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ABSTRACT

In this article, we introduce a new generalized model based
on polynomials and sinusoids for partial tracking and time stretch-
ing. Nowadays, most partial tracking algorithms are based on the
McAulay-Quatieri approach and use polynomials for phase, fre-
quency, and amplitude tracks. Some sinusoidal approaches have
also been proved to work in certain conditions. We will present
here an unified model using both approaches, which will allow
more flexible partial tracking and time stretching.

1. INTRODUCTION

Spectral models provide general representations of sound in which
many audio effects can be performed in a very natural and musi-
cally expressive way. Based on additive synthesis, they contain a
deterministic part consisting of a – often huge – number of partials,
which are pseudo-sinusoidal tracks for which frequencies and am-
plitudes evolve slowly with time. The spectral modeling parame-
ters of this deterministic part consist of the evolutions in time of
the controls of the partials, thus leading to a large amount of data.

We have already shown that the redundancy in the evolutions
of these parameters can be used to reduce these data [1] and that
the re-analysis of spectral parameters can help us in extracting
higher-level musical parameters such as the pitch [2].

At the same time, most parameters are modeled using polyno-
mials, such as in the well-known and widely-used partial-tracking
algorithm proposed by McAulay and Quatieri [3].

In this article, we introduce a new sound model of great inter-
est for digital audio effects. Indeed, it mixes both approaches in a
single model made of polynomials and sinusoids.

Moreover, we follow the multi-level sinusoidal modeling ap-
proach we introduced in [4]. Indeed, the parameters of the partials
of the basic sinusoidal model can be also regarded as (control) sig-
nals. This way, we can re-analyze these signals to obtain “partials
of partials”, also called order-2 partials. This multi-level modeling
is well-suited for high-level musical transformations. In the re-
mainder of this paper, the original time-domain signal is the order-
0 signal, the partials are in fact order-1 signals, and we also deal
with those new order-2 partials.

One advantage of this multi-level polynomial and sinusoidal
model is the fact that the polynomial part will represent the slow
time-varying envelope of the signal (at any order), while the sinu-
soidal part will model order-1 partials and will handle the musical
modulations they may contain, such as the vibrato and the tremolo.
The vibrato and tremolo represent a slight sinusoidal variation of
the sound frequencies and amplitudes, respectively.

We also demonstrate two applications of this new model. The
first one is a classic enhancement to partial tracking, and more pre-
cisely is peak prediction from past peaks to follow more accurately
the partials, allowing the algorithm to choose more precisely the
next peak of a tracked partial. By using our new model, we leave
aside linear prediction – used till then as shown in [5] – and thus
we obtain a more consistent algorithm.

The second application is a challenging digital audio effect:
time stretching. We aim at achieving this effect without audible
artifacts, but most of all without any modification of timbre or vi-
brato and tremolo rates. This is possible thanks to the second-order
analysis we perform with our model. The sounds we focused on
for our study are without noise or transients (because of the limi-
tations of the sinusoidal model).

After a brief introduction in Section 2 to the basics of our new
Poly-Sin model, we introduce in Section 3 the analysis method for
our model, then we present the modification to the peak prediction
for the partial-tracking algorithm in Section 4. Finally, we will
explain the synthesis procedure of this model in Section 5, and in
Section 6 the method for time-stretching while preserving not only
the pitch of the original sound, but also its natural microscopic
variations such as its vibrato and tremolo.

2. POLYNOMIAL AND SINUSOIDAL (POLY-SIN)
MODEL

We present here the components of our Poly-Sin model, a general-
ized polynomial plus sinusoids model. For the sake of clarity, we
first present the basics of the model, that we will extend to multi-
level modeling at the end of this section.

2.1. Polynomial Modeling

To ensure the accurate reconstuction of a partial – especially for
the phase – it is very important to estimate the coefficients of the
polynomial within the analysis window we are currently analyzing
(locality property of the polynomial).

