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Abstract

On the real line, we consider nonlinear Hamiltonian Schrödinger equations with the
superquadratic oscillator −d2/dx2 + x2p + η(x) + M , where p is an integer ≥ 2, η is
a polynomial of degree < 2p such that inf(x2p + η(x)) ≥ 0, and M is a multiplier (i.e.
simultaneously diagonalized with −d2/dx2+x2p+η(x)). A previous article ([11]) contains
the case p = 1 in Rd. Here we deal with d = 1 but we authorize any superquadratic
potential. Under generic conditions on M related to the nonresonance of the linear part,
such a Hamiltonian equation admits, in a neighborhood of the origin, a Birkhoff normal
form at any order. Consequently we deduce long time existence for solutions of the
above equation with small Cauchy data in the high Sobolev spaces. As spectral analysis
(spectrum and eigenfunctions) of the linear part is not explicit, we use Helffer-Robert and
Yajima-Zhang’s results ([13, 21]) to understand asymptotic behavior of both spectrum
and eigenfunctions.

Keywords: Nonlinear Schrödinger, Normal form, Superquadratic potential,
Hamiltonian

1. Introduction

We are interested in understanding dynamical behavior of the solution of the nonlinear
Hamiltonian Schrödinger PDE : i∂tψ = (− d

dx2 + V (x) +Mk)ψ + ∂2g(ψ,ψ) (t, x) ∈ R× R

ψ|t=0 = ψ0 ∈ Ĥs
(1)

where we define N := N\{0}, Z := Z\{0} and the following notations :

(A) V (x) is a superquadratic potential, i.e a positive polynomial of degree 2p ≥ 4. We
denote T := − d

dx2 +V (x), (φj)j≥1 the eigenfunctions of T and (λj)j≥1 the positive
increasing eigenvalues.
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(B) The natural Sobolev spaces Ĥs := Dom(T s/2) = {f ∈ Hs(R), xpsf(x) ∈ L2(R)}
based on T are endowed with the norms || · ||Ĥs (see Section 2.1).

(C) k ≥ 1 is integer and (mj)j≥1 is a sequence which takes values in [− 1
2 ,

1
2 ]. Let Mk :

L2(R)→ L2(R) be the unique bounded linear operator such that Mkφj =
mj
jk
φj .

(D) The holomorphic map g : C2 → C vanishes in (0, 0) with order ≥ 3, and g(ξ, ξ) is
real for all ξ ∈ C. For instance, if g(ξ1, ξ2) = 1

2ξ
2
1ξ

2
2 then ∂2g(ξ, ξ) = ξ|ξ|2.

(E) The product space
[
− 1

2 ,
1
2

]N
is endowed with the canonical product measure when

each [− 1
2 ,

1
2 ] is itself endowed with the Lebesgue measure.

Our main result concerns almost global existence in high Sobolev spaces :

Theorem 1.0.1. For any an integer k ≥ 1, there is a full measure set Fk ⊂ [− 1
2 ,

1
2 ]N such

that if m ∈ Fk (the generic case), for all r ≥ 3 and s� 1 large enough, if ε := ||ψ0||Ĥs �
1 then the PDE (1) admits one and only one solution ψ(t, x) =

∑
j≥1 zj(t)φj(x) in the

space C0((−Cε−r,+Cε−r), Ĥs). Furthermore, we control for |t| ≤ Cε−r

||ψ(t, ·)||Ĥs ≤ 2ε, and
∑
j≥1

λsj ||zj(t)|2 − |zj(0)|2| ≤ Cε3

Remark 1.0.2. Dynamically, the last inequality means ψ(t, ·) stays near an infinite
torus |zj | = |zj(0)|.

Remark 1.0.3. We can obtain the same conclusion if g is only holomorphic in a neigh-
borhood of (0, 0). In fact, the only thing we have to check is that ∂2g(ψ(t, x), ψ(t, x)) is
defined if |t| ≤ Cε−r. Indeed, when s is large, this is a consequence of the inequality
||ψ(t, ·)||L∞ ≤ C(s)||ψ(t, ·)||Ĥs which ensures that ∂2g(ψ,ψ) is defined.

Our method has been developed by Bambusi ([5]), Bambusi-Grébert ([3, 4]) and
Faou-Grébert ([10]) for PDEs on torus, by Bambusi-Delort-Grébert-Szeftel ([2]) for the
semilinear Klein-Gordon equation on Sd, and by Grébert-Imekraz-Paturel ([11]) for the
semilinear quantum harmonic oscillator on RN , see also a previous work of Bourgain
([8]). In all these previous situations, spectral analysis is important. As in [11], we deal
with PDE on noncompact manifold. As the potential grows at infinity, spectrum of linear
part is pure point.

In Theorem 1.0.1, it is important to remark that we control behavior of solution when
the initial condition is regular (s large). Furthermore, the class perturbation ∂2g(ψ,ψ)
is very large. For instance, we may choose focusing and defocusing cubic perturbation
±|ψ|2ψ. Remark also in the defocusing situation and V (x) = x2p, it is well known that

there is a global solution in Ĥ1 because the following energy is bounded

||ψ(t, ·)||2
Ĥ1 =

∫
R
|dxψ(t, x)|2 + |xpψ(t, x)|2dx

The set Fk is created to avoid resonances of linear part.

