Divergence-free and Curl-free Wavelets on $[0, 1]^d$ with related applications

Souleymane Kadri-Harouna

FLUMINANCE-Centre de recherche INRIA Rennes, Bretagne Atlantique

Motivations

2 Divergence-free and curl-free wavelets on $[0,1]^2$

- Principle of the construction
- Biorthogonal wavelet bases on [0,1]
- Wavelet bases for $\mathcal{H}_{div}(\Omega)$ and $\mathcal{H}_{curl}(\Omega)$

Motivations

Divergence-free and curl-free wavelets on $[0,1]^2$

- Principle of the construction
- Biorthogonal wavelet bases on [0, 1]
- Wavelet bases for $\mathcal{H}_{div}(\Omega)$ and $\mathcal{H}_{curl}(\Omega)$

3 Related applications

- Divergence-free vector field analysis
- Helmholtz-Hodge decomposition by wavelets
- Navier-Stokes simulation

Motivations

Divergence-free and curl-free wavelets on $[0,1]^2$

- Principle of the construction
- Biorthogonal wavelet bases on [0,1]
- Wavelet bases for $\mathcal{H}_{div}(\Omega)$ and $\mathcal{H}_{curl}(\Omega)$

3 Related applications

- Divergence-free vector field analysis
- Helmholtz-Hodge decomposition by wavelets
- Navier-Stokes simulation

Conclusion and Outlook

Motivations

• Electromagnetism :

An electromagnetic field ${\bf E}$ that vanishes quickly at infinity can be decomposed as :

 $\mathbf{E} = \mathbf{B} + \nabla \Phi$

 Φ electric potential and ${\bf B}$ magnetic field which satisfies the Gauss law :

$$\oint \mathbf{B} = 0 \qquad \Rightarrow \qquad \nabla \cdot \mathbf{B} = 0$$

• Incompressible fluid :

Let **v** be the velocity of a fluid confined in $\Omega \subset \mathbb{R}^d$, we have :

$$rac{d}{dt}V(t)=\int_{\partial\Omega(t)} {f v}\cdot {f ec n}=\int_{\Omega(t)}
abla\cdot {f v}$$

Volume variation = Integral of the velocity flux

The incompressibility condition gives :

$$\frac{d}{dt}V(t) = 0 \qquad \Rightarrow \quad \mathbf{div}(\mathbf{v}) = \nabla \cdot \mathbf{v} = \sum_{i=1}^{d} \frac{\partial \mathbf{v}_i}{\partial x_i} = 0$$

More general : Helmholtz-Hodge Decomposition [Girault-Raviart 86]

• For $\mathbf{u} \in (L^2(\Omega))^d$, $\Omega \subset \mathbb{R}^d$ a *regular* open subset, we have :

 $\mathbf{u} = \nabla \wedge \chi + \nabla q + \mathbf{h} \rightarrow unique$

with

 $abla \cdot (\nabla \wedge \chi) = 0, \quad \nabla \wedge (\nabla q) = 0, \quad \nabla \cdot h = 0 \quad \text{and} \quad \nabla \wedge h = 0$

• In terms of spaces, we obtain :

 $(L^{2}(\Omega))^{d} = \mathcal{H}_{div}(\Omega) \oplus \mathcal{H}_{curl}(\Omega) \oplus \mathcal{H}_{har}(\Omega) \rightarrow \text{orthogonal sum}$

where

$$\mathcal{H}_{div}(\Omega) = \{ \mathbf{u} \in (L^2(\Omega))^d ; \nabla \cdot \mathbf{u} = 0 \text{ and } \mathbf{u} \cdot \vec{\mathbf{n}} = 0 \text{ on } \partial\Omega \}$$

 $\vec{\mathbf{n}}$ unit outward normal to $\partial \Omega$.

