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R É S U M É

Ce travail s’intéresse au problème de la rétroingénierie du son pour
l’écoute active. Le format considéré correspond au CD audio. Le con-
tenu musical est vu comme le résultat d’un enchaînement de la com-
position, l’enregistrement, le mixage et le mastering. L’inversion des
deux dernières étapes constitue le fond du problème présent. Le sig-
nal audio est traité comme un mélange post-non-linéaire. Ainsi, le
mélange est « décompressé » avant d’être « décomposé » en pistes au-
dio. Le problème est abordé dans un contexte informé : l’inversion est
accompagnée d’une information qui est spécifique à la production du
contenu. De cette manière, la qualité de l’inversion est significative-
ment améliorée. L’information est réduite de taille en se servant des
méthodes de quantification, codage, et des faits sur la psychoacous-
tique. Les méthodes proposées s’appliquent en temps réel et mon-
trent une complexité basse. Les résultats obtenus améliorent l’état de
l’art et contribuent aux nouvelles connaissances.

Mots clefs—Codage audio multipiste basé sur l’objet, écoute active,
filtrage spatial informé sous contrainte linéaire, inversion informée
de la compression de la dynamique sonore, rétroingénierie du son,
séparation de sources informée

A B S T R A C T

This work deals with the problem of reverse audio engineering for
active listening. The format under consideration corresponds to the
audio CD. The musical content is viewed as the result of a concate-
nation of the composition, the recording, the mixing, and the mas-
tering. The inversion of the two latter stages constitutes the core of
the problem at hand. The audio signal is treated as a post-nonlinear
mixture. Thus, the mixture is “decompressed” before being “decom-
posed” into audio tracks. The problem is tackled in an informed con-
text: The inversion is accompanied by information which is specific
to the content production. In this manner, the quality of the inversion
is significantly improved. The information is reduced in size by the
use of quantification and coding methods, and some facts on psychoa-
coustics. The proposed methods are applicable in real time and have
a low complexity. The obtained results advance the state of the art
and contribute new insights.

Key words—Active listening, informed inversion of dynamic range
compression, informed source separation, informed spatial filtering
under linear constraint, multichannel object-based audio coding, re-
verse audio engineering
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I N T R O D U C T I O N





1
I N T R O D U C T I O N

1.1 motivation

Most, if not all, of professionally produced music recordings have
undergone two processes, mixing and mastering, and many common
distribution formats, such as the Compact Disc Digital Audio (CDDA),
are strictly stereo. While the term “mastering” refers to the process of
optimizing the final mix and transferring it to a data storage device,
the term “mixing” refers to the process of putting multiple layers of
prerecorded and edited audio together to a composite mixture. Each
layer can be imagined as a track in an audio mixer, which then again
stands for a sound source. A source can be a vocal, an instrument, or
a group of the aforesaid. The apparent placement of sources between
the speakers in a stereo sound field is also known as “imaging” [1] in
professional audio engineering.

Audio engineering is an established discipline employed in many
areas that are part of our everyday life without us taking notice of it.
But not many know how the audio was produced. If we take sound
recording and reproduction or broadcasting as an example, we may
imagine that a prerecorded signal from an acoustic source is altered
by an audio engineer in such a manner that it corresponds to certain
criteria when played back. The number of these criteria can be large
and usually depends on the context. In general, the said alteration of
the input signal is a sequence of numerous forward transformations,
the reversibility of which is of little or no interest. But what if one
wished to do exactly this, that is to reverse the transformation chain,
and what is more, in a systematic and repeatable manner? It would
allow the listener to interact with or reinterpret the music stored, e.g.,
on a Compact Disc (CD) and, hence, to become active. To render this
possible, a music recording must be decomposed into its constituent
elements—at least in part. . .

1.2 objectives

1.2.1 Active Listening

Active listening is a concept in music technology developed in the
late ’90s by Pachet and Delerue [2]. It aims at giving the user some
degree of control of the music she or he listens to. As opposed to the
usual case where a piece of music is simply played back without any
conceptual modifications, active listening allows for a personalized

3



4 introduction

music experience through reinterpretation. Its objective is to provide
the listener with a higher level of musical comfort and to give access
to new music by creating listening environments for existing music
repertoires, in which the modifications preserve the semantics. One
such example is the respatialization of sound sources or remixing by
changing the volume and/or the panoramic angle of a distinct source.
The idea of active listening is seized in works like [3, 4, 5, 6], e.g. So,
to enable active listening, one must reacquire access to latent source
components given the mastered mix, i.e. one must reverse engineer the
mix.

1.2.2 Reverse Audio Engineering

The objective of reverse audio engineering can be either to identify
the transformation parameters given the input and output signals as
in [7] or to recover the input signal that belongs to the output signal
given the transformation parameters, or both. An explicit signal and
system model is mandatory in either case. The second case may look
trivial, but only if the transformation is linear and orthogonal and as
such perfectly invertible. Yet, the forward transform is often neither
linear nor invertible. This is the case for dynamic range compression
(DRC), e.g., which is commonly described by a dynamic nonlinear time-
variant system. The classical linear time-invariant (LTI) system theory
does not apply here, so a tailored solution must be found instead. At
this point, I would also like to highlight the fact that neither Volterra
nor Wiener model approaches [8, 9, 10] offer a solution and neither do
describing functions [11, 12]. These are powerful tools for identifying
a time-invariant or a slowly varying nonlinear system, or for analyzing
a feedback system with a static nonlinearity in regard to its limit cycle
behavior. Furthermore, for the reason that the number of used tracks
is usually greater than the number of mixture channels, mixing is in
a mathematical sense underdetermined. Thus, demixing constitutes an
ill-posed source separation problem.

1.3 organization

The remaining part of this work is organized as follows. Chapter 2

gives a brief overview of digital audio engineering including mixing
an mastering. A system-theoretical classification of most commonly
used studio effects and sound processors is also presented. Chapter
3 outlines the issues of inverse problems and explains why demixing
is ill posed in the general case. In Chapter 4 it is shown how such an
inverse problem can be addressed by means of Bayesian inference or
statistical filtering. The notion of post-nonlinear mixtures is brought
up as a special case of mixing and mastering. Chapter 5 is dedicated
to the pursued “informed” approach. The major reverse engineering



1.3 organization 5

problem is defined and a feasible solution is offered. The following
Chapter 7 deals with audio source separation, or demixing, which is
equivalent to the inversion of mixing. There, a new spatial filter is de-
rived. Its improved perceptual performance is confirmed in various
experiments. An efficient coding strategy for the metadata is also pre-
sented. Apart from the separation of single-channel or point sources,
it is shown how two-channel sources and/or their spatial images can
be isolated from the mixture. It is argued that the respective source
covariance matrix should be diagonal and it is shown why. A mixing
system that incorporates a timing difference between the two chan-
nels for a more natural stereo effect is discussed as well. In Chapter 8,
the proposed source separation algorithm is contrasted with MPEG’s
technology for interactive remixing. The performance of the former
is assessed in a simulated active listening scenario. The inversion of
mastering in the form of DRC is the central point of Chapter 9. Hav-
ing defined the model of a compressor, it is demonstrated how the
latter can be inverted using a novel approach. An exemplary com-
pressor and the corresponding decompressor are given in terms of
pseudocode. It is explained how the decompressor applies to a stereo
mixture. The demixing and the decompression stages are combined
into a cascade connection in the following Chapter 10. The cascade
connection is analyzed with respect to some important performance
characteristics like delay, complexity, and side-information rate and
evaluated on an exemplary multitrack recording. This ends the main
part of the thesis. In an extra Chapter 11, a proof of concept for a new
multichannel object-based coding is presented which is a spillover
from the previous chapters. With this coding scheme it is possible to
control the sound quality at the decoder from the encoder in a mea-
surable way. Chapter 12 concludes the work with a discussion and
mentions possible directions for future work.

To sum up, the contribution of the thesis consists in:

1. The classification of digital audio effects

2. A statistical time-frequency model for single-channel and two-
channel sound sources and their spatial images

3. The development of a constrained spatial filtering approach for
sound source separation and narrowband deconvolution

4. The derivation of a new spatial filter

5. The inclusion of human perception to minimize the quantity of
side information

6. The elaboration of a novel and unprecedented approach for the
inversion of a dynamic nonlinear time-variant operator, such as
the dynamic range compressor

7. A two-stage cascade to reverse mastering and mixing

8. A novel multichannel object-based audio coding scheme
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9. The proposition of new perceptually motivated metrics for the
objective assessment of sound quality



Part II

P R E L I M I N A R I E S





2
D I G I TA L A U D I O E N G I N E E R I N G

2.1 audio effects and audio signal processors

Digital audio effects and audio signal processors manipulate sound
characteristics in three basic dimensions: volume, frequency and time.
They are used to alter an audio signal’s apparent volume, harmonic
structure—or its waveform in general, so as to create sound patterns
that are widely accepted and to satisfy personal taste of the composer
or the engineer alike. The most common studio effects fall into one of
the following categories: distortion effects which are based on gain,
dynamics processors that control the apparent volume by altering the
signal amplitude, filter effects which alter the frequency content, mod-
ulation effects which alter the amplitude, frequency, delay, or phase
of the so-called “wet” signal over time, pitch and frequency effects
that alter the pitch or create harmony, time-based effects that delay
the so-called “dry” signal or add echoes, and finally spatial effects
which alter the apparent direction of sound sources in a stereophonic
sound field and give them the notion of spatial extent.

A list of common studio effects is given in Table 1. These are further
classified based on their system-theoretical properties and grouped
by the superscripts ∗, †, ‡, and §, which have the following meaning:
∗ Linear time-invariant (LTI)

LTI systems are completely specified by their transfer function.
† Linear time-variant (LTV)

LTV systems can be described by the Bello functions [13]. Effects
that fall into this category are barely used for music production.
LTI effects can be regarded as a subclass of LTV effects.
‡ Nonlinear time-invariant (NTI)

NTI systems are usually modeled with Volterra series [14]. Most
NTI audio effects are non-invertible.

§ Nonlinear time-variant (NTV)
NTV systems require in general a special treatment.

In the following, effects are considered as deterministic and casual.
Effects with memory are lumped, i.e. their number of state variables,
or taps, is finite. The focus is laid on three types of effects including
panning and balance control, equalization, and compression during
mastering. They are printed in boldface in Table 1. It should yet be
noted that “reverb” is the most-used effect in the studio, as we are
used to hearing sounds in enclosed spaces. However, on account of
its complexity, dereverberation is left out of this work for a separate
study. For more details on digital audio effects refer to [1, 15], e.g.

9
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effect l ti memory i/o

Distortion effects

Overdrive/fuzz† X SISO 1

Dynamics processors

Fader/amplifier∗ X X SISO

Compressor/
limiter§

X
SISO/

MISO 2

Noise gate† X SISO

Filter effects

Equalizer∗ X X X SISO

Roll-off∗ X X X SISO

Modulation effects

Chorus‡ X X MISO

Flanger‡ X X MISO

Phaser‡ X MISO

Ring modulator‡ X MISO

Tremolo‡ X MISO

Vibrato‡ X MISO

Pitch and frequency effects

Pitch shifter∗ X X SISO

Harmonizer∗ X X MISO

Time-based effects

Delay∗ X X X SISO

Reverb∗ X X X SISO

Spatial effects

Panning∗ X X SIMO 3

Fattening∗ X X X SIMO

Table 1: Studio effects divided into categories and classified as LTI (∗), LTV (†),
NTI (‡), and NTV (§). Effects considered in this work are in boldface.

1. Single-input single-output
2. Multiple-input single-output
3. Single-input multiple-output
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2.2 mixing

The mixing stage is formulated using the following notation:

xl(n) =

I∑
i=1

Ali [sli(n),θli(n)] with l ∈ {1,2}, (1)

where sli(n) is the ith console input routed to the lth channel, θli(n)
are the time-varying mixing parameters belonging to the composite
effects operator Ali applied to sli(n), and xl(n) is the output from the
lth mixture channel. The mixture is thus a superposition of I distinct
audio tracks. The input signals can be single-channel or two-channel,
while the composite operator can be a cascade of effects. Effects can
be linear or nonlinear, time-invariant or time-variant, instantaneous
(memoryless) or dynamic (with memory), and may have a different
number of inputs and outputs, see Table 1. Since I is usually greater
than two, the mixing process is also referred to as “fold-down” or as
“downmix”.

2.3 mastering

On the analogy of (1), the mastering stage is formulated as:

yl(n) = Al [xl(n),θl(n), . . . ], (2)

where θl(n) now represents the time-varying mastering parameters
belonging to the composite effects operator Al applied to xl(n). The
composite operator can also have any other mixture channel or an
external sound source as input parameter as indicated by “. . .”. This
allows to describe more sophisticated effects like the compressor. As
a consequence, yl(n) denotes the mastered output.





3
I L L - P O S E D I N V E R S E P R O B L E M S

3.1 inverse problems

Inverse problems arise in situations where the model parameters
of a system need to be inferred from measurements, and this with or
without prior knowledge of its internal structure. They represent the
counterpart to the ordinary forward problems, which can be solved
using signal and system theory. Whereas forward problems have a
unique solution, inverse problems may have many or no solution at
all.

Many inverse problems are formulated as optimization problems.
The sought-after model parameters are usually those that best fit the
measurements or observations under an optimization criterion. As a
rule, a hypothesis on the distribution of the error is made. When the
latter is Gaussian, i.e. f(x) ∼ exp

(
−x2

)
, the sum of the squared errors

or misfits is minimized to gain the best solution in the least-squares
sense. The reason why the method of least squares is so popular lies
in its simplicity. This is also why many problems in signal processing
are considered to be of Gaussian nature. Beyond, the method of least
squares allows for a closed-form solution.

When dealing with inverse problems, two issues are encountered.
The first is to find a model of the system which is consistent with the
observed data. The second is to quantify the non-uniqueness of the
solution.

3.2 ill-posedness

As stated earlier, the system of equations resulting from mixing is
generally underdetermined. And even though a forward operator in
the form of a linear mixing system can be deduced from the design
of a typical digital audio workstation (DAW) almost surely, the source
separation problem is non-unique and so “ill posed” in Hadamard’s
terminology. There are, theoretically, infinitely many different source
components, or model parameters to be more accurate, that could fit
the observed mixture. Mastering poses additional problems. Ill-posed
inverse problems often require to be reformulated, so that they can be
treated numerically. This involves making additional assumptions in
regard to the solution, such as its smoothness. This is also known as
“regularization”. Regularized inverse problems can further be viewed
as special cases of Bayesian inference. For further reading, see [16].
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P R O B A B I L I S T I C A P P R O A C H

4.1 bayesian inference

In Bayesian statistics the evidence about the true state of the world
is expressed in terms of degrees of belief or Bayesian probabilities. In
consequence, Bayesian inference is a method that uses Bayes’ rule to
update the probability estimate for a hypothesis as more evidence is
acquired about the world. It so provides the posterior probability as
a consequence of two antecedents, a prior probability and a function
derived from a probability model for the observations which is also
called the “likelihood”. The former is computed as

P(H | E) =
P(E |H)P(H)

P(E)
, (3)

which is the Bayes rule. In (3), H is the hypothesis, the probability of
which is affected by the observations or evidence E. P(H) is thus the
prior probability, i.e. the probability before E is observed. P(E | H) is
the probability of observing E given H—the likelihood, while P(E) is
termed the marginal likelihood or also model evidence. The updated
prior probability P(H | E) is equal to the posterior probability, i.e. the
probability of H after E is observed. This tells us the probability of a
hypothesis given the observed evidence. Put into words, posterior is
proportional to prior times likelihood.

The application of Bayesian inference to inverse problems may be
illustrated with the following example. Let s(n) denote an unknown
input signal corrupted by an interferer r(n) and x(n) the observable
signal, x(n) = s(n) + r(n). Let S and R be two independent normally
distributed random variables with zero mean, and s(n) and r(n) the
respective realizations. Let s(n) span the one-dimensional parameter
space. The prior distribution over s(n) be p(s | θ) = fS(s;0,σ2s), where
θ =
{
0,σ2S

}
is the set of hyperparameters—the parameters belonging

to the prior. The probability density function of the interferer is also
the likelihood to observe x(n) given s(n), p(x | s,θ) ≡ fR(r;0,σ2R). As
the prior and the likelihood are both normal, the posterior is normal
and the Bayes estimator for the input signal is

ŝ(n) =
σ2S

σ2R + σ
2
S

x(n), (4)

which is the mean of the posterior distribution p(s | x,θ) with s | x ∼
N
[
σ2S/(σ2S+σ2R)x,σ2Sσ2R/(σ2S+σ2R)

]
∝ p(x | s,θ)p(s | θ). It should further be

noted that there exist other methods of Bayesian estimation to select

15
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elements of central tendency from the posterior distribution. The one
presented above is the (linear) minimum mean square error (MMSE)
estimator. Taking a closer look at (4), one may recognize the transfer
function of the classical Wiener filter. The latter is an MMSE estimator
in the frequency domain. Further details on the Bayesian approach to
inverse problems can be found in [17].

4.2 linear optimum filtering

The problem of linear optimum filtering consists in designing any
type of linear discrete-time filter whose output provides an estimate
of a desired response given a set of input samples. The optimization
criterion is usually chosen as the mean squared error (MSE) between
the desired response and the actual response, which is the Bayes risk
or the cost function to be minimized. The choice of the MSE criterion
leads to a second-order dependence of the cost function on the filter
coefficients. The cost function has so a global minimum that defines
the optimum operating point. Linear optimum filters that minimize
the MSE of the estimation are commonly known as Wiener filters. In
solving the minimization problem, there are no constraints imposed
on the solution.

To find the optimum filter coefficients, the Wiener–Hopf equations
must be solved. They model the relation between the autocorrelation
of the input samples and the cross-correlation between the latter and
the desired response. The Wiener–Hopf equations are much simpler
to solve for transversal i.e. finite impulse response (FIR) filters. Their
solution in the compact matrix form is given by [18]

wo = R−1p, (5)

where p is the cross-correlation vector and R is, correspondingly, the
autocorrelation matrix which is assumed nonsingular. The optimum
filter weight are represented by the vector wo. It can be seen that the
computation of the optimum filter requires knowledge of R and p.

The optimization problem described above is typically of temporal
nature. Its spatial version can be found in beamforming applications.
There, e.g., a linear array of uniformly spaced antenna is illuminated
by an isotropic source located in the far field. At a given time instant
n, a plane wave impinges on the array along a direction specified by
the angle α with respect to the perpendicular to the array. Then, the
beamforming problem would be, e.g., to obtain the source signal with
a high signal-to-noise ratio (SNR) by taking a model of the wave field
into account. The formulation of an optimum beamformer is subject
to the same optimization problem. This fact will serve us later. So, at
long last, let us recall two typical beamforming quantities:

1. The azimuth-dependent beam response or gain is defined as

g(α),wHa(α), (6)
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where a(α) is also called the “steering” vector. Superscript H is
the Hermitian or conjugate transpose operator, as the filter can
be complex. The beampattern is the magnitude-squared gain.

