to set n0 at the center
of the frame, i.e. n0 = H , since the CRB depends on:

εk(µ,N) =

N−1X
n=0

“n− n0

N

”k

exp
“
2µ
n− n0

N

”
. (7)

As explained by Zhou et al. [12], the expression of the bound
is different whether there is a frequency modulation or not (be-
cause this changes the degree of the polynomial associated to the
phase). In the absence of frequency modulation (ψ = 0), the lower
bound for the frequency ω is given by:

CRB(N,σ, a0, µ) ≈ σ2ε0
2a2

0N
2(ε0ε2 − ε12)

, (8)

whereas in the presence of frequency modulation, it turns into:

CRB ≈ σ2(ε0ε4 − ε22)

2a2
0N

2(ε0ε2ε4 − ε12ε4 − ε0ε32 + 2ε1ε2ε3 − ε23)
.

(9)
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Thus, the precision of the estimation of the frequency of each
sinusoid is limited by this CRB, at least without using additional
information. . .

3. INFORMED FREQUENCY ESTIMATION

Now, ω is a frequency parameter and ω̂ is its estimation – done
using the classic estimation method (see Section 2). We are aim-
ing at reducing the estimation error |ω − ω̂| by introducing a few
bits of the representation of the exact value Ω at the best place in
the representation of the estimated value Ω̂. This will lead to a
frequency estimation method which is informed by the additional
bits, and thus more precise.

3.1. Coding Convention

Let ω be a normalized frequency, thus within the [0; .5) interval.
Let us consider then its k-length fixed-point binary representation,
denoted by Ω = (Ω1,Ω2, · · · ,Ωk), Ω(i) denoting Ωi, obtained
with the standard binary coding application C : R → {0, 1}k,
thus:

Ω(i) = bω · 2(i+1)c mod 2 (10)

where bxc denotes the integral part of x. Each coded value Ω can
thus be decoded with the standard binary decoding function:

D(Ω) =

kX
i=1

Ω(i) · 2−(i+1) (11)

and, in these conditions, we have |ω − D(C(ω))| < 2−(k+1) (i.e.
the limit of the precision due to the quantification using the k bits).

3.2. Information Extraction

For a given ω, the most informative area starts at the most signifi-
cant bit of the error |ω − ω̂|. Indeed, replacing this first erroneous
bit could divide the error by 2. Then, replacing in turn each subse-
quent bit could produce a comparable enhancement. However, this
approach is not realistic since it would make the error correcting
algorithm dependent on the frequency ω (which is unknown).

However, for a given noise variance σ2, we can study the dis-
tribution of the most significant bit of the error |ω − ω̂| (for all
possible ω). We define Iσ the index of the most significant bit (and
with a significant number of occurrences). As shown in Figures 1
and 2, this index is close to the one of the mode of the distribution,
and Iσ is a growing function of the noise parameter σ. Once Iσ

is known, the procedure for extracting I containing the d bits of
information is almost straightforward:
C ← C(ω)
I(1 : d)← C(Iσ − 1 : Iσ + d− 2)

except that we choose to extract the d-bit sub-code from 1 bit be-
fore Iσ , to be able to handle special cases (see below).

3.3. Error Correction

In practice, σ is unknown and has to be estimated. We could use
the method proposed in [14], since this method tends to overes-
timate the noise level which will result in an underestimation of
Iσ . This will lead to a loss of efficiency of the information, but the
results will be at least as good as with the classic estimation.

Overestimating Iσ would be dangerous. Indeed, the first Iσ−1
bits must be reliable, otherwise the informing bits might lead to a
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Figure 2: Index Iσ of the most significant bit of the estimation error
|ω − ω̂| of the reassignment method (window size N = 511) as
a function of the signal-to-noise ratio, in the stationary (top) and
non-stationary (bottom) cases.

wrong representation possibly producing an important error (thus
decreasing the estimation precision instead of increasing it).