Such a local polynomial interpolation is used by the McAulay-
Quatieri partial-tracking algorithm, where the phase is a third-
degree polynomial interpolation of the measured phase values, thus
a second-degree polynomial interpolation for the frequency, and
where the amplitude is interpolated using a first-degree polyno-
mial (linear interpolation).

However, these finite-degree polynomial approximations will
not be able to approximate correctly sinusoidal modulations. More-
over, those modulations are better analyzed using sinusoidal mod-
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eling, thus using for the control parameters a model which is par-
ticularly well-suited for the signal itself.

2.2. Sinusoidal Modeling

Additive synthesis is the original spectrum modeling technique.
It is rooted in Fourier’s theorem, which states that any periodic
function can be modeled as a sum of sinusoids at various am-
plitudes and harmonic frequencies. For quasi-stationary pseudo-
periodic sounds, these amplitudes and frequencies continuously
evolve slowly with time, controlling a set of pseudo-sinusoidal os-
cillators commonly calledpartials. This is the well-known Mc-
Aulay-Quatieri representation [3]. The signals can be calculated
from the additive parameters using Equations 1 and 2, whereP
is the number of partials and the functionsfp, ap, andφp are the
instantaneous frequency, amplitude, and phase of thep-th partial,
respectively. TheP pairs( fp,ap) are the parameters of the addi-
tive model and represent points in the frequency-amplitude plane
at timet. This representation is used in many analysis / synthesis
programs such as Lemur [6], SMS [7], or InSpect [8].

s(t) =
P

∑
p=1

ap(t) cos(φp(t)) (1)

φp(t) = φp(0)+2π
Z t

0
fp(u) du (2)

2.3. Poly-Sin Model

From the preceding models, we build our new model. We can
express it from Equation 1 as

s(t) = Π(t)+
P

∑
p=1

ap(t)cos(φp(t)) (3)

whereφp(t) is given in Equation 2 andΠ(t) is a polynomial.
This model is thus more general than the two others. Indeed,

as presented in [9], polynomial models have shown their limita-
tions regarding vibrato and tremolo. In fact, it is not possible to
approximate correctly a sinusoidal modulation with a finite-degree
polynomial. Considering that the vibrato and the tremolo created
by an instrumentalist are almost sinusoidal, or at least pseudo-
periodic, we can then suppose that our model will perform per-
fectly for those kinds of sounds, and thus open more perspectives
for applications on digital audio effects, while still being well-
suited for sounds correctly handled by any of the preceding mod-
els.

Throughout the remainder of this document, the polynomial
part of our model will be called envelope. Indeed, the polyno-
mial will gather the very slow modifications of the signal, in other
words the very low frequencies, while the modulations – higher
frequencies – will be gathered by the sinusoidal analysis. Since the
set of polynomials and the set of sinusoids both constitute a base of
the signal space, the combination of the two is over-complete. De-
spite this over-completeness, we think that with a correct tuning of
the separation between envelope (low frequency) and modulations
(high frequency), a simple decomposition might be easily found.

2.4. Multi-Level Model

We then follow the multi-level sinusoidal modeling approach we
introduced in [4]. The original time-domain signal is the order 0
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Figure 1:Frequencies (a) and amplitudes (b) of the partials of an
alto saxophone as functions of time (during approximately 2.9 s).
The frames are estimated every 64 samples, using 1024-sample
windows, on a CD-quality signal (44100-Hz sampling frequency).

of the hierarchy, and Equations 3 and 2 usually deal with partials
we will call now order-1 partials. These equations can in turn be
re-used to deal with order-2 partials – obtained from the analysis
of the evolutions of the (order-1) partials – useful for handling mu-
sical modulations. We use Equations 3 and 2 at each level of our
hierarchy. However, in the case of zero-mean signals, the polyno-
mial part of Equation 3 disappears and thus Equation 3 turns into
Equation 1. This is the case for the first level of our hierarchy.