2. The spatial power spectrum

P(α),wH(α)Rw(α) (7)

is a measure for the mean total signal power received from the
direction α.

In beamforming applications, the steering vector a depends on the
underlying array geometry. Here in this work, however, it is detached
from a physical sound propagation model and shall only define how
the sound power is distributed across channels. The formal definition
of R, p, and a in a particular scenario will be given in Chapter 7.

4.3 post-nonlinear mixtures

Post-nonlinear mixtures are special cases of nonlinear mixtures. In
[19] a proof is provided which shows that it is not possible to handle
a nonlinear mixture without nonlinear distortion. On the other hand,
post-nonlinear mixtures, which in the cited work are linear mixtures
followed by a nonlinear distortion function without memory, can be
treated with the same indeterminacies as if these were purely linear.
They model systems in which the transmission channel is linear, but
the sensor array is not, and hence, it represents a source of nonlinear
distortion. The two conditions to be fulfilled are that the sources are
mutually independent and that the nonlinearities are both invertible
and differentiable functions. The approach requires knowledge of the
so-called “score” functions that represent the type of distortion. The
score functions are estimated from the nonlinear mixture as they are
unknown in the general case. The conclusion is that the separation is
impossible without additional prior knowledge of the model, as the
independence assumption is not sufficient in the nonlinear case. This
result is of particular importance, because music recordings fall into
that category. Further details on post-nonlinear mixtures are given in
[20] and the references found therein.

As a side note, audio source separation techniques so far consider
exclusively linear mixing. Recently, efforts have been made to deduce
a mixing model that takes the complete music production chain into
account [21]. There, it is argued in favor of a linear model that unifies
linear effects such as reverberation with nonlinear processing such as
dynamic range compression. However, the motivation for the model
is to undo the mixing taking mastering into account but not to undo
the mastering as such.





5
I N F O R M E D A P P R O A C H

5.1 basic idea

In his 2005 tutorial [22], Knuth takes the Bayesian approach for the
design of robust source separation algorithms that take advantage of
prior knowledge of the problem at hand to assure that one reaches an
optimal solution. He calls it informed source separation to distinguish
the approach from blind source separation where little is known. The
basic idea of his informed approach consists in introducing the prior
information about the problem, which can be a physical property and
physical law alike, into the solution. This is surely more specific than
Bayes’ priors which in the proper sense are distributions. The model
that accompanies such an informed source separation problem is so
a combination of prior distributions and prior information. It should
be noted that there are a number of so-called score-informed source
separation techniques which also use this paradigm [23, 24, 25]. Most
commonly, one of many non-negative matrix factorizations (NMFs) is
made use of to approximate the spectrograms of the original signals,
so as to apply weighted binary masks or linear Wiener filters to the
mixture spectrum. The binary masks can also be interpreted as sums
of delta distributions in a probabilistic sense.

5.2 concretization

Knuth’s idea can be applied to the reverse engineering problem in
the following manner. First of all, the mixture shall be considered as
post-nonlinear, assuming that linear mixing is followed by nonlinear
mastering. So, the mixing and the mastering can be described by two
deterministic systems in cascade. The probabilistic component in the
model shall be due to the ill-posedness of the task. The probability of
hearing the source of interest in the mixture is given by the posterior
distribution of the respective source signal. The knowledge of how a
music recording is produced represents the prior knowledge that we
have. This is typically the effects used and the spatial positioning of
sources. The prior information comprises the system parameters, i.e.
the filter coefficients and the panoramic angles or directions, and the
parameters of the source distributions, i.e. the signal parameters. The
latter are the hyperparameters according to Bayes.

19
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5.2.1 Problem Formulation

From the previous section it is clear that the best possible estimate
of the source signals is achievable only with prior information in the
form of system and signal parameters being perfectly given. On that
account, the problem to solve is stated as follows. Given the mixing,
mastering, and source models, recover the source signal estimates in
best possible quality from the mixture. The signals’ parameters shall
be estimated from the accessible original source signals. The mixing
and mastering parameters shall be deemed as known.

5.2.2 Proposed Solution

The problem as it stated above makes sense only if the recovery of
the source components is carried out without access to the originals.
Otherwise the problem is trivial. The discussed approach is hence to
be applied in a scenario, where the “collection” of prior information
is uncoupled from its employment. Once the sources are mixed, they
are no longer available, i.e. One could also characterize the approach
by the temporally and locally bounded access to the source signals. So, one
needs to differentiate between the process of content creation and the
process of content consumption. The content creator is responsible for
providing all the necessary data to the content consumer, so that the
latter is enabled to unnoticeably reverse engineer the music mix and
to remix the content ad libitum with the help of a graphical interface.
This is realized, e.g., in an encoder/decoder framework. The task of
the encoder is to extract a minimum of ancillary data from the source
signals, so the decoder can recover their replica from the mixture in
high—preferably perceptual—sound quality. This metadata, if small
enough, can either be hidden in the mixture signal itself in the form
of an inaudible watermark or must be attached to the mixture.

5.2.3 Associated Problem

Aside from the obvious reverse engineering problem, there is also
the problem of data reduction with respect to the model parameters,
which is not negligible. The problem is even more challenging when
the metadata is to be hidden in the mixture or when the decoder is
to perform in real time. It is also worth questioning what a sufficient
data rate is for a good system performance.
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P R E V I O U S W O R K S

About a decade ago, in 2003, Avendano has presented a scheme [26]
similar to [27] with which one can identify, separate, and manipulate
individual sound sources in a studio music recording. His scheme
uses a “panning index” to identify collinear source components and
clusters those into coherent time-frequency (TF) regions [28, 29]. These
regions can then be manipulated by applying a “mask” that alters the
magnitude of the signal components in question. In that manner one
can either attenuate or accentuate the source of interest—the vocal
or an instrument—and change its apparent location. These features,
otherwise known as karaoke, mix-minus, and repanning, are all basic
elements of active listening. Avendano’s scheme, which is applicable
to convolutional stereo mixtures without any restrictions with regard
to the number of superposed sound sources, has one drawback: the
resulting sound quality is insufficient for professional applications.
A similar technique for binaural recordings has been developed by
Mouba and Marchand in 2006 [30].

In order to attain a higher quality as compared to Avendano, Oh
et al. presented in [31] a model-based remixing scheme that likewise al-
lows for gain manipulations and repanning of distinct sound sources,
but with the aid of additional information. The latter consists of the mix-
ing parameters and the approximate short-time power spectral densi-
ties (STPSDs) of the sources that are to be manipulated. This informa-
tion, which is transmitted alongside the stereo mixture signal, is used
to best fit the remixing model in the least squares (LS) sense given new
user-definable mixing parameters. The authors claim their technique
to require less side information than other comparable schemes such
as MPEG’s spatial audio object coding (SAOC) [32, 33, 34] to achieve the
same effect, as only the STPSDs of a few selected sound sources and
their mixing coefficients need to be communicated to the remixing
unit. However, if the user was intended to be given the possibility to
alter the entire mix, the required amount of side information would
coincide with the one of SAOC.

SAOC is an object-oriented extension to spatial audio coding (SAC)
[35] which combines efficient coding of audio objects and interactive
rendering during playback. In MPEG’s terminology, an audio object is
synonymous with a sound source. SAOC so comprises two integrated
parts: MPEG surround (MPS) [36] as the base technology and an object
transcoder as superstructure. Using SAOC, multiple audio signals are
transmitted in the form of a single-channel or a two-channel mix,
transcoded to the MPS format, and rerendered; all that with the help
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of object metadata and rendering information. Additionally, the mix
is perceptual-entropy, i.e. “lossy”, coded. When operated in karaoke,
or solo, mode, however, the SAOC transcoder engages in addition an
object decoder. The purpose of the latter is to decompose the mixture
into objects that can be manipulated individually and with a higher
precision before rerendered to MPS. The additional prior information
that is necessary to carry out the decomposition includes the STPSDs

and the mixing parameters, including panning and gain. The correct
MPEG terms hereof are “object level differences”, “downmix channel
level differences”, and “downmix gains”. These quantities are hence
provided by the object encoder.

As of today, SAOC is maybe the most versatile object-based coding
scheme in comparison with the aforementioned schemes that allows
for interactive remixing. This is certainly one of the many reasons it
has become international standard in 2010. Even so, although mono
and multichannel objects can be handled in SAOC, the mixing model
is very basic and thus not representative for professionally produced
music recordings. Nonlinear processing such as, e.g., dynamic range
compression is not taken into account and so it is not inverted.

A method to invert dynamics compression is described in [37], but
it requires a gain value to for each sample of the compressed signal,
which is transmitted. To provide a means to control the data rate, the
gain signal is subsampled and entropy coded. This approach is very
generic but inefficient, as it does not rely on a compressor model.

On the other hand, transmitting the uncompressed signal together
with a few typical compression parameters like threshold, ratio, attack,
and release would require a much smaller capacity and yield the best
possible signal quality with regard to any thinkable measure. A more
realistic scenario is when the uncompressed signal is not available on
the consumer side. This is the usual case for studio music recordings
where the listener is offered a signal which is meant to sound “good”
to everyone.

The Dolby solution for broadcast loudness issues, e.g., consists of
the transmission of metadata that can be used to normalize loudness
across programs and channels [38]. The metadata, that helps control
the program’s dynamic range, is optimized on the broadcaster side
and transmitted alongside the broadcast signal. This is a convenient
solution for broadcasters, not least because the metadata is compact.
Dynamic range adjustment is, yet, another forward transform rather
than a true inversion. Evidently, none of the existing solutions satisfy
the reverse engineering objective of this work.

In recent years several methods have been proposed that address
audio source separation in an “informed” scenario [39, 40, 41]. The
reason for this trend is the plain fact that after decades of research
“blind” or rather “semi-blind” source separation approaches to this
day yield unsatisfactory quality with respect to what is considered
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as professional audio applications—for which quality is key; for an
overview and general concepts of blind approaches see [42]. Blind
speech separation techniques, on the other hand, often rely on a speech
production model and/or make specific assumptions, which cannot
be generally upheld for music [43]. But what is worse is that many
sophisticated techniques are not applicable if the separation problem
is ill-posed, which is when the number of observations (channels) is
smaller than the number of unknowns (sources). Illposedness is yet
the normal case for most music recordings, since the content is still
distributed and consumed primarily in two-channel stereo format.
The concept of informed source separation (ISS), hence, may be seen
as a way of overcoming the limitations of blind source separation (BSS)
found in today’s state-of-the-art algorithms.

As an example, the idea of informing a separator with the mixing
parameters and the STPSDs, as in Oh et al.’s scheme or SAOC, can also
be found in [40]. There, however, this additional information is used
to calculate a generalized Wiener filter for each source component in
each channel separately. This type of MSE based interference reduc-
tion takes account of the power relations between the source signals
but not their spatial diversity, and neither does it invert the mixing
system. . .





7
A U D I O S O U R C E S E PA R AT I O N

7.1 intensity stereophony

Let a stereo system be considered in which one or multiple mono
signals are unevenly distributed over two independent channels, in
such a way that an illusion of directionality and audible perspective is
created. This is achieved by varying the amplitude of the signal sent
to each channel relative to the listener. The parameters that control
this relative amplitude are direction and volume, see Fig. 1. They are
equivalent to the position of the panoramic potentiometer, the pan-
pot, and the fader position on a mixing desk in a recording studio and
are applied to each mono signal separately. The summation of all pan-
potted and volume adjusted mono signals constitutes the sound field
of the mixture. This type of “artificial” stereo can be viewed as the
counterpart to X–Y recording using two bi-directional microphones
perpendicular to each other, and so, forming a Blumlein Pair. Albeit
simple, the sonic image created is very realistic.

7.2 signal model

The source signals are modeled in the time domain as zero-mean
normal stochastic processes that are mutually independent and non-
stationary. Joint wide-sense stationarity is nevertheless assumed for
the duration of a short time segment. The STPSD is used as a measure
for how the mean signal power, or variance, distributes over time
and frequency. 1 In line with this, a short-time Fourier coefficient rep-
resents a circular symmetric normal random variable: 2

si(n,m) ∼ N
[
0,σ2si(m)

]
� Si(k,m) ∼ CN[0,Φsi(k,m)], (8)

where n is the time instant, m is the time segment, si(n,m) is the
ith source signal in the mth time segment, σ2si is the variance, k de-
notes the frequency bin, and Φsi(k,m) is thus the STPSD. 3 The �
symbol indicates the discrete Fourier transform (DFT). In the short-
time Fourier transform (STFT) domain, for a given time segment, the
set of source signal components is considered mutually independent,
too. The sources and their components are thus uncorrelated, i.e. the
short-time cross-spectral densities (STCSDs) are zero. The signals are
all single-channel, i.e. mono.

1. See the Wiener–Khinchin convergence theorem
2. See the central limit theorem
3. Note that the STPSD is tantamount to the STFT of the auto-covariance function
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Figure 1: Modeling of sound sources in a sound field using the parameters
direction (azimuth) and volume (radius)

7.3 system model

7.3.1 Image Signal

Resorting to common studio practice, a sound source is assigned a
location in the sound field via pan control. So, the image signal is 4

ui(n,m) = a1ie1si(n,m) + a2ie2si(n,m)

= aisi(n,m)

�

ui(k,m) = aiSi(k,m),

(9)

where {e1,e2} is the standard basis of R2, ai = [a1i a2i ]T ∈ R2 is the
panning vector, si(n,m) ∈R, and Si(k,m) ∈ C. The panning vector is
defined as

ai ,
ai
‖ai‖

=

sinαi

cosαi

 with αi ∈ [0◦,90◦], (10)

representing the spread of the source into the sound field. A source
is placed at the panoramic angle αi between fully left and fully right
as illustrated in Fig. 1. The placement can be chosen either arbitrarily
or following some common mixing rules. The signal’s volume can be
considered inherent to the signal, i.e.

si , bisi0, (11)

4. The notion of spatial “images” in a source separation context can also be found
in [44], e.g.
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where si0 is the reference-level signal and bi ∈ R represents the de-
sired volume level. Furthermore, due to the fact that

‖ai‖2 = sin2αi + cos2αi = 1, (12)

the source power level is kept constant across the two channels. The
angle range is defined in such a way that at the lower end the source
appears in only the right channel, whereas when placed at the upper
end the source appears in only the left channel. In the middle, the
signal power is equally distributed across the two channels and the
source appears in a phantom center channel. A source is deemed to
be unique among all sources if the associated angle is unique.

7.3.2 Mixture Signal

The mixture is obtained by superposition of distinct stereo images
created according to (9). To account for professionally produced mu-
sic recordings, each source signal is considered as having undergone
prior processing in the form of linear and nonlinear audio effects [21].
Yet, the effects are not included in the model. The mixture signal is

x(n,m) =
∑
i∈I

aisi(n,m)

�

x(k,m) =
∑
i∈I

aiSi(k,m)

= As(k,m),

(13)

where x = [x1 x2 ]T, s = [S1 S2 ··· SI ]
T, x = [X1 X2 ]

T, and I is the total
number of sources. Note that the mixing system A = [ a1 a2 ··· aI ] is
time-invariant and memoryless, i.e. instantaneous.

7.4 problem formulation

What is sought after is an operator F that transforms the mixture
signal, x(n), into the source signal estimate, ŝi(n), based on a priori
knowledge about the mixing given a measurable signal characteristic
which is perceptually relevant. The mixing system is fully described
by the sources’ locations and their filter responses. The signal metric
provided by the source model is the STPSD. The latter is particularly
suited for the task, because it can be interpreted in different ways: in
a statistical, physical, and also perceptual sense. So, postulating the
preservation of the original STPSD in the estimate, the problem can be
formulated as follows. Given the model parameters

θi = {αi,Φsi(k,m)} ∀ i,k,m, (14)
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find

ŝi(n) = F [x(n) | θ1,θ2, . . . ,θI] (15a)

subject to

Φŝi(k,m) =Φsi(k,m) ∀ i,k,m. (15b)

7.5 proposed solution

In order that the source signal components exhibit a better disjoint
orthogonality [45] in comparison to the waveform domain, the mixture
is mapped onto the Fourier time-frequency representation (TFR). The
transformed mixture is so expressed in terms of Fourier coefficients.
A coefficient pair x(k,m) is then decomposed into its constituents
parts by means of linear spatial filtering according to

Ŝi(k,m) =w1ie1X1(k,m) +w2ie2X2(k,m)

= wH
i x(k,m),

(16)

where wi = [w∗1i w∗2i ]
H ∈ C2 is the spatial filter. As the mixing system

that we seek to invert can be complex in general, so is the filter. From
a geometrical viewpoint, the beam in Fig. 2 is steered and amplified
or attenuated, such that the signal component in the direction of αi
is preserved whereas the contribution from the interfering sources is
canceled out or at least minimized. In the latter case, the spatial filter
shall be constrained to adjust the mean output power of the estimate
to the power level of the original component. The filter response

g(αi) = wH
i ai

from (6), where g ∈ C in the general case, can be used to that end. In
the final stage, the filtered signal components are recombined into an
isolated version of ŝi(n).

7.5.1 Well-Posed Case

The term “well posed” characterizes the case where the number of
active sound sources in a TF point is at least one but not larger than
the number of channels, which is two. In such a case, it exists one
exact solution.

7.5.1.1 Unity-gain spatial filter

Suppose that the mixture x(k,m) is made up of a single directional
source component,

x(k,m) = aiSi(k,m). (17)
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Figure 2: Spatial pattern and power distribution of a two-channel filter. The
beam is gain adjusted and directed such that the signal of interest
is preserved and either one interferer is suppressed or, in case of
multiple interferers, their mean total power is minimized.

By comparing (12) with (6) under the unity-gain constraint,

g(αi) = 1, (18)

the source component Si(k,m) is extracted from the mixture x(k,m)

by setting

wi = ai, (19)

so that

Ŝi(k,m) = aTi x(k,m). (20)

7.5.1.2 Zero-forcing spatial filter

Let two sources contribute to the mixture x(k,m) simultaneously:

x(k,m) = aiSi(k,m) + alSl(k,m), (21)

where Si(k,m) is the signal of interest and Sl(k,m) is the jammer. By
enforcing identity for Si(k,m) as in (18), and full cancellation of the
jammer,

g(αl) = 0, (22)

the sought-after weight vector becomes

wi = A−Tgi, (23)
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where gi = [1 0 ]T and A = [ ai al ]. Applying the above procedure for
both sources yields the separation matrix

W = A−T, (24)

and the source components are obtained by matrix inversion,

ŝ(k,m) = A−1x(k,m) (25)

with ŝ = [ Ŝi Ŝl ]
T.