In the present work, σ is supposed to be known. The design
of a complete method including the estimation of σ is part of our
future research.

We define the d-informed coded estimation of ω from the rep-
resentation of ω̂ as follows:

Ω̃ =

0BB@Ω̂1, · · · , Ω̂Iσ−1| {z }
Ω̂(1:Iσ−1)

, I(2), · · · , I(d)| {z }
I(2:d)

, Ω̂Iσ+d−1, · · · , Ω̂k| {z }
Ω̂(Iσ+d−1:k)

1CCA
(12)

and the informed estimation of the frequency is ω̃ = D(Ω̃).
Whereas the informing bits are reliable, we might deal with

the case of ∃i ∈ (0; Iσ), Ω̂(i) 6= Ω(i). In this case, modify-
ing the bit values placed after Iσ may increase the error |ω − ω̃|,
above the original estimation error |ω− ω̂|. Indeed, two close val-
ues can have very different representations. This is the case for
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Figure 1: Histograms of the most significant bit index of the estimation error |ω − ω̂| of the reassignment method (window size N = 511)
for several signal-to-noise ratios (SNR = -8dB, 0dB, and 10dB) in the stationary case and with a precision of k = 24 bits.

X = (0, 0, 1, 1, 1) and Y = (0, 1, 0, 0, 0). The binary represen-
tations are almost completely different, although we obtain Y by
incrementing X only by 1. Fortunately, by definition of Iσ , we
have:

|ω − ω̂| < 2−Iσ (13)

and thus the Iσ − 1 first bits of the representation of ω and ω̂
can only differ by 1. This happens if and only if Ω(Iσ − 1) 6=
Ω̂(Iσ − 1), that is I(1) 6= Ω̂(Iσ − 1).

Finally, the algorithm taking advantage of the information I to
compute a more precise estimate of the frequency ω̃ is:

Ω← C(ω̂)
Ω(Iσ : Iσ + d− 2)← I(2 : d)
ω̃ ← D(Ω)
if I(1) 6= Ω(Iσ − 1) then

Ωante ← Ω(1 : Iσ − 1)
Ωpost ← Ω(Iσ : k)
ω+ ← D(inc(Ωante),Ωpost)
ω− ← D(dec(Ωante),Ωpost)
if |ω̂ − ω+| < |ω̂ − ω−| then
ω̃ ← ω+

else
ω̃ ← ω−

end if
end if

where inc and dec stands for incrementing and decrementing the
binary representation, respectively.

For more robustness, we have also to consider the eventuality
when Iσ is overestimated, resulting in the violation of the Equation
(13) by both ω+ and ω−. This problematic case is easily detected
when |ω̃− ω̂| ≥ 2−Iσ . Then, it is safer to revert to the ω̂ estimate.

Thanks to this algorithm, the first Iσ +d−2 bits of Ω̃ are now
reliable, i.e. Ω̃(i) = Ω(i) for i < Iσ + d− 1. Thus ω̃ gets closer
to ω as d grows, and the estimation precision increases.

3.4. Theoretical Bound

We can also define a theoretical lower bound in the informed case,
supposing the suitability of each additional bit of information. In-
deed, in the best case, each bit of information is able to divide the
standard deviation of the error by 2. Thus, for a number of d in-
forming bits, an informed lower bound (ILB) for the variance of
the error is given by:

ILB(d,N, σ, a, µ) = CRB(N,σ, a, µ)/22·d. (14)

In fact, the ILB is limited by the k-bit precision of the binary rep-
resentation, unless the CRB itself falls below this precision. This
gives an ILB consisting of 3 line segments, as shown in Figure 5:

1. the first one given by Equation (14), where the d bits of in-
formation are not enough to reach the k-bit precision limit;

2. the second (horizontal) segment where less than d bits are
needed to reach the (constant) k-bits precision limit;

3. the third segment where the CRB allows to exceed the k-bit
precision without any information (the estimation precision
being then better than the representation precision).