3. ANALYSIS

The next step is to estimate the parameters of our model. We will
use a short-term windowed analysis method, as opposed to pre-
viously proposed models which perform polynomial or sinusoidal
analyses on long-term signal ranges [10].

3.1. Sinusoidal Analysis

To faithfully imitate or transform existing sounds, this model re-
quires an analysis method to extract the parameters of the partials
from sounds which were usually recorded in the temporal model,
that is audio signal amplitude as a function of time. The accu-
racy of the analysis method is extremely important since the per-

25 - DAFx'05 Proceedings - 25



Proc. of the 8th Int. Conference on Digital Audio Effects (DAFx’05), Madrid, Spain, September 20-22, 2005

ceived quality of the resulting spectral sounds depends mainly on
it. Moreover, the main interest of an accurate analysis method,
providing precise parameters for the model, is to allow ever deeper
musical transformations on sound by minimizing audible artifacts
due to analysis errors.

The analysis method we use is made of two steps: spectral
peaks are first extracted from the sound using a short-time spec-
tral analysis (i.e. using a short-term sliding analysis window), then
these peaks are tracked from frame to frame to reconstruct the par-
tials. This is explained in further details in [4].

Another part of the analysis procedure is the extraction of the
envelope (polynomial part) of the signal. This envelope is consid-
ered constant and equal to zero for the first-order analysis, because
the analyzed signal is supposed to be zero-mean.

3.2. Polynomial Analysis

The other part of the analysis for our new model is the polyno-
mial analysis. In the scope of our study we have used the least
squares method to estimate the polynomial. Other methods exist
though. We used the weighted least squares method at first, but it
performed badly in the cases where the signal contained slow os-
cillations1. By minimizing the squared error equally on the whole
analysis window, the least squares method allowed us to obtain a
“smoother” polynomial for slowly-oscillating signals.

3.2.1. The Least Squares Method

The aim of the least squares method is to minimize the squared
error of the polynomial approximation. So letN points located at
positions(sk,g(sk)) with k = 0. . .N−1 being the sampling of the
functiong. We wish to find a globally-defined functioñg(sk) that
approximates the given valuesg(sk) at pointssk in a least-square
sense, that is

g = min
g̃∈Πm

N−1

∑
k=0

(g̃(sk)−g(sk))
2 (4)

whereΠm is the set of polynomials of total degreem andg̃ can be
written as

g̃(sk) = π(s)TA (5)

whereπ(s) =




1
sk
s2
k
...

sp
k




andA =




a0
a1
...

ap


 is the vector containing

the coefficients of the polynomial we are looking for, andp is the
degree of the approximating polynomial.
In other terms,

g̃(sk) = a0 +a1sk +a2s2
k + . . .+apsp

k (6)

so, the function to minimize is

g(a0,a1,a2, . . . ,ap) =
N−1

∑
k=0

(
π(sk)

TA−g(sk)
)2

(7)

A necessary – but not sufficient – condition to identify the mini-
mum in aN-dimension space is

∇g = 0 (8)

1Around two periods in the analysis window.

In other words

∂g
∂a0

=
∂g
∂a1

=
∂g
∂a2

= . . . =
∂g
∂ap

= 0 (9)

Then, the equation to solve is

MA = B (10)

with M = ∑
k

π(sk)π(sk)
T andB = ∑

k

π(sk)g(sk).

For further details, see for example [11].

3.2.2. Estimating the Polynomial

As we said earlier, the polynomial is used to approximate the global
envelope of the signal we analyze. This requires some constraints.
First we have to adjust the degree of the polynomial so that only
slow variations of the signal are taken into account. High-degree
polynomial could vary very quickly, so we decided to take a max-
imum degree of 3. This decision was also motivated by the fact
that natural sounds rarely have more than third-degree polynomial
shaped phase tracks (see [9]). Second, the signal has to be long
enough to show more than two periods of oscillations, so that the
polynomial will not approximate those oscillations.