 $\mathcal{H}_{curl}(\Omega) = \{\nabla q \ ; \ q \in H^1_0(\Omega)\} \text{ and } \mathcal{H}_{har}(\Omega) = \{\nabla q \ ; \ q \in H^1(\Omega) \text{ and } \Delta q = 0\}$

1 Motivations

Divergence-free and curl-free wavelets on $[0,1]^2$

- Principle of the construction
- Biorthogonal wavelet bases on [0,1]
- Wavelet bases for $\mathcal{H}_{div}(\Omega)$ and $\mathcal{H}_{curl}(\Omega)$

B Related applications

- Divergence-free vector field analysis
- Helmholtz-Hodge decomposition by wavelets
- Navier-Stokes simulation

Conclusion and Outlook

Principle of the construction

- (i) Starting with 1D regular biorthogonal MRA of $L^2(0,1)$: (V_j^1, \tilde{V}_j^1) .
- (*ii*) Construct a 1D biorthogonal MRA (V_i^0, \tilde{V}_i^0) linked to (V_i^1, \tilde{V}_i^1) by :

$$rac{d}{dx}V_j^1=V_j^0$$
 and $rac{d}{dx} ilde V_j^0\subset ilde V_j^1,$ with $ilde V_j^0\subset H_0^1(0,1)$

 $(\it iii)$ Construct divergence-free and curl-free MRAs by :

 $\mathbf{V}_{j}^{div} = \mathbf{curl}[V_{j}^{d} \otimes V_{j}^{d}] \text{ and } \mathbf{V}_{j}^{curl} = \mathbf{grad}[V_{j}^{d} \otimes V_{j}^{d}]$ where $:V_{j}^{d} = V_{j}^{1} \cap H_{0}^{1}(\Omega).$

 $\longrightarrow div[curl(u)] = 0 \quad \text{and} \quad curl[grad(u)] = 0$

1 Motivations

Divergence-free and curl-free wavelets on $[0,1]^2$

- Principle of the construction
- Biorthogonal wavelet bases on [0,1]
- Wavelet bases for $\mathcal{H}_{div}(\Omega)$ and $\mathcal{H}_{curl}(\Omega)$

B Related applications

- Divergence-free vector field analysis
- Helmholtz-Hodge decomposition by wavelets
- Navier-Stokes simulation

Conclusion and Outlook

(i) Biorthogonal wavelet bases on [0,1]

[Monasse-Perrier 98, Talocia-Tabacco 00]

Biorthogonal Multiresolution Analyses (BMRAs) of $L^2(0,1)$:

• $V_{j_0} \subset \cdots \subset V_j \subset V_{j+1} \cdots \subset L^2(0,1)$ and $\tilde{V}_{j_0} \subset \cdots \subset \tilde{V}_j \subset \tilde{V}_{j+1} \cdots \subset L^2(0,1)$

$$ullet \ \overline{\cup V_j} = L^2(0,1) ext{ and } \overline{\cup ilde V_j} = L^2(0,1)$$

•
$$\forall j \geq j_0, \quad L^2(0,1) = V_j \oplus \tilde{V}_j^{\perp}$$

•
$$V_j = \operatorname{span} < \varphi_{j,\ell}^{\flat} = 2^{\frac{j}{2}} \varphi_{\ell}^{\flat}(2^j x), \varphi_{j,k} = 2^{\frac{j}{2}} \varphi(2^j x - k), \varphi_{j,\ell}^{\sharp} = 2^{\frac{j}{2}} \varphi_{\ell}^{\sharp}(2^j - 2^j x) >$$

- $\varphi_{j,k}$ interior scaling functions whose support is included in [0, 1]. - $\varphi_{j,\ell}^{\flat}$ edge scaling functions at left and $\varphi_{j,\ell}^{\sharp}$ edge scaling functions at right.

 \rightarrow the space \tilde{V}_j has the same structure (edge and interior scaling functions).

(i) Biorthogonal wavelet bases on [0, 1]

Biorthogonal wavelet bases :

• Bases for the detail spaces : $W_j = V_{j+1} \cap \tilde{V}_j^{\perp}$ and $\tilde{W}_j = \tilde{V}_{j+1} \cap V_j^{\perp}$.