4. PRACTICAL EXPERIMENTS AND RESULTS

With the informed approach, we can enhance the estimation preci-
sion even below the CRB (down to the ILB). We demonstrate this
with numerical simulations. In practice, we are now able to reach
any level of precision, at the expense of additional informing bits.
The frequency trajectories of the partials are then much more accu-
rate, and the unwanted musical noise due to the estimation errors
is now inaudible.

4.1. Simulation Results

Let us first consider a discrete-time signal s with sampling rate
Fs = 44100Hz, consisting of 1 complex exponential of amplitude
a0 = 1 according to Equation (2) plus a Gaussian white noise
of variance σ2. The signal-to-noise ratio (SNR) expressed in dB
is 10log10(a

2
0/σ

2) and goes from −20dB to +50dB by steps of
5dB. We consider frames of size N = 511, and we use the Hann
analysis window w, defined for continuous time by Equation (4).

For each SNR, we consider 99 frequencies (ω0) linearly dis-
tributed in the (0, Fs/2) interval, and 9 phases (φ0) linearly dis-
tributed in (−π,+π). The amplitude modulation (µ0) is either
0 (stationary case) or one of 5 values linearly distributed in the
[−100,+100] interval (non-stationary case). The frequency mod-
ulation (ψ0) is either 0 (stationary case) or one of 5 values linearly
distributed in [−10000,+10000] (non-stationary case).

The values for Iσ (see Figure 2) were statistically estimated
from 500 random values uniformly distributed in the ranges above.

We then compare the classic reassignment method (Section 2)
with its informed variant (Section 3), and plot the Cramér-Rao and
informed lower bounds. We consider two situations: either a fixed
number d = 5 of informing bits (Figure 5) or all the necessary bits
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to reach the target precision corresponding to k = 16 or 24 bits
(Figure 6).

When looking at the results of these experiments, as expected
the informed reassignment exhibits a variance of the estimation
error lower than CRB in every case.

Below −10dB (high-error range), the noise conditions are so
bad that Iσ = 1 and every bit of information is useful.

Above −10dB, our informed method is less efficient because
from time to time some informing bits are useless. So it is more
difficult to reach the ILB (see Figure 5), although this is possible
if the whole information can be used (see Figure 6).

It is also interesting to notice the robustness of the informing
algorithm, which also works in the non-stationary case.

4.2. Vibrato Sound Experiment

The second experiment consists in estimating the (non-stationary)
frequency trajectory of a partial with a vibrato as described in Fig-
ure 3. We clearly see that the trajectory obtained with the classic
reassignment method is erroneous. These errors may result in an
annoying musical noise. However, when informing the estimation
up to 16 bits, the error is reduced and this noise becomes inaudible.
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Figure 3: Frequency estimation of a non-stationary sinusoid of
frequency ω(t) = 220+2 sin(2π·2t) (in Hz), using the classic and
informed versions of the reassignment method. The classic method
obtains an irregular trajectory due to estimation error whereas the
informed method trajectory is more reliable but quantified.

4.3. Natural Sound Experiment

The third experiment considers a 220-Hz piano tone of approxi-
mately 2 seconds. We first obtained the reference sinusoidal pa-
rameters from a real piano tone by the classic estimation in the
absence of noise (so that the estimation is almost perfect). Second,
the reference tone is obtained from these parameters by classic ad-
ditive synthesis (with linear amplitude and phase interpolations).

Then a Gaussian noise with fixed variance σ2 is added to the
reference tone. Since we know σ and the amplitude of each partial,
the signal-to-noise conditions are known (see Figure 4), so that
we can extract all the needed information I to reach the desired
precision (k = 16 bits) with our new method.
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Figure 4: Overall signal-to-noise ratio (top) and instantaneous bit
rate (bottom) required to inform a sound of piano (with 5 partials).