Even though a signal can be long and contain more than two
periods of a signal, the signal is analyzed locally using a short-term
sliding analysis window. Thus the window size has to be large
enough to contain the required number of periods of the modula-
tion.

3.3. Poly-Sin Model Estimation

The two estimation methods proposed above have been found to
be the best ones among those we have been acquainted with so
far. However, other estimation methods, especially high-resolution
methods, might be worth trying as they seem quite powerful, and
maybe suitable for our requirements [12].

Now that we have at our disposal two estimation methods, we
can estimate the parameters of our new model. The corresponding
analysis will be windowed. For each window the analysis will
be twofold. First we find the best-fitting third-degree polynomial
using the least-square regression discussed earlier. The solving of
the matrix system (Equation 10) gives us the coefficients of our
polynomial. We then subtract this polynomial from our signal and
proceed to the second step of our analysis, which consists of the
sinusoidal analysis of the residual. The sinusoidal analysis consists
in retrieving the spectral peaks of the signal in terms of amplitude,
frequency, and phase using the method described in [13].

3.4. Two-Level Analysis

As presented in [4], the approach we use is a multi-level approach.
That is, we are first analyzing the sound with a classic sinusoidal
analysis and then we are analyzing the parameters of each partial
using the same technique. The major drawback of this method is
that it is not possible to correctly analyze the phases of the par-
tials and thus we have to perform the second level analysis on the
frequency (together with the amplitude) to have our second-order
partials.

The idea behind our new phase model is that we need second-
order partials to be based on phase rather than frequency tracks, so
that we can explore even higher levels. Thus, the use of a poly-
nomial estimation would allow us to correctly analyze the phase
tracks of our partials.
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Indeed, we assume that the phase tracks (and also the ampli-
tude tracks) of our partials are in fact composed of sums of sinu-
soids and polynomials. Though one could argue that polynomials
could be approximated by sinusoids andvice-versa, in our analy-
sis procedure, the polynomial is gathering the global envelope of
the signal while the sinusoids are gathering the oscillations of the
signal, thus separating our signal in the two required components:
sinusoids and envelope.

An illustration of this decomposition, obtained after the re-
analysis of an order-1 partial, is shown on Figure 2. The sinusoidal
part is the result of the re-synthesis of order-2 partials.
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Figure 2:Decomposition of the amplitude of a partial (control sig-
nal) showing the two steps of an analysis using a polynomial and
sinusoids. The (order-2) frames are estimated at each sample of
the evolution of the (order-1) partial, using 256-sample windows.

Figures 3 and 4 show an amplitude track together with its
order-2 partials and envelope. We can see that the order-2 partials
are mainly present when the modulation is mostly active.
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Figure 3:Order-2 frequency partials and envelope of an amplitude
track. The solid line represents the original amplitude track, the
dashed lines represent the order-2 frequency partials, and the dot-
ted line represents the polynomial envelope of the amplitude track.

These order-2 partials are obtained by the re-analysis of the
partial, again using an analysis window. A suitable window size
is when the analysis window contains at least two periods of the
oscillations, if any. In our context, these oscillations represent mu-
sical parameters of the sound such as vibrato and tremolo. We

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0  50  100  150  200  250  300  350  400

A
m

pl
itu

de

Time (Frames)

Amplitude
Order-2 partials

Envelope

Figure 4: Order-2 amplitude partials and envelope of an ampli-
tude track. The solid line represents the original amplitude track,
the dashed lines represent the order-2 amplitude partials, and the
dotted line represents the polynomial envelope of the amplitude
track.

have considered in the scope of our study that the minimal vibrato
and tremolo rates are around 5 Hz. This estimation leads to an easy
computation of the minimal window size (to have at least two peri-
ods of the vibrato in the analysis window), which is two times the
sampling frequency divided by the minimal vibrato and tremolo
rates.