•
$$W_j = \operatorname{span} < \psi_{j,\ell}^\flat = 2^{\frac{j}{2}} \psi_\ell^\flat(2^j x), \psi_{j,k} = 2^{\frac{j}{2}} \psi(2^j x - k), \psi_{j,\ell}^\sharp = 2^{\frac{j}{2}} \psi_\ell^\sharp(2^j - 2^j x) > 0$$

 \rightarrow the space \tilde{W}_j has the same structure (edge and interior wavelets).

Finite dimensional space :

$$\#V_j = \#\widetilde{V}_j = I_j < +\infty$$
 and $\#W_j = \#\widetilde{W}_j = 2^{ij}$

Biorthogonal B-Spline wavelets (3 vanishing moments) Primal internal scaling function (left) and wavelet (right) :

Dual internal scaling function (left) and wavelet (right) :

Biorthogonal Edge Scaling Functions (B-Spline 3.3) Primal edge scaling functions of V_j :

Dual edge scaling functions of \tilde{V}_j :

Biorthogonal Edge Wavelets (B-Spline 3.3) Primal edge wavelets of W_i :

Dual edge wavelets of \tilde{W}_j :

(ii) BMRAs on [0,1] linked by differentiation

Malgouyres-Lemarié's fundamental theorem : [Lemarié 92]

Let (φ^1, ψ^1) be 1D compactly supported scaling function and wavelet, with $\varphi^1 \in C^{1+\epsilon}$. There exists (φ^0, ψ^0) compactly supported scaling function and wavelet such that :

$$(\varphi^{1}(x))' = \varphi^{0}(x) - \varphi^{0}(x-1)$$
 and $(\psi^{1}(x))' = 4\psi^{0}$

The associated spaces in whole ${\mathbb R}$ satisfy :

$$rac{d}{dx}V_j^1(\mathbb{R})=V_j^0(\mathbb{R})$$
 and $rac{d}{dx}W_j^1(\mathbb{R})=W_j^0(\mathbb{R})$

For the duals : $(\tilde{\varphi}^0(x))' = \tilde{\varphi}^1(x+1) - \tilde{\varphi}^1(x)$ and $(\tilde{\psi}^0(x))' = -4\tilde{\psi}^1$.

Quadratic and linear Spline linked by differentiation Quadratic Spline φ^1 (left) and ψ^1 (right) :

Linear Spline φ^0 (left) and ψ^0 (right) :

(ii) BMRAs on [0,1] linked by differentiation

Adaptation to the interval $\left[0,1\right]$:

• Jouini-Lemarié (1993) provide a theoretical construction that conserves :

$$rac{d}{dx}V_j^1=V_j^0$$
 and $rac{d}{dx}W_j^1=W_j^0$

• Kadri-Perrier (2010) provide a practical construction that satisfies :

$$2^{-j}(\psi_{j,k}^1)' = \psi_{j,k}^0$$

 \longrightarrow Even for the edge wavelets

Biorthogonal Scaling Functions from derivation/integration • V_i^0 primal edge scaling functions (derivative space) :

• \tilde{V}_i^0 dual edge scaling functions (integrated space) :

Biorthogonal Wavelets from derivation/integration • W_i^0 edge primal wavelet from derivation :

• \tilde{W}_{i}^{0} dual edge wavelet from integration :

1 Motivations

Divergence-free and curl-free wavelets on $[0,1]^2$

- Principle of the construction
- Biorthogonal wavelet bases on [0,1]
- Wavelet bases for $\mathcal{H}_{div}(\Omega)$ and $\mathcal{H}_{curl}(\Omega)$

B Related applications

- Divergence-free vector field analysis
- Helmholtz-Hodge decomposition by wavelets
- Navier-Stokes simulation

Conclusion and Outlook

(iii) Wavelet basis for $\mathcal{H}_{div}(\Omega)$

• Divergence-free Multiresolution Analysis \mathbb{V}_{i}^{div} :

$$\mathbb{V}_{j}^{div}= ext{span}<\Phi_{j,oldsymbol{k}}^{div};\ oldsymbol{k}\in I_{j}^{2}>,\quad j\geq j_{0}$$