2



Let us explain the abstract model. The main idea is to transfer the PDE (1) to the
space C0(R, `s(Z)), where

`s(Z) :=

z ∈ CZ, ||z||s :=

√∑
j

λsj |zj |2 <∞


with the help of the following isomorphism

Γs : Ĥs → `s(N) ⊂ `s(Z)∑
j≥1

ujφj 7→ (uj)j≥1 = ((u−j)j≤1, (uj)j≥1)
(2)

In other words, we define

ψ(t, x) =
∑
j≥1

zj(t)φj(x) ∀j ≥ 1 z−j(t) = zj(t)

The PDE (1) becomes

∀j ∈ N


z′j = −i ∂

∂z−j
(H0 + P ) = −iωjzj − i ∂P∂z−j

z′−j = i ∂
∂zj

(H0 + P ) = iωjz−j + i ∂P∂zj
(3)

where the free Hamiltonian and the nonlinear perturbation read

H0(z) =
∑
j>0

ωjzjz−j , P (z) =

∫
R
g

∑
j>0

zjφj(x),
∑
j>0

z−jφj(x)

 dx (4)

Actually, the two differential equations (3) will be redundant because of the assumption
(D). With a natural symplectic structure on `s(Z), (3) becomes

z′(t) = iXH0+P (z) = iXH0
(z(t)) + iXP (z(t))

where XH0+P is the symplectic gradient of H0 +P . Notice that (H0 +P )(z) is conserved.
As H0 is quadratic, XH0

is linear, thus we prefer to see the last equation as

z(t) = exp(itXH0
)z(0) +

∫ t

0

exp(i(t− t′)XH0
)iXP (z(t′))dt′

The crucial fact is that the flow exp(itXH0
) stabilizes `s(Z) and XP takes values in `s(Z).

A well known fixed-point argument shows local existence in the space C0((−T, T ), B(z(0), ε)).
To prove long time existence and dynamical consequences, we use a Birkhoff normal form
procedure. Precisely, we prove that there is a symplectic transformation τ on a neigh-
borhood of 0 ∈ `s(Z) such that (H0 + P ) ◦ τ = H0 + Z + R, where Z will be in normal
form (i.e. only depends on the actions zjz−j , see Section 3.3) and ||XR(z)||s ≤ C||z||rs.
Here the following is important : XZ maps `s(Z) to `s(Z).
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The Birkhoff normal form procedure needs to create a model of perturbation which
contains of course P and some polynomials in normal form.

When expanding g with its Taylor series in (4), the integrals-products of eigenfunc-
tions appear. In our model, the following estimate∣∣∣∣∫

R
φj1(x) · · ·φjk(x)dx

∣∣∣∣ ≤ CN jν3
( √

λj2λj3√
λj2λj3 + λj1 − λj2

)N
(5)

plays an essential role for arbitrary N and j1 ≥ · · · ≥ jk. In some sense, these integrals
explain how different modes interact together via the nonlinear term. For instance, those
integrals of products are also present in [11] which deals with the harmonic oscillator on
RN :

i∂t = (−∆ + ||x||2 +M)ψ + ∂2g(ψ,ψ) (6)

In that case, the eigenfunctions φj are Hermite functions. Analogue estimations occur
in [19], where Wei-Min Wang shows the stability under the time dependent perturbation
V (quasi-periodic in t) and small δ :

−i∂t =
1

2

(
−∆ + x2

)
+ δV (t, x)

The eigenfunctions of harmonic oscillator − d2

dx2 + x2, i.e. the Hermite functions, are
very nice because it is possible to compute exact values of integrals (see [20]) and we
know that the eigenvalues are exactly the odd integers. In our case, eigenfunctions and
eigenvalues are not explicit.

To obtain estimate of integrals (5), we use a commutator lemma (a bit sharper than
in [5] because we need to control degree of some polynomials, see Lemma 2.3.1), and
spectral information of T . Indeed, for p, r ≥ 2 we have the following asymptotic for some
σ(r, p) ∈ R (see [21] or Theorem 2.4.1 in the present article)

||φj ||Lr ' jσ(r,p)

To compare with the Lebesgue norms of Hermite functions, we use in [11] that one has
σ(∞, 1) < 0 [14, 18]. Furthermore, we have

c|j2p/(p+1)
1 − j2p/(p+1)

2 | ≤ |λj1 − λj2 | ≤ C|j
2p/(p+1)
1 − j2p/(p+1)

2 | (7)

That means essentially the differences of two eigenvalues do not accumulate to zero.
Notice that (7) is not a simple consequence of the Weyl formula λj ' j2p/p+1, indeed we
need a precise asymptotic behavior

λj = β0j
2p/p+1 + β1j

(2p−1)/p+1) + · · ·+ β2p−1j
1/(p+1) + β2p + o(1) (8)

This has been obtained for large class of 1d differential operator in [13]. The estimate
(7) is also helpful to ensure the existence of the full measure set Fk, this set is defined
by a nonresonance condition.