The proposed multi-level Poly-Sin model can then be used for
several purposes, as explained in the following sections.

4. ENHANCED PARTIAL TRACKING

During the process of partial tracking with the McAulay-Quatieri
algorithm [3], the peak selection algorithm is very important to
follow the right tracks. Indeed, choosing the wrong peak during
a partial tracking can be quite disastrous. To enhance the peak
selection, various methods have been investigated.

Indeed, the algorithm we use is based on prediction of the fol-
lowing peak from the past peaks of the partial. To choose the best
peak candidate in the ones available in the next frame, the past
peaks of the currently-considered partial are used to compute a
virtual – predicted – peak from which we take the closest peak
candidate among the measured peaks.

The constant and linear methods are working quite well for
really stationary sounds, but as most natural sounds – including
singing voice – may contain vibrato and tremolo, those methods
have their limitations. In [5], we showed that linear-prediction
methods might work better for natural sounds, including correla-
tion, covariance, and Burg algorithms. The Burg method proved
to work best for partial tracking.

However, the Burg method tends to minimize prediction errors
at the expense of spectra which are not well-suited for sinusoidal
analysis (see [14] for more details).

In this paper, we choose the opposite approach: we take advan-
tage of the spectral analysis done on the order-1 partials to propose
a prediction method based on spectral extrapolation.

Indeed, we obtain consistent spectra we can extract sinusoids
from, and the order-2 partials resulting from the analysis of the
past evolutions of a given (order-1) partial are synthesized a bit
further to obtain the predicted peak for this partial.
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As for the spectral extrapolation described above, the poly-
nomial part is in turn extrapolated in order to ensure the global
envelope.

Thus, the way we perform the prediction is quite simple. The
first step is to find the parameters of our model on the past sam-
ples used for the prediction. Once those parameters are found, we
just consider that the parameters of the sinusoids will be constant
over the predicted samples, and we compute the next values of the
polynomial using the coefficients we found. Adding the two parts
of the computation gives us the predicted samples.
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Figure 5: 1-sample predictions of a pure sinusoid (a) and an al-
tered sinusoid (b). The window size for Poly-Sin prediction is 128
samples, the order for Burg prediction is 8.

Figure 5 shows some results of 1-sample predictions on a sim-
ple sinusoid. Figure 5(a) shows the predictions on a pure sinu-
soid. Burg performs better, but our method shows promising re-
sults. The small deviations are due to the polynomial estimation
method which is not perfect. Figure 5(b) shows the predictions on
a pure sinusoid where we displaced a sample to simulate a local
error. Our method performs better in that matter since it is not dis-
turbed by the noise, whereas the Burg method deviated a bit from
the sinusoidal trajectory.

On longer predictions however (extrapolating more than one
sample), our method might not be as good. Indeed, the polynomial
is not guaranteed to be stable outside the analysis window. Thus,
diverging may occur in certain conditions, among which a very
small number of periods of the sinusoidal part of the signal. A
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Figure 6:1-sample predictions of a pure sinusoid computed from
all the samples preceding the currently predicted sample.

solution would be to lower the degree of the polynomial (the lower
the degree, the more stable the polynomial), but that would mean
possibly lowering the quality of our estimation. This is a trade-off
between approximation quality and long-term prediction stability.

As for short signals, our method does not perform very well
until more than two periods of the modulation are present in the
analysis frame. This is illustrated by Figure 6, where we see that
the predictions are diverging at the extrema of the signal. This can
be explained by the fact that the third-degree polynomial is still
not “flattened” until the modulation is really present in the signal,
meaning that the polynomial is trying to approximate the sinusoid.

However, for very short signals, the Poly-Sin method is equiv-
alent to polynomial extrapolation which works quite well on very
slowly evolving signals. This is illustrated by the 20 first samples
in Figure 6.