 \bullet Divergence-free scaling functions on $[0,1]^2$:

$$\Phi_{j,\mathbf{k}}^{div} = \operatorname{curl}[\varphi_{j,k_{1}}^{d} \otimes \varphi_{j,k_{2}}^{d}] = \begin{vmatrix} \varphi_{j,k_{1}}^{d} \otimes (\varphi_{j,k_{2}}^{d})' \\ -(\varphi_{j,k_{1}}^{d})' \otimes \varphi_{j,k_{2}}^{d} \end{vmatrix}, \quad \varphi_{j,k}^{d} \in V_{j}^{d} = V_{j}^{1} \cap H_{0}^{1}$$

$$(\operatorname{As}: \frac{d}{dx}V_{j}^{1} = V_{j}^{0})$$

$$\longrightarrow \quad \mathbb{V}_{j}^{div} = (V_{j}^{1} \otimes V_{j}^{0}) \times (V_{j}^{0} \otimes V_{j}^{1}) \cap \mathcal{H}_{div}(\Omega) \longrightarrow \operatorname{FWT}!$$

• Anisotropic divergence-free wavelets on $[0,1]^2$:

$$\Psi_{\mathbf{j},\mathbf{k}}^{div} = \operatorname{curl}[\psi_{j_1,k_1}^d \otimes \psi_{j_2,k_2}^d] = \begin{vmatrix} 2^{j_2} \psi_{j_1,k_1}^d \otimes \psi_{j_2,k_2}^0 \\ -2^{j_1} \psi_{j_1,k_1}^0 \otimes \psi_{j_2,k_2}^d \end{vmatrix} \quad (\psi_{j,k}^0 = 2^{-j} (\psi_{j,k}^1)')$$
$$\mathbf{j} = (j_1, j_2), \text{ with } j_1, j_2 \ge j_0.$$

Divergence-free function basis (vector field) Scaling functions :

Wavelets :

(iii) Wavelet basis for $\mathcal{H}_{curl}(\Omega)$

• Curl-free Multiresolution Analysis \mathbb{V}_i^{curl} :

$$\mathbb{V}_{j}^{curl} = \operatorname{span} < \Phi_{j,\mathbf{k}}^{curl}; \ \mathbf{k} \in I_{j}^{2} >, \quad j \ge j_{0}$$

 \bullet Curl-free scaling functions on $[0,1]^2$:

$$\Phi_{j,\mathbf{k}}^{curl} = \nabla [\varphi_{j,k_1}^d \otimes \varphi_{j,k_2}^d] = \begin{vmatrix} (\varphi_{j,k_1}^d)' \otimes \varphi_{j,k_2}^d \\ \varphi_{j,k_1}^d \otimes (\varphi_{j,k_2}^d)' &, \quad \varphi_{j,k}^d \in V_j^d = V_j^1 \cap H_0^1(\Omega) \\ (\operatorname{As} : \frac{d}{dx}V_j^1 = V_j^0) \\ \longrightarrow \quad \mathbb{V}_i^{curl} \subset (V_i^0 \otimes V_j^1) \times (V_j^1 \otimes V_j^0) \cap \mathcal{H}_{div}^{\perp}(\Omega) \longrightarrow \operatorname{FWT} !$$

• Anisotropic curl-free wavelets on $[0, 1]^2$:

$$\Psi_{\mathbf{j},\mathbf{k}}^{curl} = \nabla[\psi_{j_1,k_1}^d \otimes \psi_{j_2,k_2}^d] = \begin{vmatrix} 2^{j_1}\psi_{j_1,k_1}^0 \otimes \psi_{j_2,k_2}^d \\ 2^{j_2}\psi_{j_1,k_1}^d \otimes \psi_{j_2,k_2}^0 \end{vmatrix} \quad (\psi_{j,k}^0 = 2^{-j}\frac{d}{dx}\psi_{j,k}^1)$$
$$\mathbf{j} = (j_1, j_2), \text{ with } j_1, j_2 \ge j_0.$$

Curl-free function basis (vector field) Scaling functions :

Wavelets :

1 Motivations

2 Divergence-free and curl-free wavelets on $[0,1]^2$

- Principle of the construction
- Biorthogonal wavelet bases on [0, 1]
- Wavelet bases for $\mathcal{H}_{div}(\Omega)$ and $\mathcal{H}_{curl}(\Omega)$

3 Related applications

- Divergence-free vector field analysis
- Helmholtz-Hodge decomposition by wavelets
- Navier-Stokes simulation

Divergence-free vector field analysis (ψ^1 B-Spline 3.3)

Figure: Scaling functions coeffs (left) and wavelets coeffs (right) : j = 8.