7.5.2 Ill-Posed Case

The term “ill posed” characterizes the case where a unique solution
to the separation problem does not exist, that is when the mixture is
composed of more than two source signals. An optimal solution that
further complies with (15b) can be found instead by means of linearly
constrained minimum-variance (LCMV) spatial filtering [46, 47]. What
is considered as the jammer now is the sum of all interfering source
signals. In consequence, the mixture x(k,m) is expressed in terms of
two components:

– a unidirectional signal of interest and
– a multidirectional jammer.

The corresponding equation is

x(k,m) = aiSi(k,m) + r(k,m) (26a)

with

r(k,m) =
∑
l∈I,l 6=i

alSl(k,m). (26b)

An estimate of the signal of interest Ŝi(k,m) is found by minimizing
the mean jammer power, or the mean filter output power, along the
direction of the signal of interest,

P(αi) = wH
i Rx(k,m)wi, (27)

subject to identity with respect to a given power value Φsi(k,m). In
other words, we seek after the weight vector that solves the quadratic
optimization problem

wio = argmin
wi

P(αi)

s.t. g(αi) =
√
Φsi(k,m)aTi R−1

x (k,m)ai.
(28)

The solution to the above problem can be found by use of Lagrange
multipliers, e.g., which yields

wio = R−1
x (k,m)ai

√
Φsi(k,m)

aTi R−1
x (k,m)ai

. (29)
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When applied to the mixture signal x(k,m), the derived spatial filter
will narrow the lobe of the jammer power spectrum, and the leakage
from the interfering sources, thus, will be reduced. Due to the power
constraint it is furthermore ensured that the mean estimate power is
equal to the desired power value in every point of the TF plane. This
is easily verified by plugging (29) into (27).

7.5.3 Narrowband Convolutional Case

Let the mixture be based on the narrowband assumption [48] which
says that the channel’s coherence bandwidth does not (significantly)
fall below the bandwidth of a frequency bin. In that particular case,
the channel transfer function is assumed constant over the frequency
bin. This assumption holds for FIR filters if their order is strictly
smaller than the STFT size, and it holds in good approximation for
infinite impulse response (IIR) filters for which the impulse response
decays sufficiently fast to a negligibly small value. A digital equalizer
is well represented by such a system model. The respective mixture
signal is

x(n,m) =
∑
i∈I

ai[hi(n) ? si(n)](m)

�

x(k,m)≈
∑
i∈I

aiHi(k)Si(k,m)

= AH(k)s(k,m),

(30)

where hi(n) is a time-invariant filter response, ? denotes convolution,
Hi(k) ∈ C is the filter transfer function, and H = diag(H1,H2, . . . ,HI).
As a side note, binaural mixing is inherent to this model thanks to the
relatively small order of a head-related impulse response (HRIR). 5 In
that case, the term aihi(n) above has simply to be replaced by hi(n),
i.e. a multichannel filter response. If (30) is used instead of (13), the
spatial filtering operation in (16) can be extended in such a manner
that distinct source signals are separated and deconvolved as opposed
to what has been plain demixing before.

5. In [49, 50], e.g., the HRIR is 200 taps long
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7.5.4 Two-Channel Case

So far, a source has been considered as single-channel. To account
for two-channel, i.e., stereo sources, the model from (8) is extended
in the following manner:s1i(n,m)

s2i(n,m)

 ∼ N[0,Σsi(m)]

�

S1i(k,m)

S2i(k,m)

 ∼ CN[0,Φsi(k,m)],

(31)

where Σsi and Φsi are 2× 2 covariance matrices. The two channels
of a stereo source may be interpreted as two separate mono sources,
and a stereo source can be thought of as a centered image of a sound
source that was recorded with two independent microphones.

A stereo source, i.e. its centered image, is positioned in the sound
field via balance control according to

ui(n,m) = a1ie1s1i(n,m) + a2ie2s2i(n,m)

= ai ◦ si(n,m)

�

ui(k,m) = ai ◦ si(k,m),

(32)

where si = [s1i s2i ]T, si = [S1i S2i ]
T, and ◦ denotes the Hadamard or

entrywise product. The balance vector is defined as

ai ,
ai
aref,i

with aref,i =

{
a1i if a1i > a2i,

a2i otherwise.
(33)

The instantaneous mixture signal is thus given by

x(n,m) =
∑
i∈I

ai ◦ si(n,m)

�

x(k,m) =
∑
i∈I

ai ◦ si(k,m)

= AvecS(k,m),

(34)

where S = [ s1 s2 ··· sI ], A = [diaga1 diaga2 ··· diagaI ], and vec denotes the
vectorization formed by stacking the vectors si, i = 1,2, . . . ,I, on top
of each other into a single column vector. A stereo source component
is separated from the mixture by estimating the left-channel and the
right-channel component simultaneously according to

ŝi(k,m) = WH
iox(k,m) (35)
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with

Wio = R−1
x (k,m)diagaiΦsi(k,m)

· diag

{
[Φsi(k,m)]ll

[Φsi ]
H

∗,ldiagaiR−1
x (k,m)diagai[Φsi ]∗,l

}1/2
l=1,2

,
(36)

where [Φsi ]∗,l is the lth column ofΦsi . Equation (36) thus represents
the two-channel counterpart to (29). This can be shown by replacing
diagai by ai and Φsi by Φsi (l= 1 in that case).

7.5.5 Noisy Case

In the case where the mixture is watermarked [51, 52], the model
in (13), or (30), can be extended by a noise term in the following way:

xw(k,m) = x(k,m) + n(k,m), (37)

where n is an additive noise component in the respective TF point.
Due to the fact that high-capacity watermarking techniques exploit
the on-frequency masking phenomenon, the noise term is assumed
to be collinear with the noise-free mixture signal, which results in the
following relation:

xw(k,m) = [1+ η(k,m)]x(k,m) (38)

with

n(k,m) = η(k,m)x(k,m), (39)

where η ∈ C represents the corruption due to the watermark. From
(38) it can be seen that the estimate Ŝi(k,m) must be rectified by the
term [1+ η(k,m)]−1 to compensate for the watermark. In the general
case, however, η(k,m) will be unknown. We can yet give an estimate
for the deviation of the magnitude with regard to a noise-free power
value Φsi(k,m), which is

|1+ η(k,m)|=

∣∣Ŝi(k,m)
∣∣√

Φsi(k,m)
. (40)

This a posteriori estimate for magnitude distortion can then be used
to partly compensate for errors due to watermarking.

7.6 general remarks

7.6.1 Precedence or Haas Effect

If a timing difference between the two channels of an image signal
is wished for and the delay in samples is sufficiently small compared
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to the STFT length so that the two windowed signals carry almost the
same content, a frequency-dependent phase shift can be added to the
panning vector. The new vector is then complex (and so will be the
spatial filter):

ai(n) =

sinθiδ(n−n1)

cosθiδ(n−n2)

� ai(k) =

sinθiω−kn1

cosθiω−kn2

, (41)

where δ(·) is the Dirac delta function, ω is the Nth primitive root of
unity, ω= ej2π/N, and |n2 −n1| is in the range of 1 to 5 ms [53, 54]. In
this way, the perceived width of the sound source can be increased.

7.6.2 Multi-Constraint Spatial Filter

If the constraints from (18) and (22) are also imposed on the filter
in (28), the obtained solution folds up to (23). This is simply because
no degrees of freedom are left with regard to the number of weight
coefficients to minimize the mean jammer power. As a consequence,
the filter is suboptimal in the case of multiple interferers: Canceling
out just one of the interfering sources, analogously to (23), leaves a
strong residual which is further amplified by the filter.

7.6.3 Wiener vs. PCMV Spatial Filter

It is well known that the classical Wiener filter minimizes the mean
noise power at the cost of the signal of interest, which is to say that the
signal of interest is also attenuated at the attempt to improve the SNR

at the output. One can therefore expect the estimated signal spectra to
be attenuated depending on whether the SNR in a TF point is high or
low. As a direct consequence of this, the spectra of the source signals
with a poor SNR exhibit missing spectral components after filtering,
which may deteriorate the quality of the listening experience.

From the fact that the filter in (29) and the Wiener spatial filter are
collinear, one can infer that their beams have the same look direction
but different gains. The power-conserving minimum-variance (PCMV)
spatial filter adapts the gain in order to conform with the quadratic
constraint, whereas the Wiener spatial filter will likewise power down
the output signal for the sake of a lower MSE, see Appendix A. The
PCMV spatial filter, hence, is capable of overcoming the issue of spec-
tral gaps, so that the replica of the original source signals are per-
ceptually more similar to the latter in timbre. It also preserves the
auditory signal bandwidth, which is essential for a natural listening
experience. As a side note, this issue gave rise to various bandwidth
extension techniques in the past, see [55] and the references therein.
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7.6.4 Mixture Covariance Matrix

The local mixture spatial covariance matrix is given by

Rx(k,m) = E
[
x(k,m)xH(k,m)

]
. (42)

For an instantaneous mixture, the above expression yields

Rx(k,m) =
∑
p∈P

apaTpΦsp(k,m) +
∑
q∈Q

aqaTq ◦Φsq(k,m) (43)

with

Φsq(k,m) =

 Φs1q(k,m) Φs1qs2q(k,m)

Φ∗s1qs2q(k,m) Φs2q(k,m)

, (44)

where the subset P = {i ∈ I | ∀n[s1i(n) = s2i(n) = si(n)]} contains the
mono sources, while Q= {i ∈ I | ∃n[s1i(n) 6= s2i(n)]}= I \ P comprises
the stereo sources, respectively. Φs1qs2q(k,m) is the qth source’s, q ∈
Q, STCSD between the left and the right channel, and Φ∗s1qs2q(k,m) is
its conjugate. Rx(k,m) is nonsingular if there are (at least) two mono
sources in a TF point contributing from different angles. 6 It is further
Hermitian and positive-semidefinite.

To compute the PCMV stereo filter in (36), one requires the STCSDs,
which can be calculated as the STFT of the block cross-covariances. To
avoid the extra computational effort and to save on the data rate, one
might consider skipping this step. As a result, (44) can be simplified
as

Φsq(k,m) = diag
[
Φs1q(k,m),Φs2q(k,m)

]
, (45)

and the PCMV stereo filter then becomes

Wio = R−1
x (k,m)diag

{
[Φsi(k,m)]ll[
R−1

x (k,m)
]
ll

}1/2
l=1,2

. (46)

Using (42) and (45), Rx(k,m) can be reconstructed from the panning
angles, the balance ratios, and the STPSDs exclusively—and so Wio.

From (45) and (46) it can be seen that when multiple stereo sources
are present in the mixture, their component estimates have the same
phase; only their spectral envelopes are shaped differently. Further, if
the mixture is a combination of only stereo sources, Wio is diagonal.
As a consequence, each source component is filtered from either the
left or the right channel using the PCMV mono filter

wio =

√
Φsi(k,m)∑

l∈Ia
2
lΦsl(k,m)

, (47)

which resembles Faller’s filter in [56]. Please note that the filter in (47)
is not the square-root Wiener filter [57], since the mixing coefficient ai
(magnitude or square) is missing in the numerator. See also [58].

6. This is by definition the case for a stereo source
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7.7 parameter quantization and coding

Here, a scalable quantization and coding strategy with a compact
representation of side information is proposed. Other strategies, for
spectrogram coding in particular, can be found in [40]. Its advantage
lies in the fact that it can be applied block by block, requiring hence
less working memory.

7.7.1 Panoramic Angle

The panoramic angle α of a mono source is rounded to the nearest
integer value using a mid-tread uniform quantizer defined as

Q(x) = sgn(x) ·∆ ·
⌊
|x|

∆
+
1

2

⌋
, (48)

where ∆ is the step size and b·c represents the floor function.

7.7.2 Balance Ratio

The balance ratio a¬ref/aref of a stereo source is encoded using an
A-law or a µ-law compressor in combination with the quantizer from
(48). For a given input x, |x|6 xmax, the A-law compressor output is

CA(x) = sgn(x)

·


A · |x|

1+ log(A)
if 06 |x|6 xmax

A ,

xmax · [1+ log(A · |x|/xmax)]

1+ log(A)
if xmax

A < |x|6 xmax,

(49)

where A is the compression parameter and log is the logarithm. The
output of the µ-law compressor is

Cµ(x) = sgn(x) · xmax · log(1+ µ · |x|/xmax)

log(1+ µ)
, (50)

where µ is the associated compression parameter. Using A-law or µ-
law compression, the signal-to-distortion ratio is kept constant over a
broad range of x [59]. Common values for A and µ are 87.7 and 255,
respectively.

7.7.3 Short-Time Power Spectrum

7.7.3.1 Irrelevancy reduction

A significant reduction of side information can be achieved in two
steps: by reducing the frequency resolution of the STPSD Φsi(k,m) in
approximation of the critical bands [60] and by quantizing the STPSD

values in relation to an appropriate psychoacoustic criterion.
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The peripheral auditory system is typically modeled as a bank of
overlapping bandwidth filters, the auditory filters, which possess an
equivalent rectangular bandwidth (ERB). The ERB-rate scale puts into
relation the center frequency of auditory filters with units of the ERB.
Using the ERB-rate function [61] we can define a relation between the
frequency bin k and the critical-band index zk by

zk ,
⌊
21.4 log10 (1+ 4.37fs/Nk)

⌋
, (51)

where N is the STFT length and fs is the sampling frequency in kHz.
The zth critical-band value is then computed as the arithmetic mean
between lb(z) = inf {k | zk = z} and ub(z) = sup {k | zk = z}, i.e.

Φ̄si(z,m) =
1

ub(z) − lb(z) + 1

ub(z)∑
k=lb(z)

Φsi(k,m). (52)

Further, under the assumption that the the minimum just-noticeable
difference (JND) level and so the maximum quantization error is 1 dB
[60], the step size ∆ is chosen as 2 dB, and the Φ̄si(z,m) values are
quantized using (48) according to

Φ
Q
si(z,m)

2
=

⌊
10

2
log10 Φ̄si(z,m) +

1

2

⌋
. (53)

In [41] it is also shown that a perceptually motivated approximation
of the STPSD is sufficiently precise to achieve high similarity with the
original signals.

7.7.3.2 Redundancy reduction

To reduce the amount of side information even more, one can use
the correlation of STPSD indices between adjacent TF points. This can
be achieved by taking the difference between two consecutive STPSD

indices in the direction of time, frequency, or between channel pairs,
and by coding the difference signal based on its lower entropy. That
principle is known as differential pulse-code modulation (DPCM). It is
further advisable to use a nonuniform time resolution to better take
time-varying aspects of music signals into account [62, 63].

7.7.3.3 Dequantization

As spatial filtering is carried out based on the availability of STPSDs,
the quantized STPSD values must be converted back into their linear
counterparts and extrapolated to the resolution of the STFT. This can
be done by taking

Φ̃si(k,m) = 10
Φ
Q
si

(z,m)/10 ∀ k : zk = z. (54)
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7.8 performance evaluation

7.8.1 Instantaneous Mixture with Watermarking

In this section, the proposed algorithm which was given the name
“Underdetermined Source Signal Recovery” (USSR) is compared with
an in-house implementation of the algorithm described in [39] and its
predecessor [41]. The four algorithms under test hence are:

issa The reference ISS algorithm [39]

ussr-a The predecessor of the proposed algorithm [41]

ussr-b The proposed algorithm using the PCMV spatial filter

ussr-c The proposed algorithm using the Wiener spatial filter

7.8.1.1 Experimental setup

To exclude a performance bias due to different TFRs, all algorithms
are implemented using the STFT. The latter is realized by means of a
2048-point fast Fourier transform (FFT) with a Kaiser–Bessel derived
(KBD) window of the same length and a 50-% overlap. The sampling
rate is set to 44.1 kHz. The effective data rate of ISSA is 86.1 kbps for
the 5-track mixture and 108 kbps for the 7-track mixture. The USSR
algorithm is adjusted in such a way that its data rate is more or less
the same: 93.4 and 103 kbps. Also, the same watermarking algorithm
[52] is used in all four cases.

The following four metrics are used to objectively assess the sound
quality: the signal-to-interference ratio (SIR), the so-termed “target-
related” perceptual score (TPS), a frequency-weighted signal-to-noise
ratio (SNRF) [64], and the “auditory” bandwidth as the counterpart of
the “articulatory” bandwidth [64]. The first two metrics are computed
with the PEASS toolkit [65]. The SNRF is redefined according to:

SNRFi(m),
1

Z

Z∑
z=1

10 log10
Φ̄si(z,m)

Φ̄ni(z,m)
, (55)

where z is the ERB-scale index, Z = 39, Φ̄si(z,m) is the band’s signal
power, and Φ̄ni(z,m) is the corresponding noise power,

Φ̄ni(z,m) =

ub(z)∑
k=lb(z)

{
min

[∣∣Ŝi(k,m)
∣∣− |Si(k,m)|,0

]}2
ub(z) − lb(z) + 1

. (56)

The noise signal is calculated in such a way that the subjective effect of
spectral gaps on sound quality is accentuated, as only lacking sound
components are taken into account. Furthermore, a time resolution of
23.2 ms is used for both the SNRF and the bandwidth metric. The end
result is obtained by taking the average over all time segments.

As a supplement, a multi-stimulus test with hidden reference and
anchor (MUSHRA) [66] is administered. It should serve as a check for
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consistency between the four chosen metrics and human perception.
The test is carried out in the audiovisual production facilities within
the University of Western Brittany. Sennheiser’s HD 650 headphones
and MOTU’s UltraLite-mk3 Hybrid audio interface are used during
the test. The gain of the preamplifier is adjusted to a listening level of
−20 dB below the clipping level of a digital tape recording. The test
signals are shortened to 20 s at the longest. The anchor is a 3.5-kHz
lowpass filtered sum of the original tracks with 3 dB SIR and a 50-%
spectral-gap rate. The anchor is altered in such a way that it shows
similar types of impairment as the algorithms under test. A panel of
nine audiovisual media students take part in the test. They are asked
to score the stimuli according to the continuous quality scale, giving
their degree of preference for one type of artifact versus some other
type.

Two music pieces from different genres are selected: a 5-track hip-
hop mixture and a more complex 7-track pop-rock mixture. The hip-
hop piece is DJ Vadim’s “The Terrorist”. It is composed of a leading
vocal, a synthesizer in the bassline, and a percussion section that has
a kick, a snare, and a hi-hat. Phoenix’s “Lisztomania” is chosen from
within the pop-rock genre. It has a bass guitar together with drums
forming the rhythmic section, several guitars in the harmonic section,
a vocal melody, and a keyboard to create a sustained pad for the piece.
The signals are 30 s long monophonic excerpts from the multitrack
masters. The spatial placement of individual tracks is aligned with
the commercial releases, see Table 2.