Moreover, the method is self-adapted to the number of sam-
ples available from the past, and even one sample is enough for
(constant) extrapolation.

5. SYNTHESIS

Once all the parameters have been found, we then have to synthe-
size the signal to have our analysis-synthesis loop complete.

Our analysis having been windowed, we have a set of param-
eters for each window. A first solution is to consider everything
as being constant on the short-term range of the analysis / synthe-
sis windows. Thus, we create the polynomial from its coefficients,
taking as many values as necessary (as many samples as the final
sample-rate requires), and create the modulation from the spectral
peaks we found. We consider that the modulation is constant over
the window.

Then we simply overlap and add the sum of the envelope and
the modulation with the next window, using a overlap factor of
50%. This will give us synthesized order-1 partials we can then
use for the second synthesis. This last synthesis is then performed
simply by combining the phases and amplitudes applying the for-
mula of Equation 1.

Another solution is to resample the parameters of the order-2
partials to have them at the same sample rate as the desired sound
output, as in [4]. Doing so would allow us to apply Equation 1 to
obtain both the amplitudes and the phases of order 1 (adding the
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envelope each time) and then re-apply the same formula to have
the final sound. In this case, we also generate the envelope by
using the overlap-add technique explained before.

The results on both synthetic and natural sounds from those
synthesis methods of informal listening tests are quite satisfactory,
since it is not possible to hear any difference between original and
re-synthesized sounds. However, the SNR measurements are not
as good. Indeed, since we analyze and synthesize the phase par-
tials with approximative estimators, the resulting phase is slightly
different from the original. Thus, the shape of the original and syn-
thesized sounds are not similar. SNR measurements being based
on wave shapes, our results in that domain are not good.

6. CONSERVATIVE TIME STRETCHING

Basing our current study on our previous work onenhanced time
stretching[4], we applied the Poly-Sin modeling on the analysis
of partial parameters to perform conservative stretching. We call
here conservative stretching, stretching where timbre, vibrato, and
tremolo are conserved. In the previous work, we exposed that it is
possible to compute order-2 partials to stretch more accurately the
sound. Indeed, the order-2 partials are gathering the main parame-
ters of the vibrato and tremolo of the sound. Thus, stretching sim-
ply consists in stretching the envelope and resampling the order-2
partials.

With the proposed Poly-Sin model, we can obtain the same
order-2 partials with possibly an even better envelope. Indeed, at
each analysis frame, instead of gathering the first bin of the Fourier
transform (thus leading to a constant offset), we compute a poly-
nomial estimate of higher degree, thus less stationary.

The stretching is then performed in the same way as before for
the order-2 partials, and just consists in taking more values of the
polynomial of the envelope.

The results we obtain from this method are indeed conserva-
tive as they preserve vibrato and tremolo. However, they are not
perfect. In fact, some small artifacts can be heard. This is due to
the very high precision and very fine tuning needed by the two-
level analysis, because every error in an order-2 partial might have
disgraceful consequences on the corresponding order-1 partial and
thus on the re-synthesized sound. The resample methods not being
perfect, and most of all the estimators not being very precise, the
artifacts are then easily introduced.

7. CONCLUSION AND FUTURE WORK

In this article, we have presented a new Poly-Sin model – com-
posed of a polynomial and sinusoids – with explanations for spec-
tral analysis and synthesis with this model. We have also presented
two major applications of this model: partial tracking and conser-
vative time-stretching using order-2 partials.

Of course, the work presented here is still preliminary. As
for any new model, a lot has to be done to obtain viable results,
especially when we want a model general enough to fulfill most
requirements of an analysis-transformation-synthesis loop. The
major flaws of our results coming from erroneous estimation, our
main goal in the future will be to find better estimators, espe-
cially for polynomial regression, thus maybe with high-resolution
sinusoidal estimators. This would allow us to compete with other
works regarding SNR measures for example.
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