Figure: Residual error on **u**1 and **u**2 with 22% of the divergence-free coeffs : j = 8.

Divergence-free vector field analysis (ψ^1 B-Spline 3.3)

Non linear approximation :

Figure: ℓ^2 error on \mathbf{u}_1 (left) and \mathbf{u}_2 (right) : logarithmic scale (X axis number of coefficients retained and Y axis error).

1 Motivations

2 Divergence-free and curl-free wavelets on $[0,1]^2$

- Principle of the construction
- Biorthogonal wavelet bases on [0, 1]
- Wavelet bases for $\mathcal{H}_{div}(\Omega)$ and $\mathcal{H}_{curl}(\Omega)$

3 Related applications

- Divergence-free vector field analysis
- Helmholtz-Hodge decomposition by wavelets
- Navier-Stokes simulation

Helmholtz-Hodge decomposition by wavelets **Practical computation** :

 $\mathbf{u} = \mathbf{u}_{\mathrm{div}} + \mathbf{u}_{\mathrm{curl}} + \mathbf{u}_{\mathrm{har}}$

Then :

 $\langle \mathbf{u}/\Psi_{\mathbf{j},\mathbf{k}}^{\mathrm{div}} \rangle = \langle \mathbf{u}_{\mathrm{div}}/\Psi_{\mathbf{j},\mathbf{k}}^{\mathrm{div}} \rangle \quad \text{and} \quad \langle \mathbf{u}/\Psi_{\mathbf{j},\mathbf{k}}^{\mathrm{curl}} \rangle = \langle \mathbf{u}_{\mathrm{curl}}/\Psi_{\mathbf{j},\mathbf{k}}^{\mathrm{curl}} \rangle$ Searching $\mathbf{u}_{\mathrm{div}}$ and $\mathbf{u}_{\mathrm{curl}}$ in the divergence-free and curl-free form :

$$\mathbf{u}_{\mathrm{div}} = \sum_{\mathbf{j},\mathbf{k}} d_{\mathbf{j},\mathbf{k}}^{\mathrm{div}} \, \Psi_{\mathbf{j},\mathbf{k}}^{\mathrm{div}} \qquad \text{and} \qquad \mathbf{u}_{\mathrm{rot}} = \sum_{\mathbf{j},\mathbf{k}} d_{\mathbf{j},\mathbf{k}}^{\mathrm{curl}} \, \Psi_{\mathbf{j},\mathbf{k}}^{\mathrm{curl}}$$

leads to :

 $\begin{array}{l} (\textit{d}_{j,k}^{\mathrm{div}}) = \mathbb{M}_{\mathrm{div}}^{-1}(\langle \mathbf{u}/\Psi_{j,k}^{\mathrm{div}}\rangle) & \text{and} & (\textit{d}_{j,k}^{\mathrm{curl}}) = \mathbb{M}_{\mathrm{curl}}^{-1}(\langle \mathbf{u}/\Psi_{j,k}^{\mathrm{curl}}\rangle) \\ \\ \mathbb{M}_{\mathrm{div}} \text{ and } \mathbb{M}_{\mathrm{curl}} : \text{Gram matrices of bases } (\Psi_{j,k}^{\mathrm{div}}) \text{ and } (\Psi_{j,k}^{\mathrm{curl}}) \text{ respectively.} \end{array}$

 $\mathbf{u}_{\mathrm{har}} = \mathbf{u} - \mathbf{u}_{\mathrm{div}} - \mathbf{u}_{\mathrm{curl}}$

 \rightarrow In periodic, it is easier to use the Fourier basis!