7.8.1.2 Experimental results

The results of the experiment are summarized in Figs. 3–7. Figs. 3–
4 show the SIR and the TPS for each track from the two music excerpts.
The corresponding SNRF and auditory bandwidth values are depicted
in Figs. 5–6. The mean opinion scores (MOSs) with 95-% confidence
intervals are plotted in Fig. 7.

As it was anticipated, USSR-C has the highest SIR. USSR-B shows a
clear improvement over USSR-A. The SIR for ISSA is also quite high
but always lower than for USSR-B and USSR-C, however. The TPS is
fairly consistent in all three USSR variants for the hip-hop mixture,
whereas a slight tendency towards USSR-B can be observed for the
pop-rock mixture. ISSA has the worst TPS of all tested algorithms. In
regard to the SNRF, the constrained USSR variants, A and B, perform
better than the rest. Again, this is something that could be expected,
since these algorithms preserve the auditory bandwidth of the signal.
Further, it can be seen that the number of spectral gaps is smaller
for USSR-C than for ISSA. De facto, the effect observed with USSR-
C is more of a band limitation than the “arid” effect [41], and as
such it produces a sound that is rather “dull” than “annoying”. Over-
all, the preferential tendencies of target-related perceptual score (TPS)
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track panning

Acapella 6.7 % right

Bass 20 % left

Hi-Hat 29 % left

Kick 6.7 % left

Snare centered

“The Terrorist” by DJ Vadim

Bass 1.6 % right

Beat 4.4 % left

Cocotte 41 % right

Guitar 1 9.3 % left

Guitar 3 76 % left

Key 9.6 % right

Vox 4.0 % right

“Lisztomania” by Phoenix

Table 2: Panning used for the two music pieces

are rather consistent with the MOS. Yet, the TPS seems to overrate the
sound quality by some 20–40 points, which corresponds to 1–2 grades.
In this regard, the SNRF provides the desired tendencies as well. This
allows the conclusion that if the SNRF were properly scaled, it might
just as well serve as an objective metric for the perceived sound qual-
ity, but at a much lower cost.

With a mean score between “fair” and “good”, the USSR algorithm
is the clear winner in any of its variants. ISSA is graded as “bad” on
the average, but better than the anchor. A slight preference for USSR-
B, the proposed algorithm, over its predecessor USSR-A can also be
noted. That preference seems to be linked with the complexity of the
mixture. After all, USSR-B is assessed to perform significantly better
than USSR-C, which once more highlights the fact that full bandwidth
is essential for a natural listening experience.

7.8.2 Narrowband Convolutional Mixture

In this section, the variants B and C of the proposed algorithm are
compared against each other by applying them now to a narrowband
convolutional mixture. Variant C employs the MMSE alias Wiener spa-
tial filter as opposed to variant B which uses the PCMV spatial filter,
see also Section 7.8.1. In addition, different coding strategies for the
spectrograms are applied. The PCMV spatial filter is used in tandem
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with the strategy from Section 7.7.3, whereas the MMSE spatial filter
is used in conjunction with JPEG compression or NMF with low-rank
modeling. Variant C is hence equivalent to the algorithm described
in [40] with the generalized Wiener filter replaced by its spatial coun-
terpart, as in [67].

7.8.2.1 Experimental setup

A set of fourteen musical excerpt from different genres is used. An
excerpt is between 15 s and 35 s long and it comprises 5 to 10 tracks.
Most of the excerpts have 5 tracks. The CIPIC head-related transfer
function (HRTF) database [50] is used to simulate the channel, i.e. the
transmission medium. The sources are placed at different angles sep-
arated by 5° or more from each other. Their placement is considered
known at the decoder. The STPSDs are quantized and coded at differ-
ent bitrates using one of the three strategies mentioned above. The
HRTFs are derived from the pan angles taking the measurements for
the KEMAR mannequin and are thus not included in the bitrate. The
sampling rate is set to 44.1 kHz.

The objective sound quality is assessed with the aid of two metrics:
the signal-to-distortion ratio (SDR) from BSS Eval [68, 69] and PEMO-
Q’s perceptual similarity metric (PSM). While the BSS Eval toolbox is
used to measure the performance of “blind” source separation algo-
rithms in the first place, the PEMO-Q [70, 71] software on the other
hand is meant to predict the quality of low-bitrate speech and audio
coders. Both metrics should hence complement each other.

7.8.2.2 Experimental results

The results of the experiment are summarized in Fig. 8. The SDR

for the “oracle” MMSE spatial filter that has perfect knowledge of the
spectrograms, or STPSDs, is shown in Fig. 8a and the PSM value for
each of the fourteen excerpts is shown in Fig. 8b, respectively. As can
be seen, both metrics vary significantly from excerpt to excerpt. From
this one can infer that the estimator’s performance depends on the
number of sources, their spatial location, and their spectro-temporal
overlap. Also, the metrics are inconsistent across excerpts. The mean
oracle SDR for the dataset lies around 10 dB and the mean PSM value
is approximately 0.85.

The “rate-performance” curves for the three different filtering and/
or coding strategies are given in Figs. 8c and 8d for the two metrics.
They are obtained by subtracting the oracle value from the respective
SDR or PSM value for a track and by taking the average over all tracks
and excerpts given a side-information rate. Although one could have
expected that either of the two SDR-curves for the MMSE filter would
overtop the SDR-curve for the PCMV filter, like the oracle, they do not.
This raises the question of whether the proposed coding strategy is
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more efficient than the ones presented in [40]. The train of thought
is as follows. In the previous experiment it was observed that the
SIR is higher for the MMSE spatial filter if the same coding strategy is
applied, see Figs. 3–4. Thus, one may conclude that if, e.g., NMF and
DPCM coding contributed to the distortion to the same extent, the SIR

for the MMSE spatial filter would also be higher in the convolutional
case, and possibly the SDR as well. Looking at the PSM-curves, one
can see that the combination of PCMV filtering with DPCM yields better
sound quality than the oracle at any tested side-information rate. JPEG

compression seems to have a higher coding efficiency than the NMF

except for a very low bitrate region between 2–10 kbps per source in
Fig. 8d. Also, it can be observed that the proposed algorithm provides
roughly the same sound quality as the iterative predecessor algorithm
[67] at a much lower computational cost.

7.8.3 Separation of Spatial Images

In this section, the proposed algorithm is evaluated by applying it
to a set of professionally produced music recordings from the SiSEC

2013 [72] website. The task is to decompose an artistic mixture into a
subset of images that represent the foreground objects and the image
of the background—where applicable. The term “background” refers
to the sum of background objects. The original images are given as a
reference.

7.8.3.1 Experimental setup

The following testing framework is used. With respect to the STFT,
a 2048-point FFT is employed with a KBD window and a 50-% overlap
between succeeding frames. The pan angle α is quantized with 7 bits
while the balance ratio a¬ref/aref is quantized with 16 bits using the
A-law compander with A = 87.6. The STPSD is quantized with 6 bits
per value on a 76-band nonuniform frequency scale. The probability
mass function of the difference between contiguous STPSD values is
modeled with a Laplace (µ,b) distribution with µ = −0.2 and b = 2.
The STCSDs are ignored by setting them to zero (no covariance).

The evaluation criteria suggested by the SiSEC 2013 committee are
used. These include the performance metrics from the PEASS toolkit
[65, 73] and the decoder runtime in seconds times CPU clock rate in
GHz. The side-information rate is also given. In addition, PEMO-Q’s
perceptual similarity metric PSMt and its objective difference grade
(ODG) are computed as well [70, 71].

The SiSEC development set is used. It consists of five music pieces
from different genres. The image parameters are estimated from the
provided stereo tracks according to the protocol in Appendix B. The
results are shown in Table 3.
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track type α a¬ref/aref

Vocal stereo — 0 .89

Drums stereo — 1 .00

Guitar stereo — 0 .96

“The Ones We Love” by Another Dreamer

Vocal stereo — 0 .99

Bass mono 45 .0 —

Piano stereo — 0 .83

Background stereo — 0 .94

“Roads” by Bearlin

Vocal stereo — 0 .90

Drums stereo — 0 .99

Bass mono 45 .0 —

Claps stereo — 0 .99

Background stereo — 0 .97

“Remember the Name” by Fort Minor

Vocal mono 47 .9 —

Guitar stereo — 0 .97

“Que Pena/Tanto Faz” by Tamy

Vocal stereo — 1 .00

Drums stereo — 0 .97

Bass stereo — 0 .93

Background stereo — 0 .93

Ultimate NZ Tour

Table 3: Estimated image parameters for the development set
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7.8.3.2 Experimental results

The results of the experiment are summarized in Table 4. As can
be observed, the image-to-spatial distortion ratio (ISR) is between 6.66

and 17.4 dB for a stereo source and it is greater or equal to 18.5 dB
for a mono source. Equally, the highest source-to-artifacts ratio (SAR)
is obtained for a mono source, which is 27.7 dB. The TPS shows a
weak correlation not only with the ISR and SAR but also with PEMO-
Q’s perceptual similarity metric PSMt, which then again does not
take spatial hearing effects into account. The lowest TPS is at 52 %. The
measured side-information rate is around 10 kbps per mono source
or stereo channel. The execution time of the decoder is low and also
faster than real time.

Table 5 compares the performance of the proposed algorithm with
the figures reported in SiSEC 2011 for two oracle systems [74]. Their
performance figures give an upper bound for binary masking based
systems. In Table 5, positive delta values are in boldface. A significant
improvement can be noticed for all items with regard to the SAR, up
to 22.4 dB. The TPS is also higher in most cases, and so is the SDR.
A comparison with more recent approaches is made available on the
SiSEC 2013 website. A brief summary is given in Figs. 9 and 10. Even
though the bass and the drums estimates of the proposed algorithm
are rated lower than other comparable algorithms, the corresponding
mean ISR and TPS are clearly the highest. These are the most relevant
metrics here. It can further be observed that six out of eight metrics
show better-than-oracle performance for the proposed system. Only
the two interference and artifacts related metrics are worse. This can
be considered as the signal-noise uncertainty principle. The more of the
signal is to be preserved in the estimate, the more noise (interference
or artifacts) is to be accepted. Or, the less noise is desired in the esti-
mate, the more of the signal is to be sacrificed. The SiSEC experiment
finally proves that a binary-mask oracle is suboptimal.
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Figure 3: SIR and TPS values (left column) complemented by the median, the 25th and 75th percentiles, and outliers (right column) for an excerpt from
“The Terrorist” by DJ Vadim
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Figure 4: SIR and TPS values (left column) complemented by the median, the 25th and 75th percentiles, and outliers (right column) for an excerpt from
“Lisztomania” by Phoenix
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Figure 5: SNRF and auditory bandwidth values (left column) complemented by the median, the 25th and 75th percentiles, and outliers (right column)
for an excerpt from “The Terrorist” by DJ Vadim
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Figure 6: SNRF and auditory bandwidth values (left column) complemented by the median, the 25th and 75th percentiles, and outliers (right column)
for an excerpt from “Lisztomania” by Phoenix
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track SDR ISR SIR SAR OPS TPS IPS APS PSMt ODG

Vocal 9 .76 16 .8 11 .5 21 .7 0 .38 0 .61 0 .68 0 .79 0 .76 −2 .96

Drums 8 .72 12 .4 13 .3 19 .5 0 .25 0 .86 0 .66 0 .05 0 .34 −3 .30

Guitar 9 .26 16 .3 10 .1 23 .4 0 .34 0 .52 0 .47 0 .67 0 .76 −2 .97

“The Ones We Love” by Another Dreamer | 59.6 kbps | 10.6 s GHz

Vocal 8 .35 17 .1 9 .31 20 .9 0 .19 0 .54 0 .62 0 .86 0 .74 −3 .00

Bass 8 .60 24 .2 8 .82 27 .7 0 .38 0 .62 0 .52 0 .34 0 .54 −3 .21

Piano 3 .11 6 .92 4 .14 17.4 0 .44 0 .63 0 .51 0 .60 0 .80 −2 .88

Background 4 .74 8 .33 8 .17 18 .1 0 .47 0 .60 0 .58 0 .59 0 .69 −3 .07

“Roads” by Bearlin | 69.8 kbps | 7.4 s GHz

Vocal 9 .15 15 .5 10 .8 19 .5 0 .76 0 .62 0 .86 0 .68 0 .81 −2 .82

Drums 5 .15 6 .66 7 .07 15 .2 0 .27 0 .79 0 .64 0 .10 0 .40 −3 .28

Bass 5 .59 18 .5 5 .24 21 .6 0 .30 0 .80 0 .47 0 .07 −0 .10 −3 .38

Claps 8 .92 13 .8 11 .9 20 .6 0 .05 0 .96 0 .67 0 .00 −0 .03 −3 .37

Background 4 .76 10 .6 5 .80 14 .9 0 .46 0 .62 0 .51 0 .60 0 .72 −3 .03

“Remember the Name” by Fort Minor | 82.2 kbps | 13.0 s GHz

Continued on next page. . .



Continued from previous page. . .

track SDR ISR SIR SAR OPS TPS IPS APS PSMt ODG

Vocal 14 .5 23 .0 15 .9 27 .6 0 .53 0 .56 0 .88 0 .87 0 .85 −2 .66

Guitar 14 .8 17 .4 20 .5 27 .1 0 .56 0 .98 0 .77 0 .81 0 .88 −2 .53

“Que Pena/Tanto Faz” by Tamy | 31.8 kbps | 5.8 s GHz

Vocal 6 .77 14 .5 7 .48 20 .2 0 .63 0 .72 0 .77 0 .56 0 .76 −2 .96

Drums 8 .39 14 .6 10 .2 19 .9 0 .49 0 .82 0 .66 0 .34 0 .53 −3 .22

Bass 5 .22 11 .9 5 .87 16 .3 0 .32 0 .53 0 .52 0 .30 0 .24 −3 .32

Background 4 .61 11 .8 4 .79 17 .7 0 .40 0 .61 0 .59 0 .70 0 .77 −2 .94

Ultimate NZ Tour | 80.7 kbps | 8.4 s GHz

Table 4: Experimental results. The ISR, SAR, and TPS values for mono sources are framed.



track ∆SDR ∆ISR ∆SIR ∆SAR ∆OPS ∆TPS ∆IPS ∆APS

Vocal
1 .26 1 .30 −6 .90 12 .7 0 .08 −0 .04 −0 .09 0 .56

3 .06 4 .90 −3 .40 14 .2 0 .13 0 .19 −0 .07 0 .59

Drums
−0 .08 −4 .70 −6 .80 10 .6 0 .06 0 .26 −0 .11 −0 .11

7 .72 11 .0 −4 .10 16 .7 0 .09 0 .59 −0 .05 −0 .05

Guitar
0 .76 −1 .50 −5 .60 14 .5 0 .07 0 .37 −0 .33 0 .41

4 .76 9 .30 −1 .30 18 .1 0 .11 0 .47 −0 .38 0 .56

“The Ones We Love” by Another Dreamer

Vocal
1 .95 −7 .20 −15 .7 12 .5 0 .38 −0 .18 0 .09 0 .58

3 .55 −0 .60 −11 .8 14 .3 0 .53 −0 .14 0 .11 −0 .16

Drums
0 .65 −2 .64 −6 .33 11 .0 0 .04 0 .04 −0 .17 −0 .40

2 .95 3 .36 −7 .03 13 .4 0 .08 0 .42 −0 .09 0 .09

Bass
−1 .51 −0 .80 −5 .76 12 .4 −0 .27 0 .14 −0 .45 0 .07

5 .19 18 .0 −4 .66 22 .4 −0 .15 0 .74 −0 .35 0 .07

Claps
1 .32 −5 .80 −17 .5 13 .1 −0 .69 0 .18 −0 .22 0 .00

1 .02 −3 .90 −14 .1 12 .6 −0 .15 0 .34 −0 .09 −0 .19

“Remember the Name” by Fort Minor

Continued on next page. . .



Continued from previous page. . .

track ∆SDR ∆ISR ∆SIR ∆SAR ∆OPS ∆TPS ∆IPS ∆APS

Vocal
2 .57 −7 .60 −14 .7 16 .2 0 .31 0 .13 0 .05 0 .25

4 .17 −3 .50 −10 .0 18 .2 0 .38 0 .45 0 .07 0 .37

Drums
2 .19 −8 .90 −12 .2 13 .7 0 .23 −0 .04 −0 .03 0 .32

6 .09 9 .60 −8 .40 17 .7 0 .25 0 .58 0 .01 0 .30

Bass
2 .52 −4 .60 −14 .8 14 .3 0 .03 0 .17 −0 .30 0 .30

3 .82 8 .90 −11 .4 17 .7 −0 .02 0 .48 −0 .28 0 .29

Ultimate NZ Tour

Table 5: A comparison between the results shown in Table 4 and the scores reported in SiSEC 2011 for two oracle systems. The upper row next to the
track name represents the STFT-based system and the lower row represents the cochleagram-based system, respectively.
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Figure 9: Mean SDR, ISR, SIR, and SAR values for the SiSEC 2013 development dataset consisting of three music excerpts
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Figure 10: Mean OPS, TPS, IPS, and APS values for the SiSEC 2013 development dataset consisting of three music excerpts



8
C O M PA R I S O N W I T H M P E G S A O C

8.1 enhanced audio object separation

SAOC’s own source separation scheme is referred to as “enhanced
audio object separation” (EAOS), whereas the object decoder is also
called an “enhanced audio object processor” [75, Fig. 6]. The latter
consists of a two-to-I upmix unit [75, Fig. 5] which corresponds to
I two-to-three (TTT) basic units [75, Fig. 4]. A TTT unit takes a two-
channel mixture as input and outputs a mono signal from the object
of interest, the foreground object (FGO), together with the background
signal being the sum of all pan-potted object signals excluding the
FGO signal. Every object that contributes to the background signal
is further deemed a background object (BGO). A BGO is unalterable
while an FGO can be altered in regard to its volume level and location.
In applications where a single track is soloed or muted, like karaoke
or mix-minus, an FGO is upgraded to a so-called “enhanced audio
object” (EAO). An EAO signal is tantamount to an FGO signal that is
error corrected and so quality improved using the residual, i.e. at the
cost of a higher side-information rate.