We use then the classic and informed versions of the reas-
signment method to estimate the sinusoidal model parameters, and
resynthesize the sounds using the classic additive synthesis.

As shown by informal listening tests1, whereas an annoying
musical noise can be heard with the sound obtained by the classic
method, the one obtained with the informed method is similar to
the reference sound.

This piano tone consists of 5 partials during 187 frames (ap-
prox. 2.16s), and thus represents 187×N×16 = 1528912 bits at
CD quality. The total information for the partials frequency at a
precision of k = 16 bits is then 5×187×16 = 14960. However,
in this experiment, only 10625 bits are needed with our algorithm
to reach the desired precision. Our method can still be improved,
to use even less information. But note that the additional informa-
tion represents less than 0.7% (for only 5 partials, though) of the
signal information. Such a low information ratio allows the use
of watermarking techniques to embed the additional information
within the signal itself, as in [1].

1Sound examples available on-line at URL:
http://dept-info.labri.fr/~sm/DAFx10/
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5. CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced a new method for increasing
the precision of the sinusoidal analysis, a way below the Cramér-
Rao lower bound (CRB), thanks to some a priori knowledge about
the sinusoidal parameters to be estimated. This more precise es-
timation produces sounds of much higher quality, enabling audio
effects without typical but unwanted “musical noise”.

The present work should be regarded rather as a proof of con-
cept of “informed analysis”. Indeed, the informing method is still
rather naive, and does not always reach the new informed lower
bound (ILB) as it should. Investigating coding and information
theories to enhance our method is part of our future research.

However, we have already shown that it is possible to decrease
the estimation error of the frequency parameter with at least 2 bits
of information, even in the non-stationary case, when the noise
level is known though.

Our aim is now to design a complete informed analysis method,
including the estimation of the noise level, to fully demonstrate its
practical interest. The new method would also be able to inform
other sinusoidal parameters, e.g. phase and amplitude.

Our long-term perspective is a complete informed analysis /
synthesis chain able to create some additional information from
the musical content (e.g. the several tracks of a musical piece)
and use it with the sound signal (e.g. the mixed stereo signal of a
CD-audio) to allow sound transformations of high quality.

The “informed” concept opens up new research horizons, and
should lead for example to new source separation or music infor-
mation retrieval methods.
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(c) 16-bit, stationary (µ = 0,ψ = 0)
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(d) 16-bit, non-stationary (|µ| ≤ 100,|ψ| ≤ 10000)

−20 −10 0 10 20 30 40 50
−15

−10

−5

0

signal−to−noise ratio (dB)

va
ria

nc
e 

of
 th

e 
er

ro
r 

(lo
g1

0 
sc

al
e)

CRB
reassignment
informed reassignment (5/24 bits)
informed lower bound (5 bits)

(e) 24-bit, stationary (µ = 0,ψ = 0)
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(f) 24-bit, non-stationary (|µ| ≤ 100,|ψ| ≤ 10000)

Figure 5: Frequency estimation error as a function of the SNR, in several cases (16-bit or 24-bit target precision, stationary or non-
stationary cases) for the classic reassignment method and the fixed 5-bit informed reassignment method, and comparison to the Cramér-
Rao lower bound (CRB) and the lower bound in the informed case.
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(a) 16-bit, stationary (µ = 0,ψ = 0)
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(b) 16-bit, non-stationary (|µ| ≤ 100,|ψ| ≤ 10000)
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(c) 24-bit, stationary (µ = 0,ψ = 0)
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(d) 24-bit, non-stationary (|µ| ≤ 100,|ψ| ≤ 10000)

Figure 6: Frequency estimation error as a function of the SNR, in several cases (16-bit or 24-bit target precision, stationary or non-
stationary cases) for the classic reassignment method and the fully informed reassignment method, and comparison to the Cramér-Rao
lower bound (CRB) and the lower bound in the informed case.
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