Remarkable property

• In the two dimensional space, we have :

$$\forall \mathbf{u}, \mathbf{v} \in H_0^1(\Omega) \quad \int_{\Omega} \mathsf{rot}(\mathbf{u}) \cdot \mathsf{rot}(\mathbf{v}) = \int_{\Omega} \nabla \mathbf{u} \cdot \nabla \mathbf{v} \quad \text{(same property in periodic)}$$

Then

 \longrightarrow $\mathbb{M} =$ Matrix of 2D scalar Laplacian \longrightarrow diagonal preconditioner!

• The tensor structure of bases gives :

$$[\mathbb{M}(d_{\mathbf{j},\mathbf{k}}^{\mathrm{div}})] = \mathbf{M}[d_{\mathbf{j},\mathbf{k}}^{\mathrm{div}}]\mathbf{R} + \mathbf{R}[d_{\mathbf{j},\mathbf{k}}^{\mathrm{div}}]\mathbf{M}$$

with **M** and **R** the mass-matrix and stiffness-matrix of the 1D wavelet basis $(\psi_{i,k}^d)$.

Example of Helmholtz-Hodge decomposition •Helmholtz-Hodge decomposition :

•Helmholtz decomposition : $\mathbf{u}_{\mathrm{div}} \cdot \vec{\mathbf{n}} = \mathbf{0}$

Example of Helmholtz-Hodge decomposition

Figure: H^1 and H_0^1 error (left), vorticity of $(\mathbf{u} \cdot \nabla)\mathbf{u} = \mathbf{u}_{div} + \nabla \mathbf{p}$ (center) and the pressure \mathbf{p} (right).

$$\mathbf{u} = \mathbf{curl}[\cos(4\pi x)x(1-x)\cos(4\pi y)y(1-y)] \in H^1(\Omega)$$
$$\mathbf{v} = \mathbf{curl}[\sin(4\pi x)x^3(1-x)^3\sin(4\pi y)y^3(1-y)^3] \in H^1_0(\Omega)$$

1 Motivations

2 Divergence-free and curl-free wavelets on $[0,1]^2$

- Principle of the construction
- Biorthogonal wavelet bases on [0, 1]
- Wavelet bases for $\mathcal{H}_{div}(\Omega)$ and $\mathcal{H}_{curl}(\Omega)$

3 Related applications

- Divergence-free vector field analysis
- Helmholtz-Hodge decomposition by wavelets
- Navier-Stokes simulation

Incompressible Navier-Stokes equations Cauchy problem for Navier-Stokes :

$$(NS) \begin{cases} \partial_t \mathbf{v} - \nu \Delta \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v} + \nabla \mathbf{p} = \mathbf{f}, & x \in \Omega, \ t \in [0, T] \\ \nabla \cdot \mathbf{v} = \mathbf{0}, & x \in \Omega, \ t \in [0, T] \\ \mathbf{v}(0, x) = \mathbf{v}_0(x), & x \in \Omega \\ \mathbf{v} = \mathbf{v}_b, & x \in \partial\Omega, \ t \in [0, T] \end{cases}$$

Unknowns : velocity $\mathbf{v}(t, x)$ and pressure $\mathbf{p}(t, x)$

Projecting (NS) onto $\mathcal{H}_{div}(\Omega)$ yields :

$$\partial_t \mathbf{v} = \mathbb{P}[\nu \Delta \mathbf{v} - (\mathbf{v} \cdot \nabla)\mathbf{v} + \mathbf{f}] \qquad (NSP)$$

with \mathbb{P} orthogonal projector from $(L^2(\Omega))^d$ to $\mathcal{H}_{div}(\Omega)$.