8.2 object encoder

EAOS processes the object signals in the complex subband domain.
The subband analysis is based on a hybrid filter bank that splits the
time signal into 69 subband signals [76]. The STPSDs are computed
as the instantaneous powers in each subband. These are quantized
on a logarithmic scale and grouped over time and frequency. Finally,
this metadata is DPCM coded and passed on to the decoder as side
information along with the mixing coefficients and the downmix. The
corresponding system model in the DFT domain is

XH =

I∑
i=1

aisHi = ASH , (57)

where si ∈ CK is a K-band signal vector, ai ∈ R2 is the mixing vector,
I is the number of audio objects, and X ∈ CK×2 is the mixture signal.
Superscript H denotes Hermitian transpose. The I signal vectors and
the I mixing vectors can be concatenated into the signal matrix S ∈
CK×I and the mixing matrix A ∈ R2×I , such that the mixture matrix
can be expressed as a product of the two matrices. The calculation of

59
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a single residual is as follows. First, all BGO signals are combined into
a downmix signal [32, Eqs. 15–16],

XH
BGO = XH − aFGO sHFGO. (58)

Second, an “auxiliary” signal for the FGO is calculated by taking the
difference between the FGO and the BGO mixture signal projected onto
the “look direction” of the FGO [32, Eqs. 15–16],

sFGO◦ = XBGOaFGO − sFGO. (59)

Using (58) and (10), (59) can also be written as

sFGO◦ = XaFGO − 2sFGO. (60)

Then, a linear combination of the (two) downmix channels is found
that minimizes the reconstruction error between the modeled signal
and the true auxiliary signal. For this, a system of K linear equations
in two unknowns wFGO◦ = [w1,FGO◦ w2,FGO◦ ]T ∈R2 must be solved:

XwFGO◦ = sFGO◦ . (61)

The two coefficients that best fit the above equations in the LS sense
are

ŵLS
FGO◦ =

(
XHX

)︸ ︷︷ ︸
R̂x

−1
XHsFGO◦︸ ︷︷ ︸

p̂xsFGO◦

. (62)

The terms XHX and XHsFGO◦ are equivalent to the sample estimates of
spatial correlation, R̂x and p̂xsFGO◦ . For that reason, the LS estimate for
wFGO◦ is formally identical with the MMSE estimator for the auxiliary
signal. Due to (60),

p̂xsFGO◦ = R̂xaFGO − 2p̂xsFGO . (63)

So, by rewriting (62) as

ŵMMSE
FGO◦ = aFGO − 2R̂−1

x p̂xsFGO︸ ︷︷ ︸
ŵMMSE

FGO

, (64)

the estimator can be put in direct relation to the FGO. Note that pxsFGO

is the cross-correlation between the mixture and the FGO signal. The
difference between the true auxiliary signal and its estimate,

rFGO◦ = sFGO◦ − XŵMMSE
FGO◦ , (65)

yields the residual that is perceptual-entropy coded by the Advanced
Audio Coding (AAC) [77] scheme at a bitrate of 20 kbps [75].
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8.3 object decoder

To obtain the FGO signal, the auxiliary signal needs to be estimated
first. To that end, the estimator from (64) is computed using the power
spectra and the mixing coefficients. Both are made available for the
decoder by the encoder. The correlation matrix is calculated as in (43).
Correspondingly, the cross-correlation vector is given by

p̂xsFGO = aFGOΦsFGO . (66)

Again, the audio objects are considered mutually uncorrelated. Note
that in SAOC, the cross-correlations between objects can be modeled
using the inter-object cross coherences (IOCs). Yet the computation of
these is optional, see Section 7.6.4. Once the estimator is computed it
is plugged into (61), and the enhanced auxiliary signal is obtained by
adding the residual to the estimate:

s̃EAO◦ = XŵMMSE
FGO◦︸ ︷︷ ︸

ŝFGO◦

+ r̃FGO◦ . (67)

Solving (59) for sFGO using (58) yields the sought-after EAO signal

s̃EAO = 1
2
(XaFGO − s̃EAO◦). (68)

Using (67) and (64), (68) can also be formulated as

s̃EAO = XŵMMSE
FGO − 1

2 r̃FGO◦ . (69)

The bottom line is that the TTT unit in SAOC is an MMSE estimator for
the FGO signal with a particular residual coding strategy. This being
the case, it fits perfectly into the ISS framework.

8.4 performance evaluation

8.4.1 EAOS vs. USSR

In the previous section it is shown that EAOS in SAOC uses a Bayes
estimator in the form of an MMSE spatial filter to separate audio ob-
jects from their mixture. In this section, EAOS is compared with USSR

using the same ISS testing framework.

8.4.1.1 Experimental setup

The STFT with a KBD window and 50-% overlap between segments
is used for both systems under test. The PCMV spatial filter in USSR

is replaced by the TTT unit when simulating EAOS. The metadata is
encoded as in Section 7.7. The mixing coefficients are considered to
be known. The two systems are compared with each other in terms
of quality and computational complexity. The quality is assessed on
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Figure 11: ODG as a function of the side-information rate

the ODG scale [78] while the complexity is measured by the decoder’s
execution time in MATLAB. The ODG score is computed with PEMO-
Q. Ten multitracks taken from the QUASI database [79] are converted
to mono and cut down to 20-s excerpts. Each track is normalized to a
reference root mean square (RMS) level of −16 dBFS. The sources are
placed uniformly in space and gain adjusted, so as to have an equal
SIR across the sources at the output, see Algorithm 4.

8.4.1.2 Experimental results

The results of the comparison are shown in Figs. 11–12. In the case
where the residual is omitted, the bitrate is equivalent to the metadata
rate for a varied number of parameter bands. In the case where the
residual is used to correct the initial estimate, the metadata rate is
fixed at 10 kbps and the bitrate is calculated as the sum of the latter
and the residual rate increased from zero onwards. The results where
the original signals are coded separately are also included. There, the
bitrate is simply the coding rate.

The Freeware Advanced Audio Coder (FAAC) [80] is applied to the
residual and the original tracks. The curves represent fitted averages
over the data corpus. As can be seen from Fig. 11, USSR’s PCMV spatial
filter yields better results than EAOS’s MMSE filter. This observation is
consistent with the listening test results reported in Section 7.8.1. The
gap between the two systems widens even further if their estimates
are error corrected. At a bitrate of 30 kbps per source and beyond, the
quality of FAAC-coded tracks is superior to those recovered from the
mixture.
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Figure 12: Decoder runtime as a function of the number of bands at a side-
information rate of 30 kbps

As can be seen in Fig. 12, the USSR decoder is approximately half
as complex as the EAOS decoder if all I estimates are error corrected.
The longer runtime is explained by the fact that EAOS requires the
residuals to be available in the subband domain whereas USSR does
not. Hence, the loss of time is due to the extra I-fold STFT and the
computation of auxiliary signals.

8.4.2 Interactive Remixing

In this section the ISS approach is evaluated in a concrete scenario.
“Interactive remixing” is chosen as sample application. It allows the
user to change the volume level of sound sources and their spatial
location. Also, it is interesting to find out whether “plain” source
coding is a more pragmatic solution with regard to audio quality and
coding efficiency.

8.4.2.1 Experimental setup

The same testing framework as before is used. The ODG is retained
as quality index. In order to simulate more realistic conditions, the
stereo-to-mono converted tracks are panned to their original location,
so that the downmix is prearranged as if by the sound engineer or the
composer. The location is derived from the RMS channel difference in
the original stereo tracks (see also Appendix B):

α̂i = arccot
RMS2i
RMS1i

, (70)
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where arccot is the arccotangent.
Table 6 provides a listing of the songs used in the experiment. The

source signals are either recovered from the downmix using USSR or
are encoded (and decoded) for comparison. For this, the FAAC and the
Enhanced aacPlus [81, 82] coder are used. The downmix is encoded
in perceptually transparent quality: at a variable bitrate in the region
of 120 kbps. To simulate user interaction, ten different remixes with
arbitrary new source locations and volume levels for each song and
system are generated with the gains being in the range between −6

and 3 dB. The remixes of each system are then compared with the
ones created from the original tracks.

8.4.2.2 Experimental results

The evaluation results are summarized in Fig. 13. It can be observed
that the quality of a remix generated from an FAAC coded downmix
depends on the number of sources and their spatial spread. A linearly
pulse-code modulated (LPCM) mixture signal seems less sensitive to
these factors. The deciding factor there is the “spectral texture” of a
source signal and by how much it interweaves with other sources.

On an average, the best quality is obtained for an LPCM mixture in
combination with residual coding at ca. 20 kbps per source. With a
median not worse than “slightly annoying”, the results gained with
USSR alone are promising. Clearly worse is the grade for the scenario
in which the mixture is FAAC coded. Even at a side-information rate
of 30 kbps, the quality lies halfway between “annoying” and “slightly
annoying”. The same is true for Enhanced aacPlus at 10 kbps or FAAC

at 30 kbps. The most efficient system in the experiment is Enhanced
aacPlus operating at 30 kbps, as it does not necessitate availability of
the mixture.



no. title number of sources

spatial spread

vs . centroid

1 “Carol of the Bells” (Alexq) 4 15.9° / 40.3°

2 “One We Love” (Another Dreamer) 5 20.8° / 47.4°

3 “The World Is Under Attack” (Carl Leth) 6 5.76° / 47.2°

4 “Remember the Name” (Fort Minor) 10 10.4° / 46.4°

5 “The Spirit of Shackleton” (Glen Philips) 12 7.54° / 47.1°

6 “Mix Tape” (Jim’s Big Ego) 7 2.00° / 45.0°

7 “Good Soldier” (Nine Inch Nails) 5 1.72° / 43.8°

8 “Sunrise” (Shannon Hurley) 8 8.51° / 41.0°

9 “Untitled” (Ultimate NZ Tour) 7 12.3° / 45.3°

10 “Ana” (Vieux Farka) 8 9.54° / 42.6°

Table 6: The corpus of prearranged mixes
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Figure 13: The medians and the 25th and 75th percentiles for each system under test
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I N V E R S I O N O F D Y N A M I C R A N G E C O M P R E S S I O N

9.1 dynamic range compression

Dynamic range compression or simply compression is an audio pro-
cessing technique that attenuates loud sounds and/or amplifies quiet
sounds, which in consequence leads to a reduction of an audio sig-
nal’s dynamic range. The latter is defined as the difference between
the loudest and the quietest sound measured in decibels. In the fol-
lowing, we will use the word “compression” having “downward”
compression in mind, though the discussed approach is likewise ap-
plicable to “upward” compression. Downward compressing means
attenuating sounds above a certain threshold while leaving sounds
below the threshold unchanged. An audio engineer might use a com-
pressor to reduce the dynamic range of source material for purposes
of aesthetics, intelligibility, recording or broadcast limitations, etc.

Fig. 14 shows the basic compressor model from [83, ch. 2] amended
by a switchable RMS/peak detector in the side chain, which makes it
compatible with the compressor/limiter model from [15, p. 106]. We
will hereafter restrict our considerations to this basic model, as the
purpose of the present work is to demonstrate a general approach
rather than a solution to a specific problem. First, the input signal is
split and a copy is sent to the side chain. The detector then calculates
the magnitude or level of the sidechain signal using the RMS or peak
as a measure for how loud a sound is [15, p. 107]. The detector’s
temporal behavior is controlled by the attack and release parame-
ters. The sound level is compared with the threshold level and, for
the case it exceeds the threshold, a scale factor is calculated which
corresponds to the ratio of input level to output level. The knee pa-
rameter determines how quick the compression ratio is reached. At
the end of the side chain, the scale factor is fed to a smoothing fil-
ter that yields the gain. The response of the gain filter is controlled
by another set of attack and release parameters. Finally, the gain
control applies the smoothed gain to the input signal and adds a
fixed amount of makeup gain to bring the output signal to a desired
level. Such a broadband compressor operates on the input signal’s
full bandwidth, treating all frequencies from zero through the high-
est frequency equally. A detailed overview of all sidechain controls of
a basic gain computer is given in [83, ch. 3], e.g.

67
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Figure 14: Basic broadband compressor model
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9.2 system model

9.2.1 Feed-Forward Broadband Compression

The employed system model is based on the compressor from Fig. 14.
The following simplification is additionally made: the knee parameter
is ignored, i.e. the knee is “hard”. The compressor is understood as
a single-input single-output (SISO) system, that is both the input and
the output are single-channel signals. What follows is a description
of each block by means of a dedicated function.

The RMS/peak detector as well as the gain computer build upon a
first-order (one-pole) lowpass filter. The sound level or envelope v(n)
of the input signal x(n) is obtained by

x̃(n) = αv|x(n)|
p + (1−αv)x̃(n− 1), (71a)

v(n) =
p
√
x̃(n), (71b)

where p = 1 represents a peak detector and p = 2 an RMS detector,
respectively. The smoothing factor αv, 0 < αv 6 1, may take on two
different values, αatt

v or αrel
v , depending on whether the detector is in

the attack or the release phase. The condition for the level detector to
enter the attack phase and to choose αatt

v over αrel
v is

|x(n)|> v(n− 1). (72)

A formula that converts a time constant τ into a smoothing factor is
given in [15, p. 109]. So,

αv = 1− exp
(
−2.2

Ts

τv

)
, (73)

where Ts is the sampling period and exp the exponential function.
The derivation of (73) can be found in [84, 85]. The static nonlinearity
in the gain computer is usually modeled in the logarithmic domain
as a continuous piecewise linear function:

F(n) =

{
−S · [V(n) − L] if V(n)> L,

0 otherwise,
(74)

where L is the threshold in decibel, V(n) = 20 log10 v(n), and S is the
slope. The slope is computed from the desired compression ratio R
according to

S= 1−
1

R
. (75)

Equivalently, (74) can be expressed in the linear domain as

f(n) =

{
κv−S(n) if v(n)> l,

1 otherwise,
(76)
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where l = 10L/20, κ = lS, and f is the scale factor before filtering. The
smoothed gain g is calculated as the exponentially-weighted moving
average:

g(n) = αgf(n) + (1−αg)g(n− 1)

with αg ∈
{
αatt
g ,αrel

g

}
.

(77)

The decision to choose αatt
g instead of αrel

g is subject to

f(n)< g(n− 1). (78)

Finally, the broadband gain control multiplies the input signal x(n)
by the smoothed gain g(n) and adds some makeup gain M to bring
the compressed output signal y(n) to a desired level:

y(n) =m · [g(n)x(n)] with m= 10
M/20. (79)

Due to the fact that g and m are strictly positive, 0 < g 6 1, m > 0, it
follows that

sgn(y) = sgn(x), (80)

where sgn is the signum function. In consequence, it is convenient to
factorize the input signal as a product of the sign and the modulus,

x(n) = sgn(x) · |x(n)|. (81)

9.2.2 Stereo Linking

To avoid image shifting, it is imperative that an equal amount of
gain reduction be applied to both channels of x. This can be achieved
by calculating the required amount of gain reduction for x1(n) and
x2(n) independently, and by applying the larger amount to both chan-
nels:

y(n) =m · [g(n)x(n)], (82)

where y = [y1 y2 ]T and

g(n) = min [g1(n),g2(n)]. (83)

9.3 problem formulation

The problem at hand is formulated as follows. Given the com-
pressed signal y(n) and the compressor parameters

θ=
{
p,L,R,αatt

v ,αrel
v ,αatt

g ,αrel
g ,M

}
, (84)

recover the modulus of the original signal |x(n)| from |y(n)| based
on θ. For a more intuitive use, the smoothing factors αv and αg may
be replaced by the time constants τv and τg. The meaning of each
parameter is recapitulated below.
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p Detector type (peak or RMS)

L Threshold level in dB

R Compression ratio dBin : dBout

τv ,att Attack time of the envelope filter in ms

τv ,rel Release time of the envelope filter in ms

τg ,att Attack time of the gain filter in ms

τg ,rel Release time of the gain filter in ms

M Makeup gain in dB

9.4 proposed solution

The output of the side chain, i.e. the gain of |x(n) |, given θ, x̃(n −

1), and g(n − 1), may be written as

m · g(n) = G [ |x(n) | | θ , x̃(n − 1) , g(n − 1)]. (85)

In (85), G denotes a nonlinear dynamic operator that maps the modu-
lus of the input signal |x(n) | onto a sequence of instantaneous gain
values m · g(n) according to the compressor model represented by
θ. Using (85), (79) can be solved for |x(n) | yielding

|x(n) | = G−1 [g(n) | θ , x̃(n − 1) , g(n − 1)] · |y(n) |

subject to invertibility of G. In order to solve the above equation one
requires the knowledge of g(n), which is unavailable. However, since
g is a function of |x |, we can express |y | as a function of |x | only, and
in that manner we obtain an equation with a single unknown:

|y(n) | = H [ |x(n) | | θ , x̃(n − 1) , g(n − 1)], (86)

where H now represents the entire compressor. If H is invertible, i.e.
bijective for all n, |x(n) | can be obtained from |y(n) | by

|x(n) | =

{
H−1 [ |y(n) | | θ , x̃(n − 1) , g(n − 1)] if v(n) > l,

|y(n) | otherwise.
(87)

And yet, since v(n) is likewise unknown, the condition for applying
decompression must be predicted from y(n), x̃(n − 1), and g(n −

1), and therefore needs the condition for toggling between the attack
and release phases. Depending on the quality of the prediction, the
recovered modulus |z(n) | may differ somewhat at transition points
from the original modulus |x(n) |, so that in the end

x(n) ≈ sgn(y) · |z(n) | , z(n). (88)

In the following it is shown how such an inverse compressor alias de-
compressor is derived.
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9.4.1 Characteristic Function

For simplicity, the instantaneous envelope value v(n) is chosen
over |x(n) | as the independent variable in (86). The relation between
the two items is given by (71). From (77) and (79), when v(n) > l,

|y(n) | = m · [αgf(n) + (1 − αg)g(n − 1)] · |x(n) | (89)
(76)
= m ·

[
αgκv

−S(n) + (1 − αg)g(n − 1)
]
· |x(n) |.

(90)

From (71),

|y(n)|=m ·
[
αgκv

−S(n) + (1−αg)g(n− 1)
]

· p
√
vp(n) − (1−αv)x̃(n− 1)

αv
,

(91)

or equivalently (note that m, αv 6= 0 by definition)

αv

[
|y(n)|

m

]p
=
[
αgκv

−S(n) + (1−αg)g(n− 1)
]p

· [vp(n) − (1−αv)x̃(n− 1)].
(92)

Moreover, (92) has a unique solution if G and hence H is invertible.
Moving the expression on the left-hand side over to the right-hand
side, we may define

ζp(v),
[
αgκv

−S(n) + (1−αg)g(n− 1)
]p

· [vp(n) − (1−αv)x̃(n− 1)] −αv

[
|y(n)|

m

]p
,

(93)

which shall be termed the characteristic function. The zero-crossing or
root v0 of ζp(v) bears so the sought-after envelope value v(n). Once
v(n) is found (see Section 9.5), the current values of x̃, |x|, and g are
updated according to

x̃(n) = vp0 (n),

|x(n)|=
p

√
x̃(n) − (1−αv)x̃(n− 1)

αv
,

g(n) =
|y(n)|/m

|x(n)|
,

(94a)

if v(n)> l, or else

g(n) = αg + (1−αg)g(n− 1),

|x(n)|=
|y(n)|/m

g(n)
,

x̃(n) = αv|x̂(n)|
p + (1−αv)x̃(n− 1).

(94b)

The decompressed sample is then computed as

z(n) = sgn(y) · |x(n)|. (95)



9.4 proposed solution 73

9.4.2 Attack-Release Phase Toggle

9.4.2.1 Envelope smoothing

When a peak detector is in use, αv can take on two different values.
The condition for the attack phase is given by (72). It is equivalent to

|x(n)|p > x̃(n− 1). (96)

Assuming that x̃(n − 1) is known, what is needed to be done is to
express the unknown |x| in terms of |y| such that the above equation
still holds true. If αg is rather small, αg 6 0.1� 1, or equivalently if
τg is sufficiently large, τg > 0.5 ms at 44.1-kHz sampling, the term
αgf(n) in (89) is negligible, so it approximates (89) as

|y(n)|/m≈ g(n− 1) · |x(n)|. (97)

Solving (97) for |x(n)| and plugging the result into (96), we obtain[
|y(n)|/m

g(n− 1)

]p
> x̃(n− 1). (98)

If (98) is true, the detector is assumed to be in the attack phase.

9.4.2.2 Gain smoothing

Just like the peak detector, the gain smoothing filter can be in either
the attack or the release phase. The necessary condition for the attack
phase in (78) may also be formulated as

v(n)>

[
κ

g(n− 1)

]1/S
with v(n)> l. (99)

But as the current envelope value is unknown, we need to substitute
v(n) in the above inequality by something that is computable. With
this in mind, (89) is rewritten as

|y(n)|/m=

[
αg

f(n)

g(n− 1)
+ (1−αg)

]
g(n− 1) · |x(n)|

=

[
1−αg

(
1−

f(n)

g(n− 1)

)]
g(n− 1) · |x(n)|. (100)

Provided that f(n)< g(n− 1) and due to the fact that 0 < αg 6 1, the
expression in square brackets in (100) is smaller than one, and thus
during attack

|y(n)|/m < g(n− 1) · |x(n)|. (101)

Substituting |x(n)| using (94a) and solving (101) for v(n) results in

v(n)>
p

√
αv

[
|y(n)|/m

g(n− 1)

]p
+ (1−αv)x̃(n− 1). (102)
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If v(n) in (99) is substituted by the expression on the right-hand side
of (102), (99) still holds true. So, the following sufficient condition is
used to predict the attack phase of the gain smoothing filter:

p

√
αv

[
|y(n)|/m

g(n− 1)

]p
+ (1−αv)x̃(n− 1)>

[
κ

g(n− 1)

]1/S
. (103)

Note that the values of all variables are known, if and when (103) is
evaluated.

9.4.3 Envelope Predictor

An instantaneous estimate of the envelope value v(n) is required
not only to predict when compression is active, formally v(n) > l in
(76), but also to initialize the iterative search algorithm in Section 9.5.
By resorting once more to (89) it can be noted that in the opposite
case where v(n)6 l, f(n) = 1, and so

|x(n)|=
|y(n)|/m

αg + (1−αg)g(n− 1)
. (104)

The sound level of the input signal at instant n is therefore

v(n) =
p

√
αv

[
|y(n)|/m

αg + (1−αg)g(n− 1)

]p
+ (1−αv)x̃(n− 1), (105)

which must be greater than the threshold for compression to set in,
whereas αv and αg are selected based on (98) and (103), respectively.

9.4.4 Stereo Unlinking

First, one decompresses both channels of y(n) independently so as
to obtain two estimates z1(n) and z2(n). Using (79), one then com-
putes ŷ1(n) and ŷ2(n) from z1(n) and z2(n), and picks the channel
ref for which yref(n) ≈ ŷref(n). Finally, one updates the variables of
the complementary channel ¬ref:

z¬ref(n) =
y¬ref(n)/m

gref(n)
, (106)

x̃¬ref(n) according to (71a), and g¬ref(n) according to (77).

9.4.5 Error Analysis

Consider |x(n)| being estimated from |y(n)| according to

|x̂(n)|=
|y(n)|

g(n− 1)
with m= 1. (107)
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The normalized error is then

e(n) =
|x̂(n)|− |x(n)|

|y(n)|
(108)

=

[
|y(n)|

g(n− 1)
−

|y(n)|

g(n)

]/
|y(n)|

=
g(n) − g(n− 1)

g(n) · g(n− 1)
. (109)

As g > 0 for all n, e(n)< 0 during attack and e(n)> 0 during release,
respectively. The instantaneous gain g(n) can also be expressed as

g(n) = αg

N∑
m=0

(1−αg)
mf(n−m), (110)

where N is the runtime in samples. Using (110) in (109), the magni-
tude of the error is given by

|e(n)|=

∣∣∣∣∣
N∑
m=0

(1−αg)
m[f(n−m) − f(n−m− 1)]

∣∣∣∣∣
αg

N∑
i,j=0

(1−αg)
i+jf(n− i)f(n− j− 1)

(111)

6

N∑
m=0

(1−αg)
m|f(n−m) − f(n−m− 1)|

αg

N∑
i,j=0

(1−αg)
i+jf(n− i)f(n− j− 1)

. (112)

For γ= 1, (111) becomes

|e(n)|αg=1 =
|f(n) − f(n− 1)|

f(n) · f(n− 1)
, (113)

whereas for αg→ 0, (112) converges to infinity:

|e(n)|αg→0 6
1

αg

N∑
m=0

>0 during compression︷ ︸︸ ︷
|f(n−m) − f(n−m− 1)|

N∑
i,j=0

f(n− i)f(n− j− 1)

→∞. (114)

Thus, the error is smaller for large αg or for short τg. The smallest
possible error is for αg = 1, which then again depends on the current
and the previous value of f. The error accumulates if αg < 1 with N.
The difference between consecutive f-values is signal dependent. The
signal envelope v(n) fluctuates less and is thus smoother for smaller
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αv or for longer τv. f(n) is also more stable when the compression
ratio R is low. For R = 1, f(n) is perfectly constant. The threshold L
has a negative impact on error propagation. The lower L the more the
error depends on N, as more samples are compressed with different
f-values. The RMS detector stabilizes the envelope more than the peak
detector, which also reduces the error. Moreover, since usually τatt <

τrel, the error due to αv is smaller during release, whereas the error
due to αg is smaller during attack. At last, the error can be expected
to be larger at transition points between quiet to loud signal passages
and vice versa.

The above error may cause a decision in favor of a wrong smooth-
ing factor αv in (98), like αatt

v instead of αrel
v , e.g. The decision error

from (98) then propagates to (103). Given that αatt
v > αrel

v , the error
due to (107) is accentuated by (98) with the consequence that (103)
is less reliable than (98). The total error in (103), thus, scales with∣∣αatt
v −αrel

v

∣∣. In regard to (105), reliability of the envelope’s estimate is
subject to validity of both (98) and (103). A better estimate is obtained
when the sound level detector and the gain filter are both in either the
attack or the release phase. Here, too, the estimation error increases
with

∣∣αatt
v −αrel

v

∣∣ and also with
∣∣αatt
g −αrel

g

∣∣. The makeup gain M has
no impact on the error. Stereo linking may be another source of error.
It all depends on how well the reference channel is detected.

9.5 numerical approximation

An approximate solution of the characteristic function can be found,
e.g., by means of linearization. The estimate from (105) may moreover
serve as a starting point of an iterative search for an optimum:

vinit =
p

√
αv

[
|y(n)|/m

αg + (1−αg)g(n− 1)

]p
+ (1−αv)x̃(n− 1). (115)

The criterion for optimality is further chosen as the deviation of the
characteristic function from zero, which is initialized to

∆init = |ζp(vinit)|. (116)

Thereon, (93) can be approximated using the equation of a straight
line, ζ = a · v+ c, where a is the slope and c is the ζ-intercept. The
root is characterized by the equation

ζp(vi +∆i) − ζp(vi)

∆i
· v+ ζp(vi) = 0, (117)

as shown in Fig. 15. The new estimate of the optimal v(n) is

vi+1 = vi −
∆i · ζp(vi)

ζp(vi +∆i) − ζp(vi)
. (118)
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Figure 15: Graphical illustration of the iterative search for the root

If vi+1 is less optimal than vi, the iteration is stopped and vi is the
final estimate. The iteration is also stopped if ∆i+1 is smaller than
some ε. In the latter case, vi+1 has the optimal value with respect
to the chosen criterion. Otherwise, vi is set to vi+1 and ∆i is set to
∆i+1 after every step and the procedure is repeated until vi+1 has
converged to a more optimal value. The proposed method is a special
form of the secant method with a single initial value vinit.

9.6 general remarks

9.6.1 Lookahead

A compressor with a lookahead function, i.e. with a delay in the
main signal path as in [15, p. 106], uses past input samples as weighted
output samples. Now that some future input samples are required to
invert the process—which are unavailable, the inversion is rendered
impossible. g(n) and x(n) must thus be in sync for the approach to
be applied. For proof and reasoning see Appendix C.

9.6.2 Clipping and Limiting

Another point worth mentioning is that “hard” clipping and “brick-
wall” limiting are special cases of compression with the attack time
set to zero and the compression ratio set to ∞ : 1. The nonlinearity F
in that particular case is a one-to-many mapping, which by definition
is noninvertible.
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9.6.3 Logarithmic Gain Smoothing

Certain compressor models apply gain smoothing in the logarith-
mic domain. In that case, (77) is replaced by

g(n) = fαg(n) · g1−αg(n− 1), (119)

so that the characteristic function becomes

ζp(v) = µ
[
v−αgS(n) · g1−αg(n− 1)

]p
· [vp(n) − (1−αv)x̃(n− 1)] −αv

[
|y(n)|

m

]p (120)

with µ = lpβS. Equations (98) and (103) remain valid, whereas (105)
and consequently (115) are now to be replaced by

v(n) =
p

√
αv

[
|y(n)|/m

g1−αg(n− 1)

]p
+ (1−αv)x̃(n− 1). (121)

Finally, taking (119) into account, the gain value in (94b) is computed
as

g(n) = g1−αg(n− 1) (122)

instead.

9.7 pseudocode

The algorithm is divided into three parts, given below in the form
of pseudocode. Algorithm 1 outlines the compressor that corresponds
to the model from Section 9.2. Algorithm 2 illustrates the decompres-
sor described in Section 9.4. The root-finding algorithm from Sec-
tion 9.5 is summarized in Algorithm 3. Ts represents the sampling
period in ms.

9.8 parameter quantization and coding

The threshold level L and the makeup gain M, both given in dB,
can be quantized using (48) on predefined ranges. The compression
ratio R ∈ [1,60] can be compressed using (49) or (50) by setting x to
R− 1 and xmax to 59. Instead of coding the time constants τv and τg,
it is more appropriate to code the smoothing factors, αv,αg ∈ (0,1],
using (49) or (50) in combination with (48).

9.9 performance evaluation

9.9.1 Experimental Setup

The decompressor’s performance is evaluated on a synthetic signal
and also on “natural” audio material. The former is generated from
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Algorithm 1 Single-input single-output compressor

function Compress(xn,Ts,θ)
x̃n← 0

gn← 1

for n← 1,N do
if |xn|

p > x̃n then
αv← 1− exp(−2.2Ts/τatt

v )

else
αv← 1− exp

(
−2.2Ts/τrel

v

)
end if
x̃n← αv|xn|

p + (1−αv)x̃n
vn← p

√
x̃n

if vn > l then
fn← κv−Sn

else
fn← 1

end if
if fn < gn then
αg← 1− exp

(
−2.2Ts/τatt

g

)
else
αg← 1− exp

(
−2.2Ts/τrel

g

)
end if
gn← αgfn + (1−αg)gn
yn← gnxn

end for
return yn

end function

a weighted sum of Heaviside step functions, while the latter consists
of twelve items including speech, sung voice, music, and jingles. All
items are normalized to −16 LUFS [86]. A detailed overview of used
compressor settings is given in Table 7. They correspond to presets of
commercial compressor plug-ins. The ε-value in the break condition
of Algorithm 3 is set to 1 · 10−12.

The inverse approach is evaluated using the following metrics. The
root-mean-square error (RMSE),

RMSE = 20 log10

√√√√ 1

N

N∑
n=1

[z(n) − x(n)]2, (123)

given in decibels relative to full scale (dBFS), the perceptual similarity
between the decompressed and the original signal, and the execution
time of the decompressor relative to real time (RT). Furthermore, we
present the percentage of compressed samples, the mean number of
iterations until convergence per compressed sample, the error rate
of the attack-release toggle for the gain smoothing filter, and finally
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Algorithm 2 Single-input single-output decompressor

function Decompress(yn,Ts,θ,ε)
x̃n← 0

gn← 1

for n← 1,N do
if |yn|>

p
√
x̃n · gn then

αv← 1− exp(−2.2Ts/τatt
v )

else
αv← 1− exp

(
−2.2Ts/τrel

v

)
end if

if |yn|>
p

√[
(κ/gn)

p/S − (1−αv)x̃n

]/
αv · gn then

αg← 1− exp
(
−2.2Ts/τatt

g

)
else
αg← 1− exp

(
−2.2Ts/τrel

g

)
end if

if |yn|>
p

√
lp − (1−αv)x̃n

αv
· [αg + (1−αg)gn] then

vn← p

√
αv

[
|yn|

αg + (1−αg)gn

]p
+ (1−αv)x̃n

v0← Charfzero(vn,ε)

|xn|← p

√[
v
p
0 − (1−αv)x̃n

]/
αv

x̃n← v
p
0

gn← |yn|/|xn|

else
gn← αg + (1−αg)gn
|xn|← |yn|/gn
x̃n← αv|xn|

p + (1−αv)x̃n
end if
xn← sgn(yn) · |xn|

end for
return xn

end function

the error rate of the envelope predictor. The perceptual similarity is
assessed by the PEMO-Q [70] software [71] with PSMt as metric. The
simulations are run in MATLAB on an Intel Core i5-520M CPU.

9.9.2 Experimental Results

Fig. 16 shows the inverse signal z(n) to the synthetic input signal
x(n) using an RMS detector. The inverse signal z(n) is obtained from
the compressed signal y(n) with an error of ca. −129 dBFS. It is vi-
sually indistinguishable from the original signal x(n). Due to the fact
that the signal envelope is constant most of the time, the error is no-
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Algorithm 3 Root-finding algorithm

function Charfzero(vn,ε)
vi← vn
repeat
∆i← |ζp(vi)|

vi← vi −∆i · ζp(vi)/[ζp(vi +∆i) − ζp(vi)]
if |ζp(vi)|> ∆i then

return vn
end if
vn← vi

until |ζp(vi)|< ε
return vi

end function

parameter a b c d e

Threshold (dBFS) −32.0 −19.9 −24.4 −26.3 −38.0

Ratio (dBin : dBout) 3.0 : 1 1.8 : 1 3.2 : 1 7.3 : 1 4.9 : 1

Envelope attack (ms)
5.0 5.0 5.0 5.0 5.0

Envelope release (ms)

Gain attack (ms) 13.0 11.0 5.8 9.0 13.1

Gain release (ms) 435 49 112 705 257

Table 7: Selected compressor settings

ticeable only around transition points, which are very few. The perfor-
mance figures for real-world audio are given in Table 8. The results
suggest that the decompressed signal is perceptually indistinguish-
able from the original: the PSMt values are flawless. This observation
has been confirmed through informal listening tests.

As can be seen from Table 8, the largest inversion error is associated
with setting E and the smallest with setting B. For all five settings, the
error is larger when an RMS detector is in use. This is partly due to
the fact that ζ2(v) has a stronger curvature in comparison to ζ1(v). By
defining the distance in (116) as ∆ , p

√
|ζp(v)|, it is possible to attain

a smaller error for an RMS detector at the cost of a slightly longer
runtime. In most cases, the envelope predictor works more reliably
as compared to the toggle switch between attack and release. It can
also be observed that the choice of time constants seems to have little
impact on decompressor’s accuracy. The major parameters that affect
the decompressor’s performance are L and R, while the threshold is
evidently the predominant one: the RMSE strongly correlates with the
threshold level.

Figs. 17–18 show the inversion error as a function of various time
constants. These are in the range of typical attack and release times
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for a limiter (peak) or compressor (RMS) [15, pp. 109–110]. It can be
observed that the inversion accuracy depends on the release time of
the peak detector and not so much on its attack time for both the
envelope and the gain filter, see Figs. 17, 18b. For the envelope filter,
all error curves exhibit a local dip around a release time of 0.5 s. The
error increases steeply below that bound but moderately with larger
values. In the proximity of 5 s, the error converges to −130 dBFS. With
regard to the gain filter, the error behaves in a reverse manner. The
curves in Fig. 18b exhibit a local peak around 0.5 s with a value of
−180 dBFS. It can further be observed in Fig. 17a that the curve for
τrel
v = 1 ms has a dip where τatt

v is close to 1 ms, i.e. where
∣∣αatt
v −αrel

v

∣∣
is minimal. This is also true for Fig. 17c and Fig. 17d: the lowest error
is where the attack and release times are identical. As a general rule,
the error that is due to the attack-release switch is smaller for the gain
filter in Fig. 18.

Looking at Fig. 19 one can see that the error decreases with thresh-
old and increases with compression ratio. At a ratio of 10 : 1 and
beyond, the RMSE scales almost exclusively with the threshold. The
lower the threshold, the stronger the error propagates between de-
compressed samples, which leads to a larger RMSE value. The RMS

detector further augments the error because it stabilizes the envelope
v(n) more than the peak detector. Clearly, the threshold level has the
highest impact on the decompressor’s accuracy.



a b c d e

Peak RMS Peak RMS Peak RMS Peak RMS Peak RMS

RMSE (dBFS) −74.4 −71.2 −97.2 −93.7 −81.0 −77.8 −76.3 −69.5 −63.2 −53.8

PSMt (PEMO-Q) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Execution time (RT) 0.54 0.53 0.40 0.44 0.47 0.49 0.48 0.50 0.54 0.54

Compression rate (%) 78.7 80.8 38.5 50.7 61.8 67.3 67.6 71.8 85.2 86.4

Iterations per sample (#) 1.04 1.02 1.00 1.01 1.07 1.06 1.05 1.03 1.09 1.04

Attack-release error rate (%) 0.05 0.09 0.01 0.01 0.02 0.04 0.01 0.03 0.14 0.51

State error rate (%) 0.02 0.03 0.01 0.01 0.01 0.02 0.02 0.03 0.03 0.05

Table 8: Performance figures obtained for real-world audio material (12 items in total)
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Figure 16: An illustrative example using an RMS amplitude detector with τv set to 5 ms, a threshold of −20 dBFS (dashed line in the upper right
corner), a compression ratio of 4 : 1, and τg set to 1.6 ms for attack and 17 ms for release, respectively. The RMSE is ca. −129 dBFS.
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Figure 17: RMSE as a function of typical attack and release times using a peak (upper row) or an RMS amplitude detector (lower row). In the left column,
the attack time of the envelope filter is varied while the release time is held constant. The right column shows the reverse case. The time
constants of the gain filter are fixed at zero. In all four cases, threshold and ratio are fixed at −32 dBFS and 4 : 1, respectively.
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Figure 18: RMSE as a function of typical attack and release times using a peak (upper row) or an RMS amplitude detector (lower row). In the left column,
the attack time of the gain filter is varied while the release time is held constant. The right column shows the reverse case. The time constants
of the envelope filter are fixed at zero. In all four cases, threshold and ratio are fixed at −32 dBFS and 4 : 1, respectively.
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Figure 19: RMSE as a function of threshold relative to the signal’s average loudness level (left column) and compression ratio (right column) using a
peak (upper row) or an RMS amplitude detector (lower row). The time constants are: τv = 5 ms, τatt
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T W O - S TA G E C A S C A D E C O N N E C T I O N

10.1 system overview

To account for a simplified but complete music production chain
that consists of mixing and mastering, the two processing steps from
Sections 7 and 9 are combined in a two-stage cascade scheme. The
corresponding encoder and decoder block diagrams are illustrated in
Figs. 22a and 22b.