The pressure **p** is recovered through the Helmholtz-Hodge decomposition :

$$\nabla \mathbf{p} = \nu \Delta \mathbf{v} - (\mathbf{v} \cdot \nabla) \mathbf{v} + \mathbf{f} - \mathbb{P}[\nu \Delta \mathbf{v} - (\mathbf{v} \cdot \nabla) \mathbf{v} + \mathbf{f}]$$

Time discretization-classical projection method [Chorin 68, Temam 69] :

• Intermediate velocity computation :

$$\begin{pmatrix} \frac{\mathbf{v}^* - \mathbf{v}_n}{\delta t} - \nu \Delta \mathbf{v}^* + (\mathbf{v}_n \cdot \nabla) \mathbf{v}_n = 0, \text{ in } \Omega \\ \mathbf{v}^* = \mathbf{v}_b, \text{ on } \partial \Omega$$

• Pressure and velocity computation :

$$\begin{cases} \delta t \Delta \mathbf{p}_{n+1} - \nabla \cdot \mathbf{v}^* = 0, \text{ in } \Omega \\ \nabla \mathbf{p}_{n+1} = 0, \text{ on } \partial \Omega \end{cases} \begin{cases} \mathbf{v}_{n+1} = \mathbf{v}^* - \delta t \nabla \mathbf{p}_{n+1}, \text{ in } \Omega \\ \mathbf{v}_{n+1} = \mathbf{v}_b, \text{ on } \partial \Omega \end{cases}$$

Time discretization-classical projection method [Chorin 68, Temam 69] :

• Intermediate velocity computation :

$$\begin{pmatrix} \frac{\mathbf{v}^* - \mathbf{v}_n}{\delta t} - \nu \Delta \mathbf{v}^* + (\mathbf{v}_n \cdot \nabla) \mathbf{v}_n = 0, \text{ in } \Omega \\ \mathbf{v}^* = \mathbf{v}_b, \text{ on } \partial \Omega$$

• Pressure and velocity computation :

$$\begin{cases} \delta t \Delta \mathbf{p}_{n+1} - \nabla \cdot \mathbf{v}^* = 0, \text{ in } \Omega \\ \nabla \mathbf{p}_{n+1} = 0, \text{ on } \partial \Omega \end{cases} \begin{cases} \mathbf{v}_{n+1} = \mathbf{v}^* - \delta t \nabla \mathbf{p}_{n+1}, \text{ in } \Omega \\ \mathbf{v}_{n+1} = \mathbf{v}_b, \text{ on } \partial \Omega \end{cases}$$

Modified projection method

$$\begin{cases} \frac{\mathbf{v}^* - \mathbf{v}_n}{\delta t} - \nu \Delta \mathbf{v}^* + (\mathbf{v}_n \cdot \nabla) \mathbf{v}_n = 0, \text{ in } \Omega\\ \mathbf{v}^* = \mathbf{v}_b, \text{ on } \partial \Omega\\ \mathbf{v}_{n+1} = \mathbb{P}(\mathbf{v}^*) \end{cases}$$

Time discretization-classical Gauge method : $\mathbf{a} = \mathbf{v} + \nabla \chi$

• Intermediate velocity computation :

$$\begin{pmatrix} \frac{\mathbf{a}_{n+1}-\mathbf{a}_n}{\delta t} - \nu \Delta \mathbf{a}_{n+1} + (\mathbf{v}_n \cdot \nabla) \mathbf{v}_n = 0, \text{ in } \Omega \\ \mathbf{a}_{n+1} \cdot \vec{\mathbf{n}} = \mathbf{v}_b \cdot \vec{\mathbf{n}}, \ \mathbf{a}_{n+1} \cdot \vec{\tau} = \mathbf{v}_b \cdot \vec{\tau} + 2 \frac{\partial \chi_n}{\partial \vec{\tau}} - \frac{\partial \chi_{n-1}}{\partial \vec{\tau}}, \text{ on } \partial \Omega$$

• Velocity computation :

$$\begin{cases} \Delta \chi_{n+1} = \nabla \cdot \mathbf{a}_{n+1}, \text{ in } \Omega\\ \frac{\partial \chi_{n+1}}{\partial \vec{\mathbf{n}}} = 0, \text{ on } \partial \Omega\\ \mathbf{v}_{n+1} = \mathbf{a}_{n+1} - \nabla \chi_{n+1} \end{cases}$$

Time discretization-classical Gauge method : $\mathbf{a} = \mathbf{v} + \nabla \chi$