10.2 cascade encoder

Fig. 22a shows the cascade connection for a practical encoder. It
contains an analysis block that computes the STPSDs, a mixdown block
representing the mixing stage, and a DRC block that represents the
mastering stage. The multiplexing block assembles the bitstream that
comprises the compressed mixture and the coded side information.
The processing steps include:

1. STFT analysis of source signals, see [87]

2. STPSD computation from magnitude-squared spectra

3. Stereo mixdown, see Section 7.3.2

4. DRC, see Algorithm 1

5. Quantization and coding of side information, see Sections 7.7
and 9.8

6. Bitstream framing

10.3 cascade decoder

A practical decoder is shown in Fig. 22b. The demultiplexing block
disassembles the bitstream into the compressed mixture and the side
information. The inverse DRC block decompresses the mixture. The
decompressed mixture is decomposed in the source separation block
with the aid of the decoded side information yielding the source sig-
nal estimates in the time domain. The processing steps include:

1. Bitstream parsing

2. Decoding (and dequantization) of side information

3. Inverse DRC using compression parameters, see Algorithm 2

4. STFT analysis of mixture channels

5. Source separation using mixing parameters and STPSDs

89
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– The number of active sources in a TF point or band and their
indices are determined by comparing the STPSD values with
the noise-floor power level (−60 dB, e.g.)

– The appropriate filter is chosen based on the number of active
sources, see Sections 7.5.1, 7.5.2, and 7.6.4

6. STFT synthesis of source signal estimates, see [87]

10.4 performance characteristics

10.4.1 Algorithmic Delay

The algorithmic delay of the cascade connection is determined by
the framing and overlap delay of the STFT and its inverse. When using
a 2048-length symmetric window with 50-% overlap between frames,
the algorithmic delay amounts to 2047 samples. This corresponds to
46.4 ms at a sampling rate of 44.1 kHz.

10.4.2 Computational Complexity

The computations performed in the cascade connection depend on
the frequency content of source signals and also the signal dynamics,
which vary from mixture to mixture. So, it is convenient to analyze
the runtime complexity for the worst-case scenario in terms of “big O”
notation. Moreover, it is desirable to establish a relationship between
the running time and the following input parameters: the number of
sources I, the number of frequency bands Z, and the transform length
N, I < Z <N. All arithmetic operations that are counted shall require
exactly one unit of time to execute. The results are shown in Table 9.
The figures reveal that the decoder’s complexity is comparable to the
complexity of the encoder. The execution time is dominated by the
I-fold STFT and its inverse.

10.4.3 Side-Information Rate

The side-information rate of the cascade connection is given by the
number of bits communicated to the decoder per time frame. These
comprise the compression parameters, the mixing parameters, and
the STPSDs. The compression parameters and the mixing parameters
are signaled to the decoder once at the beginning of the transmission.
The STPSD values are represented as Q-bit unsigned integers. Table 10

provides an overview of the capacities that are necessary to store the
STPSDs for various numbers of frequency bands. They are calculated
as

bitrate =
fs

L−M
·Q ·Z · I, (124)
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subroutine arithmetic operations

STFT analysis O(I ·N logN)

STPSD computation O(I ·N)

Stereo mixdown O(I ·N)

DRC O(N)

Quantization and coding O(I ·N)

Tenc(I,Z,N) = O(I ·N logN)

Decoding and extrapolation O(I ·Z)
Inverse DRC O(N)

STFT analysis O(N logN)

Source separation O(I ·N)

STFT synthesis O(I ·N logN)

Tdec(I,Z,N) = O(I ·N logN)

Table 9: Runtime complexity of the cascade connection as a function of the
number of sources, the number of frequency bands, and the frame
length. It is assumed that the transform length is equal to the frame
length.

where L is the frame length, M is the overlap, and fs is the sampling
frequency. The information rate is varied upon a subdivision the ERB

by an integer factor. In general, the finer the frequency resolution the
higher the observed quality of the estimates. On the other hand, the
greater the number of sources the finer is to be chosen the frequency
resolution to obtain a quality comparable to a sparser configuration.
Whatever the case, the figures in Table 10 can be drawn upon to make
an estimate for the side-information rate of the cascade connection,
as the rate of the compression and mixing parameters is comparably
negligible. 1

Table 10 also shows the STPSD rate obtained using DPCM. The latter
is implemented as follows. The probability distribution of the input
symbols is derived from the number of occurrences of each possible
difference value in a training set. It is observed that the difference
signal both in time and frequency direction, e.g., has a Laplace(µ,b)
distribution with µ≈−0.2 and b≈ 2. Then, a Huffman codebook [89]
can be generated from the input probability distribution with a mean
codeword length of 3.5 bit. This corresponds to a compression ratio of
1.7 : 1, which again means that almost twice as many source signals
can now be extracted from the mixture for the same amount of side
information.

1. In the case of an instantaneous mixture, the mixing coefficients can also be
estimated from the mixture signal using the algorithm in [88].
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subdivision

factor

number of

frequency bands

bitrate in kbps

per source

– 39 10.1 / 5.88

2 76 19.6 / 11.5

3 108 28.0 / 16.3

4 136 35.2 / 20.6

5 163 42.2 / 24.6
...

...
...

Table 10: Information rate of STPSD values (left) and STPSD difference values
using DPCM (right) if quantized with 6 bits at 44.1-kHz sample rate
and 16-kHz cutoff

parameter description value

p Type RMS

L (dBFS) Threshold −32.0

R (dBin : dBout) Ratio 3.0 : 1

τv,att (ms) Envelope attack
5.0

τv,rel (ms) Envelope release

τg,att (ms) Gain attack 13.0

τg,rel (ms) Gain release 435

M (dB) Makeup 9.0

Table 11: Compressor setting used for the complete mix

10.5 performance evaluation

10.5.1 Experimental Setup

A 2048-point FFT is employed together with a KBD window of the
same size. Succeeding frames overlap by 50 %. The cascade is tested
on an excerpt from Fort Minor’s “Remember the Name” multitrack.
The latter is decomposed into 5 mono sources and is 24 s long. The
compressor setting is shown in Table 11. To exclude a performance
bias due to quantization, the mastering and mixing parameters are
considered known at the decoder. The STPSDs are quantized with 6

bits on a 1/2-ERB frequency scale. By applying DPCM with Huffman
coding to the quantized STPSD values, the mean side-information rate
is reduced to roughly 10 kbps per source. The simulations are run in
MATLAB.

To evaluate the proposed cascade connection, the following metrics
are used: the RMSE given in dBFS and the PSM. The PSM is computed
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mixture type rmse (dbfs) snr (db)

Compressed −31.8 3.08

Compressed∗ −36.0 7.27

Decompressed −62.3 33.6

Table 12: RMSE and SNR for the three mixture signals

with PEMO-Q. In [70] it is said that PEMO-Q shows a slightly bet-
ter performance than Perceptual Evaluation of Audio Quality (PEAQ)
[78].

10.5.2 Experimental Results

The results of the experiment are illustrated in Fig. 21. The asterisk
marks the compressed mix without makeup gain, i.e. M = 0 dB. The
RMSE and the SNR for each mixture signal,

SNR, 10 log10

∑
l ‖xl‖

2∑
l ‖yl − xl‖2

, (125)

where ‖·‖ is the Euclidean norm, are given in Table 12.
It can be noted that the separated source signals exhibit relatively

high quality when the mix is uncompressed (see dashed bar). The
RMSE for the vocal reaches almost −60 dBFS while being below −40

dBFS for the rest. The decompressor’s performance is practically free
from error: the ∆RMSE and ∆PSM values for each track are close to
zero after decompression (see lower row). The RMSE level decreases,
as expected, if the makeup gain is removed from the compressed mix,
but does not reach the level of the uncompressed mix. This proves
that the waveform of the mix has been altered by the compressor.
The RMSE difference between the two compressed mixtures is so due
to scaling. On the contrary, the corresponding PSM values are equal,
which shows that the PSM metric is scale-independent.

In the given example, the PSM improvement due to decompression
is mostly evident for the bass track. For the other tracks, the PCMV

filter provides an estimate which is perceptually very similar to the
reference, even if the mix is compressed. Yet, a so-called “pumping”
coming from hard compression can be heard clearly on the vocal
track. The effect is more audible for faster attack and release. Hence,
for the used compressor setting, the decompressor is indispensable
to achieve high perceptual quality.
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M U LT I C H A N N E L O B J E C T- B A S E D A U D I O C O D I N G

11.1 introduction

Ever since the end of the last century, coding of audiovisual objects
has been of particular interest to the MPEG, and it has gained impor-
tance in recent years. Whereas the first audio coders were all channel-
based, a paradigm shift towards source-based coding was initiated by
works like [56]. A more recent example is MPEG’s SAOC, see Chapter 8,
or the work in [90]. The necessity for object-based coding in the sense
of sound sources arises when distinct audio objects are to be stored
or transmitted for the purpose of post-hoc reproduction in different
environments. So far, its application fields include remixing, video
gaming, home cinema or 3D audio, and there might be more in the
future.

The work presented here focuses on the question how a number
of given source signals or objects can be represented by a reduced
number of mixture channels and recovered using the mixture and a
small amount of metadata. The work by Faller [56] considers only
single-channel mixtures and has no means to scale the quality after
demixing. The resulting quality can so be expected to be the worst
possible, as a single-channel mixture exhibits the highest overlap be-
tween objects. Whereas in [90] Hotho et al. generalize the mixture to
more than one channel and propose to use the residual to scale the
audio quality up to perceptual transparency, there is no explicit con-
trol over the quality, except that the latter is said to improve with
the bandwidth of the residual signal by rule of thumb. Moreover, the
works in [56] and [90] evaluate the quality empirically after render-
ing the decoded objects into a prescribed format such as 5.1 surround
and are consequently bound to the sound reproduction system.

Though related to previous approaches, this work capitalizes on
quality-driven demixing which is further independent of mixing and
rendering after demixing. Moreover, the ISS approach is pursued. As it
is demonstrated in Chapter 7, an underdetermined linear mixture can
be decomposed into an arbitrary number of components by means
of spatial filtering. When the separation is carried out in the STFT

domain, the estimates show distortion in amplitude and phase. It
is clear that the amount of distortion, which is due to bleed from
other sources but also the filter response, decreases with the number
of mixture channels because the separation problem becomes better
conditioned and the array gain increases. In this chapter it is shown
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98 multichannel object-based audio coding

how these facts can be exploited to code audio objects in a controllable
way.

11.2 signal and system model

Using the STFT signal representation, the source signal components
Si(k,m), i= 1,2, . . . ,I, are circular symmetric complex normal random
variables with zero mean and a diagonal covariance matrix Rs(k,m) =

diag [Φs1(k,m),Φs2(k,m), . . . ,ΦsI(k,m)]. {Φsi(k,m)}k is the STPSD of
the ith source signal. The source signals are linearly combined into
an M-channel mixture signal (M< I) according to

x(k,m) =

I∑
i=1

aiSi(k,m) = As(k,m), (126)

where A ∈ RM×I represents an instantaneous mixing system that is
assumed real for practical reasons. This model is identical with that
from Sections 7.2 and 7.3. Equation (126) is so an extension of (13) to
M channels.

11.3 problem formulation

The problem at hand is formulated as follows. Given the mixing
rule 1 and the STPSDs of the source signals, find a low-rank signal
space representation x(k,m) which satisfies a minimum-similarity
constraint on the recovered source signals after transformation back
to the original signal space. In other words, what is the minimum
number of channels Mmin into which one can mix the source signals
and yet maintain the desired quality level after demixing? The quality
metric shall further relate to, but not model, human perception.

11.4 proposed solution

11.4.1 System Overview

The proposed coding scheme comprises an encoder and a decoder.
Its functional principle is depicted in the form of a block diagram in
Fig. 22. The analysis block performs the computation of the STPSDs

of all I source signals, as indicated by Φs. From Φs, the number of
required mixture channels M is derived that guarantees the desired
quality on the decoder side. This is accomplished through a quality
control mechanism that is discussed in Section 11.5. The STPSDs are
quantized on an ERB-log frequency-power scale and DPCM coded, see
Section 7.7.3. In addition, the Free Lossless Audio Codec (FLAC) [91]

1. The term “mixing rule” means a set of distinct relations between input and
output variables including the mixing system but also its definition
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Figure 22: The proposed coding scheme. The asterisk (∗) indicates that the
coding/decoding blocks may also include watermarking/signing
functionality.

can be used to reduce the file size of the mixture signal. When FLAC

is the coder of choice, which is “lossless”, the STPSDs can be attached
to the mixture in the form of a watermark [51, 52] before coding. Oth-
erwise, they are embedded into a serial bitstream as a supplement to
the encoded audio data. In the decoder, the demultiplexer reassem-
bles the encoded mixture signal from the bitstream and the metadata
if necessary. If lossless compression is used in the encoder, the de-
coding block may as well be followed by watermark extraction. The
decoded STPSDs accompany the source separation which is discussed
in more detail in the follow-up sections together with the mixdown.

11.4.2 Mixdown

Due to the fact that we can decide freely about the mixing rule, we
will seek to implement the mixdown such that the decomposition of
the mixture in the decoder becomes controllable and in this way the
resulting signal quality predictable. It is also highly desirable for the
signal quality not to depend on the mixing rule but on the number
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of mixture channels only. To accomplish this, one must consider how
the decomposition is carried out.

11.4.2.1 Optimum filters and second-order statistics

A spatial filter that maximizes the output SIR in the MSE sense has
the generic form [92]

wio = cR−1
x ai, (127)

c ∈ C. If the mixing matrix A and the input covariance matrix Rs are
known, Rx is also known, since

Rx = ARsAT. (128)

So, it follows that Rx is real symmetric and also positive-semidefinite.
Specific problems may require the filter’s response to be constrained
in order to obtain a better suited solution. And thus, c is formulated
differently from one filter to another. One well-known example is the
minimum-variance distortionless response (MVDR) spatial filter [93]
that has a unity-gain response with zero phase shift. The associated
weight vector is

wMVDR
io =

1

aTi R−1
x ai

R−1
x ai. (129)

The distortionless response property of the MVDR spatial filter is used
in Section 11.5 to define a similarity metric.

11.4.2.2 Signal-to-interference ratio and array gain

An estimate for the ith source component in the kth frequency bin
and the mth time segment is given by

Yi(k,m) = wH
i x(k,m). (130)

The corresponding STPSD value is

Φyi(k,m) = E
[
|Yi(k,m)|2

]
= wH

i Rx(k,m)wi. (131)

Using (128), (131) can also be written as

Φyi(k,m) =
∣∣wH
i ai
∣∣2Φsi(k,m)︸ ︷︷ ︸

signal of interest

+

I∑
l=1,l 6=i

∣∣wH
i al
∣∣2Φsl(k,m)︸ ︷︷ ︸

,Φbi(k,m)

residual interference or bleed

. (132)
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The output SIR is then

SIRout
i (k,m) =

Φsi(k,m)
I∑

p=1,p6=i
Φsp(k,m)︸ ︷︷ ︸

,SIRin
i (k,m)

·

∣∣wH
i ai
∣∣2 I∑
p=1,p6=i

Φsp(k,m)

I∑
q=1,q6=i

∣∣wH
i aq

∣∣2Φsq(k,m)︸ ︷︷ ︸
,Gi(k,m)>1

,

(133)

where SIRin is the input SIR and G is the array gain. The latter can be
shown to be

Gi(k,m) =

[
aTi R−1

x (k,m)ai
]2 I∑
p=1,p6=i

Φsp(k,m)

I∑
q=1,q6=i

[
aTi R−1

x (k,m)aq
]2
Φsq(k,m)

(134)

for real A and real or complex c. As can be seen from (134), the array
gain is a function of the mixing system and the STPSDs.

11.4.2.3 Mixing system

The mixing system is designed as an M-element vertical line array
and the ith source is associated with an angle αi,

αi =
π

I+ 1
· i for i= 1,2, . . . ,I. (135)

α can be thought of as the angle between the propagation path and
the normal to the array axis in a two-dimensional sound field. The
mixing coefficients are calculated as

al+1,i = cos(lαi) for l= 0,1, . . . ,M− 1, (136)

where cos(lα) represents an lth-order Chebyshev polynomial in cosα.
As a direct consequence of (135) A has linearly independent columns,
and because of (136) A is real and has full row rank. However, ‖ai‖ 6=
‖al‖ if i 6= l. Note that the mixing rule can be chosen arbitrarily so
long as the resulting vectors are linearly independent. The above rule
is simple and also allows for a geometric interpretation.

As previously stated, it is highly desirable that the quality of the
estimates is independent of the mixing rule. It is hence vital to make



102 multichannel object-based audio coding

sure that the output SIR is the same across all sources. This is accom-
plished with Algorithm 4 which under the assumption that the I mix-
ture components are i.i.d. and standard normal, and with knowledge
of the mixing rule, provides the input weights that yield an equal
output SIR. In this way, one compensates for differences in “radiation”
patterns. 2

Algorithm 4 Equal-SIRout power distribution

function Powdist(I,M,ε)
for i← 1,I do
αi← π/(I+ 1) · i
for l← 0,M− 1 do
al+1,i← cos(lαi)

end for
Φbi ← 1

end for
oldcost← 0

cost←∞
while |cost− oldcost|> ε do

for i← 1,I do
ρi←Φbi/

∑I
l=1Φbl

end for
Rx←

∑I
i=1ρiaia

T
i

oldcost← cost

cost← 0

for i← 1,I do
Φyi ← 1/

(
aTi R−1

x ai
)

Φbi ←Φyi − ρi
SIRout

i ← ρi/Φbi
l←max(i− 1,1)
cost← cost+

∣∣SIRout
i − SIRout

l

∣∣
end for

end while
return (ρ1,ρ2, . . . ,ρI)

end function

11.4.3 Source Separation

Equations (126), (135), and (136) constitute the mixing rule that is
used on the encoder side during mixdown. Having knowledge of
this rule on the decoder side means knowing the mixing matrix A,
provided that the number of objects I is known. The transmission of

2. Algorithm 4 uses the MVDR spatial filter to estimate Φyi



11.5 quality control mechanism 103

the mixing coefficients can hence be omitted. Using (127), (128), and
(130), we can formulate a joint demixing operation being

y(k,m) = WTx(k,m). (137)

Moreover, as the local constellation of mixture components changes
with time and frequency, we distinguish between inactive and active
TF points (k,m). Active points can be determined, overdetermined or
underdetermined. The number of components in a TF point, denoted
as I(k,m), and also their indices can be inferred from the signaled
STPSDs, {Φs(k,m)}k. Taking all this into account, the demixing matrix
W for an active TF point (k,m) is given by

WT =


A+ if I(k,m)<M

A−1 if I(k,m) =M

diag(ci)
I(k,m)
i=1 ATR−1

x (k,m) if I(k,m)>M

(138)

∀(k,m), where A+ is the Moore–Penrose pseudoinverse and

ci =

√
Φsi(k,m)

aTi R−1
x (k,m)ai

(139)

is the magnitude response of the PCMV spatial filter, see Section 7.5.2.
As c ∈R, the phase response of the PCMV filter is free of distortion. 3

Equation (139) can also be derived by plugging (127) into (131) and
solving (131) for |ci| so that Φyi =Φsi .

11.5 quality control mechanism

11.5.1 Quality Metrics

We define a similarity index (SIX) according to

SIXi(z,m) =

{
1− min

[
|Φyi(z,m) −Φsi(z,m)|

Φsi(z,m)
,1
]}

·
Φyi(k,m) −Φbi(z,m)

Φyi(z,m)
,

(140)

SIX ∈ [0,1], where z is the band index on an ERB-like frequency scale,
see Section 7.7.3. For the PCMV filter, (140) simplifies to

SIXPCMV
i (z,m) =

Φsi(z,m)

ΦMVDR
yi

(z,m)

=Φsi(z,m)aTi R−1
x (z,m)ai. (141)

3. Phase distortion at the output is subject to bleed only
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The relation between SIRout and SIXPCMV is given by

SIRout
i (z,m) =

Φsi(z,m)

ΦMVDR
yi

(z,m) −Φsi(z,m)

=
Φsi(z,m)/ΦMVDR

yi
(z,m)

1−Φsi(z,m)/ΦMVDR
yi

(z,m)

=
SIXPCMV

i (z,m)

1− SIXPCMV
i (z,m)

, (142)

which is invertible. For numerical reasons, however, it is advisable to
convert SIX to SIRout first, and to limit the range of SIRout to ±60 dB
afterwards. By weighting the SIX metric by frequency and fractional
input power, we obtain another metric:

SIXFPi(m) =

∑
zΦsi(z,m)SIXi(z,m)∑

zΦsi(z,m)
. (143)

In case of the PCMV spatial filter, SIRFPout
i (m) can also be computed

from SIXFPi(m) using (142). The overall value is finally calculated as
the mean over the time segments in which the composite input signal
power is significant:

SIXFPi =
1

|M|

∑
m∈M

SIXFPi(m), (144)

where M = {m |
∑
zΦsi(z,m)>Φmin} and Φmin is an empirical lower

bound.

11.5.2 Control Mechanism

As the SIXFP is a measure of similarity between the original and the
estimated components, it can be used to predict the signal quality at
the output before the final mixdown. For this, the local covariance ma-
trix in (141) is computed as in (128) from the quantized STPSDs which
are available after analysis and the tentative mixing coefficients. One
starts with the lowest possible value for M, which is 2, and increases
M until the desired SIXFP value is reached. For M = I, perfect recon-
struction is expected. The stop condition can be defined globally for
the entire signal or locally for a segment. One can also have a single
condition for all objects or a separate condition for each one of them.
One could ask that, e.g., the SIXFP value for any object is above a given
threshold.

11.6 performance evaluation

11.6.1 Experimental Setup

The testing framework from Chapter 7 is used. The number of fre-
quency bands is set to 76, which results in a mean side-information
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rate of 11.5 kbps per object at a sampling rate of 44.1 kHz. The pro-
posed scheme is tested on a 10-track excerpt of 20 s length from Fort
Minor’s “Remember the Name” recording. All tracks are converted
to mono. FLAC is used to code the mixture, which is not watermarked.
The resulting audio quality is evaluated for 2–9 mixture channels.

11.6.2 Experimental Results

The results of the experiment are depicted in Fig. 23. It can be seen
that for imperceptible quality impairment correspondent to PEMO-
Q’s ODG metric, one requires that SIXFP > 0.99 or SIRFP > 48.0 dB.
This corresponds to 7 channels for the given multitrack. Further, it
can be noted that ∆SIRFP ≈ 6 · ∆M, i.e., the SIRFP value increases
roughly by 6 dB with each additional channel. The data-rate savings
due to downmixing equal 1 −M/I. They amount to 0.3 in the above
example, see the LPCM curve. Yet the lower curve says that coding the
10 mono tracks with FLAC separately is more efficient than coding the
7 channels so long as interchannel redundancy is not minimized. Even
so, according to informal listening tests, perceptual transparency is
already attained with 5 channels. In that case, the proposed scheme
provides savings of 0.5 for the uncoded LPCM mixture or 0.2 when
coded with FLAC. The ratio of side information to FLAC-coded audio
data is 0.14 or less, and scales with the channel number M.
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Part IV

C O N C L U S I O N





12
C O N C L U S I O N A N D F U T U R E O U T L O O K

12.1 conclusion

The proposed two-stage cascade is based on a simplified model of
the music production chain consisting of a summation of amplitude-
panned and possibly equalized single-channel or two-channel tracks
in the mixing stage and dynamic range compression in the mastering
stage. Although one can certainly argue that commercial releases are
more complex than this, as for instance that in electronic music more
sophisticated compressors are employed or no compression at all as
in classical or acoustic music—albeit “transparent” compression may
still be applied, the cascade should be viewed as a “blueprint” rather
than a “standard”. As an example, compression can be avoided easily
by setting the threshold to 0 dBFS or by “bypassing” the compressor
and the decompressor. With regards to electronic and also pop/rock
music, it should be possible to determine the characteristic function
of the respective compressor and to solve it using the approach from
Chapter 9.

The upper performance bound of the cascade is mainly due to the
sound complexity of commercial music. Notably, it is depending on
by how much the frequency spectra of constituent tracks overlap and
how the sources are distributed in the sound field. The sound quality
after demixing is subject to the so-called “array gain”. It is shown to
be a function of a) the STPSDs and b) the mixing system, see Chapter
11. As a general rule, the less the said frequency spectra overlap and
the further apart they are positioned in space the better the resulting
sound quality. Yet both constraints are barely met. Tracks in a music
piece are either in the same key, or their keys are relative, or they are
in a subdominant or dominant relationship. So, stringed instruments
have a high number of interfering harmonics in the mix. Percussion
instruments on the other hand cover a broad range of frequencies. In
addition, traditional source positioning is such that the main sources
are near the center, and thus very close to each other. When multiple
sources are in one direction, they can only be distinguished by their
spectral envelope but not their direction, which diminishes quality as
well.

The knowledge of the mixing and the mastering can be viewed as a
shortcoming of the scheme, rendering it hardly applicable to existent
music releases, for which that sort of information is unavailable. And
although tools such as the non-negative matrix factorization [94, 95]
to learn the spectrograms from the mix do exist, their performance is
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limited. First, because the said factorization is not unique and second,
the cost function is non-convex. In the proposed scheme, like in any
other model-based scheme, a deviation from the true parameters will
cause an additional error in the result. The decoder is most effective
when supplied with very accurate information by an accompanying
encoder—or an estimator.

The results obtained in Chapter 7 allow the following conclusions
to be drawn. The proposed algorithm is capable of providing source
signal estimates that are perceptually closer to the originals than any
published algorithms of similar type. It should also be noted that the
algorithm does not impose any restrictions on the number of sources
and neither on their spectral overlap. On the contrary, it adapts to a
given signal constellation and provides the best estimates respecting
a power constraint in linearithmic time. Bearing high resemblance to
the original signals at a fairly tolerable side-information rate around
10 kbps per source or channel, the algorithm is well-suited for active
listening applications in real time. The power-conserving minimum-
variance filter performs perceptually better than a Wiener-type filter
for an instantaneous and a narrowband convolutional mixture alike.
The equal-power constraint ensures that the recovered replica retain
the timbre and the auditory bandwidth of the originals. Also, it was
observed that noisy estimates are more appreciated by the listener in
comparison to “perforated” or “dull” sounding replica. With regard
to spectrogram coding, JPEG compression gives better results than the
NMF at a bitrate above 10 kbps. Below, the NMF seems more efficient.
With the proposed approach, the mix can be decomposed into sep-
arate tracks or into foreground objects plus the background and in
the same manner one can separate the vocal from the instrumental
for karaoke. Further, it is possible to extract spatial images of sources
without changing their location. The two channels of a stereo source
can be modeled as uncorrelated to save on computation and data rate.
In that case, the algorithm is most effective when the foreground ob-
jects are all single-channel and only the background has two channels
(two distinct mono sources). Better results than those presented in the
recent SiSEC should be possible with given covariances for the stereo
sources. But, of course, at a higher side-information rate. Beyond, ISS

can be viewed as a new formalism for a known coding principle for
it has the following advantages. It has a modular framework that is
backward compatible on the one hand and also upward extensible
on the other hand. The PCMV filter, e.g., can be generalized to an arbi-
trary number of mixture channels, see Chapter 11, including multiple
constraints. It was moreover observed that a frequency-weighted SNR

can provide results just as reliable as any other metric that models hu-
man perception—but at a much lower computational cost. Neverthe-
less, the inconsistency between different performance metrics makes
listening tests indispensable still.
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The conclusions drawn from Chapter 8 are the following. EAOS is
an MMSE estimator with a unnecessarily complicated residual coding
strategy. This allows the conclusion that the MPEG SAOC decoder can
be simplified. One may also infer that the entire SAOC system would
improve, if the MMSE estimator was replaced by the PCMV filter. This
is yet to be confirmed. A linear estimator’s performance is bounded
if the mixture is underdetermined due to its limited resolution. This
gives rise to the necessity to provide the residual for a better quality.
Other methods like [96] may also help. The sound quality of a remix
is largely satisfactory if the mix is not lossy compressed. The quality
noticeably degrades otherwise. It was also observed that the result is
better when a fraction of the bit rate for the estimator is sacrificed in
favor of a higher residual rate for the same overall data rate. Hybrid
audio coding, such as aacPlus, is more efficient but also more costly
and so suboptimal for real-time rendering and handheld devices.

The following Chapter 9 reveals that by knowing the parameters
that were used for compression it is possible to recover the “dry” or
uncompressed signal from the “wet” or compressed signal with high
numerical accuracy and low computational effort. The figures prove
that the SISO decompressor is real-time capable. This fact is exploited
in Chapter 10. There, the decompressor is extended to two channels
and combined with the PCMV estimator into a two-stage cascade that
reverses mastering and mixing separately. If compression is undone
with a negligible error, the demixed signals are almost identical with
the ones obtained from an uncompressed mix. The decompressor is
necessary to avoid artifacts such as “pumping”, which might not be
heard in the mix. Its accuracy could also be pivotal when effects like
“reverb” are to be considered in the demixing stage.

Finally, Chapter 11 tells us that the sound quality is dependent on
the array gain which increases with the number of mixture channels.
For coding applications, the mixing system can be defined arbitrarily
and a number of distinct tracks can be mixed into a lower number of
channels in such a way that they exhibit the same SIR at the decoder.
The sound quality can be foretold at the encoder. Hence, the number
of channels can be chosen before actual mixing and the quality level
after demixing can be controlled.

12.2 future outlook

Future work could consist in inverting other effects such as reverb
in particular. The results could also be used in other disciplines with
speech dereverbertion being one such example. The problem there is
that the narrowband assumption does not hold anymore. One could
also consider time-varying mixing and study its impact. Further, it is
worth studying the effects of parameter quantization on the system’s
performance. How precise should the panoramic angle be? The used
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coding strategy for spectrograms could also be compared with other
strategies for the MMSE and the PCMV filter separately. In this manner,
one could better quantify the differences. Another possible direction
is the estimation of compression parameters from the compressed
signal given the uncompressed signal. One may also want to derive
the characteristic function of more sophisticated compressor models
which use a “soft” knee, parallel and multiband compression, etc. See
[15, 83, 97, 98] and the references therein. Also, it might be interesting
to see whether the decompressor is capable of restoring dynamics in
over-compressed audio, see [99, 100, 101].

With regard to the cascade connection, one could study the effects
that lossy data compression such as MP3 or AAC [102] brings along. It
should behave similarly to high-capacity watermarking. In addition,
the two-stage cascade should be tested on a larger dataset—and also
with different compressor types and settings. Besides, it is thinkable
to combine multiple constraints in the demixing stage if the mixture
has more than two channels. This brings us to multichannel coding,
i.e. the end. With the proposed scheme one would probably achieve
higher data-rate savings if the redundancy between channels is also
taken into account. Auditory perception is also something that could
be considered in the scheme. One last direction worth mentioning is
to find a direct mapping between the proposed metrics and, e.g., the
corresponding mean opinion scores.
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A
S I G N A L AT T E N U AT I O N W I T H W I E N E R F I LT E R I N G

Based on the signal model from Section 7.2, the Wiener alias MMSE

spatial filter, for an arbitrary frequency bin and for the duration of an
arbitrary time segment, can be reformulated as

wio = R−1
x aiσ2i
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where detRx is the determinant and adjRx the adjugate of Rx. Above,
ρil = det [ ai al ] = aTl Qai with Q =

[
0 1

−1 0

]
. detRx further unfolds to
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The gain along the source’s direction is
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In the ill-posed case, i.e. for I > 2, it can be noted that 06 ρ2il,ρ
2
uv < 1,

and since σ2l ,σ2v > 0, the following inequalities hold true:
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The gain in (147) hence simplifies to
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Equation (149) underlines that just like the classical Wiener filter, the
spatial counterpart also attenuates the output signal at the attempt to
minimize the MSE in TF points with a poor SIR. At worst, it may leave
an audible spectral gap.



B
M O D E L PA R A M E T E R E S T I M AT I O N

Consider the stereo image of a distinct source as given. From the
stereo signal one can estimate the model parameters that are used as
additional prior information for source separation. These parameters
describe the source’s location and how the signal power or variance
is distributed over time and frequency.

First, one computes the zero-lag cross-covariance between the left
and the right channel, and normalizes the former by the product of
average powers in each channel using the RMS as measure:

corr(u1i,u2i) =
cov(u1i,u2i)
RMS1iRMS2i

, (150)

where the sample covariance is defined as

cov(u1i,u2i) =
1

N

N∑
n=1

u1i(n)u
∗
2i(n) (151)

with ∗ denoting complex conjugation. The RMS is given by

RMSli =

√√√√ 1

N

N∑
n=1

u2li(n). (152)

When the source signal has zero mean, corr is identical with Pearson’s
correlation. The computation of (150) may be carried out in either the
subband domain or the time domain. In the latter case, uli(n) is real.
The sample size N corresponds to the signal duration over which it
can be considered wide-sense stationary and ergodic. The correlation
coefficient corr may also be computed on a sample basis assuming
non-stationarity. Then, if the sample variance

var {corrn (u1i,u2i)}

=
1

N

N∑
n=1

[corrn (u1i,u2i) − corrn(u1i,u2i)]
2

→ 0,

(153)

where

corrn(u1i,u2i) =
1

N

N∑
n=1

corrn (u1i,u2i), (154)

the source is considered as single-channel and its panoramic angle is
estimated according to

α̂i = arccot
RMS2i
RMS1i

, (155)
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where arccot is the arccotangent. In the reverse case, i.e. if the source
is two-channel, its balance ratio is estimated as

â¬ref,i =
RMS¬ref,i

RMSref,i
with aref,i = 1, (156)

where ref ∈ {1,2} is the channel with the greater RMS value and ¬ref
is the channel with the smaller RMS value, respectively. The STPSD of
a mono source or a stereo channel is finally estimated according to

Φ̂si(k,m) =
∣∣Ŝi(k,m)

∣∣2, (157)

where

Ŝi(k,m) =
[
sin α̂i cos α̂i

]
ui(k,m) (158)

in the case of a mono source, or else

Ŝref,i(k,m) =Uref,i(k,m) (159a)

and

Ŝ¬ref,i(k,m) =


U¬ref,i(k,m)

â¬ref,i
if â¬ref,i 6= 0,

0 otherwise,
(159b)

in the case of a stereo source.



C
I N V E RT I B I L I T Y O F A C O M P R E S S O R W I T H
L O O K A H E A D

The output of a compressor with a delay line in the main signal
path is given by

y(n) = g(n)x(n− d) with m= 1, (160)

where d is the delay in samples. Making the substitution l= n− d in
(160), the above equation can be restated as

|x(l)|=
|y(l+ d)|

g(l+ d)
. (161)

Also recall that

g(l+ d) = G [|x(l+ d)| | θ, x̃(l+ d− 1),g(l+ d− 1)], (162)

where x(l+ d) represents the sidechain signal, which is not delayed.
From (161), one can see that to find |x(l)| one requires:

1. A future sample of |y|, namely |y(l+ d)|.

2. A future sample of g, namely g(l+ d).

For n = 0,1, . . . ,d− 1, |y(l+ d)| can be assumed zero due to causality,
and thus known. Equation (162) yet says that to compute g(l+d), one
requires a future sample of x̃, which is unknown. More precisely,

x̃(l+ d− 1) = αv|x(l+ d− 1)|
p + (1−αv)x̃(l+ d− 2). (163)

Evidently, one requires |x(l+ d− 1)| to compute g(l+ d) as well. For
the very first non-zero sample of x, i.e. for n= d or l= 0,

x̃(d− 1) = αv|x(d− 1)|
p + (1−αv)x̃(d− 2). (164)

Neither |x(d− 1)| is known at instant l= 0, nor do we know anything
about |x(l)| for l > 0. If |x(0)| were known, we wouldn’t have to look
for it. Also note that (160) can no longer be expressed as an equation
of a single unknown. Hence, the question of invertibility is subject to
causality, which is only given for d= 0.
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