Intermediate velocity computation :

$$\begin{pmatrix} \frac{\mathbf{a}_{n+1}-\mathbf{a}_n}{\delta t} - \nu \Delta \mathbf{a}_{n+1} + (\mathbf{v}_n \cdot \nabla) \mathbf{v}_n = 0, \text{ in } \Omega \\ \mathbf{a}_{n+1} \cdot \vec{\mathbf{n}} = \mathbf{v}_b \cdot \vec{\mathbf{n}}, \ \mathbf{a}_{n+1} \cdot \vec{\tau} = \mathbf{v}_b \cdot \vec{\tau} + 2 \frac{\partial \chi_n}{\partial \vec{\tau}} - \frac{\partial \chi_{n-1}}{\partial \vec{\tau}}, \text{ on } \partial \Omega$$

• Velocity computation :

$$\begin{cases} \Delta \chi_{n+1} = \nabla \cdot \mathbf{a}_{n+1}, \text{ in } \Omega\\ \frac{\partial \chi_{n+1}}{\partial \vec{\mathbf{n}}} = 0, \text{ on } \partial \Omega\\ \mathbf{v}_{n+1} = \mathbf{a}_{n+1} - \nabla \chi_{n+1} \end{cases}$$

Modified Gauge method

$$\begin{pmatrix} \frac{\mathbf{a}_{n+1}-\mathbf{a}_n}{\delta t} - \nu \Delta \mathbf{a}_{n+1} + (\mathbf{v}_n \cdot \nabla) \mathbf{v}_n = 0, \text{ in } \Omega \\ \mathbf{a}_{n+1} \cdot \vec{\mathbf{n}} = \mathbf{v}_b \cdot \vec{\mathbf{n}}, \ \mathbf{a}_{n+1} \cdot \vec{\tau} = \mathbf{v}_b \cdot \vec{\tau} + 2 \frac{\partial \chi_n}{\partial \vec{\tau}} - \frac{\partial \chi_{n-1}}{\partial \vec{\tau}}, \text{ on } \partial \Omega \\ \mathbf{v}_{n+1} = \mathbb{P}(\mathbf{a}_{n+1}) \end{pmatrix}$$

Numerical resolution

• Scale separation :

$$\mathbf{v}(t,x) = \sum_{\mathbf{j},\mathbf{k}} d_{\mathbf{j},\mathbf{k}}^{div}(t) \ \Psi_{\mathbf{j},\mathbf{k}}^{div}(x)$$

 \longrightarrow ODE system on the coefficients $[d_{\mathbf{i},\mathbf{k}}^{div}(t)]$ in (NSP).

- Classical method for time and space discretization :
- Galerkin method in space with $\vec{\mathbf{V}}_j = (V_i^1 \otimes V_i^0) \times (V_i^0 \otimes V_i^1)$.

 \longrightarrow At each time step we need to compute the projector \mathbb{P} .

Validation :

Velocity profile in mid horizontal (left) and vertical (right) section : Re = 1000and j = 7 with $\mathbf{v}_b = 1$.

Reference : [U.Ghia et al. 82]

Divergence-free scaling coefficients :

Div-free scaling function coefficients : Re = 5000 and mesh size 128×128 .

Complexity analysis :

Figure: Percentage of divergence-free wavelet coefficients up to ϵ : $\epsilon = 8.10^{-4}, \epsilon = 16.10^{-4}, \epsilon = 32.10^{-4}.$

Driven cavity with High Reynolds number :

Vorticity evolution : Re = 50000, j = 9 and $\mathbf{v}_b = 16x^2(1-x)^2$.

Dipole-vortex rebound from a wall

Vorticity evolution : $\nu = 1/4000$ and j = 9.

Conclusion and Outlook

- Practical construction of divergence-free and curl-free wavelets
- Helmholtz-Hodge decomposition with boundary conditions
- Navier-Stokes simulation with physical boundary conditions

Conclusion and Outlook

- Practical construction of divergence-free and curl-free wavelets
- Helmholtz-Hodge decomposition with boundary conditions
- Navier-Stokes simulation with physical boundary conditions
- Use wavelet adaptativity in Navier-Stokes simulation
- Variational multiscale method

Quelques Simulations

Reconnection de vortex :

Module de vorticité : j = 6

Vorticité dans le plan de reconnection : j = 6