This article is organized as follows : in Section 2, we develop all the spectral infor-
mation that we need. In Section 3 we define the abstract model, i.e. all the polynomial
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classes and prove estimates on them in view to make work a Birkhoff normal form pro-
cedure. In Section 3, we just check that the abstract model is adequate for our purpose.

To finish this introduction, we want to notice the analogue problem seems to be hard
for the multi-dimensional case because we do not have a similar asymptotic (8). For
instance, we do not know if the following equations in R2 admit almost global existence
in the high Sobolev spaces and for generic bounded operators M :

i∂tψ = (−∆ + (x2
1 + x2

2)2 +M)ψ + |ψ|2ψ

i∂tψ = (−∆ + x4
1 + x4

2 +M)ψ + |ψ|2ψ

Whereas the eigenvalues of the multi-dimensional harmonic oscillator are just explicit
sums of finite odd integers (see [11] for almost global existence).

2. Spectral analysis

2.1. Sobolev spaces and distribution of eigenvalues

Let S(R) be the usual Schwartz class. We define the Sobolev spaces which are natu-
rally based on the differential operator T = − d

dx2 + V (x). First of all, the next results
are well known (see for example [6] chapter 2.3, Theorems 3.1, 3.3 and Corollary 1)

Theorem 2.1.1. The differential operator T : S(R) → S(R) is essentially self-adjoint.
Its spectrum is an increasing real sequence (λj)j≥1 which tends to +∞ and λ1 > 0.
Furthermore, there is an orthonormal basis (φj)j≥1 of L2(R) such that

a) φj = φj,

b) φj ∈ S(R),

c) Tφj = λjφj,

d) each eigenvalue λj is simple.

Notice that d) holds because we consider a 1-dimensional case. Now, we define the
Sobolev spaces based on T . In fact, all spectral data we need are asymptotic. Recall

that we can directly define the operator T s/2 by T s/2φj = λ
s/2
j φj .

Definition 2.1.2. For all s ≥ 0, we define

Ĥs := Dom(T s/2) =

f =
∑
j≥1

αjφj ∈ L2(R),
∑

λsj |αj |2 < +∞


∀f =

∑
j≥1

αjφj ∈ Ĥs ||f ||Ĥs =

∑
j≥1

λsj |αj |2
1/2

Remark 2.1.3. As each φj lives in S(R), the Schwartz class is dense in Ĥs.
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Denote D = d/dx and 〈x〉 =
√

1 + x2, let us define :

〈−iD〉su(x) = (Id−∆)s/2u(x) = (2π)−1

∫
R
eixξ(1 + ξ2)s/2û(ξ)dξ

Thanks to [22], we have the useful theorem :

Theorem 2.1.4. For all s ≥ 0, the following norms are equivalent on Ĥs :

a) u =
∑∞
j≥1 αjφj 7→

(∑
j |αj |2(1 + |λj |)s

)1/2

,

b) ||〈iD〉su||L2 + ||〈x〉psu||L2 ,

c) ||u(x)||L2 + ||xsû(x)||L2 + ||xpsu(x)||L2 ,

d) ||u||Hs + ||xpsu(x)||L2 .

For convenience, we may call || · ||Ĥs any previous norm.

Proof. The a) and b) norms are equivalent because of Lemma 2.4 of [22]. The
equivalence of b), c) and d) norms is clear because of the usual Sobolev space. �

Remark 2.1.5. The space Ĥs is a Hilbert space.

2.2. Asymptotic distribution of eigenvalues

We need a precise behavior description of the differences λj1 − λj2 when j1 and j2
tend to +∞. In fact we have

Proposition 2.2.1. Denote p̂ = p
p+1 , there are c, C > 0 such that

∀j1 > j2 ≥ 1 c(j2p̂
1 − j

2p̂
2 ) ≤ λj1 − λj2 ≤ C(j2p̂

1 − j
2p̂
2 )

The usual Weyl formula (see [17, Theorem XIII.81]) gives us

N(E) := Card(j ≥ 1, λj ≤ E) ' 2

2π

∫
{x,V (x)≤E}

√
E − V (x)dx

A scaling x 7→ xE1/2p shows N(E) ' cE1/2p̂. Consequently, we have

λj ' cj2p̂ (9)

Unfortunately this is not sufficient to prove Proposition 2.2.1. That is why we have to
know an asymptotic expansion of the sequence λj when j goes to infinity.

Theorem 2.2.2. (Helffer-Robert) Consider k, p ∈ N, and V a real polynomial of degree
2p which satisfies lim

±∞
V (x) = +∞, if (λj)j≥1 is the eigenvalues-sequence of the differen-

tial operator −d2k/dx2k + V (x) on L2(R), then there is a sequence (bi)i≥0 with b0 > 0
such that one has the following asymptotic expansion

λj ' (j + σ)(2kp)/(p+k)
∑
i≥0

bi(j + σ)−i/(p+k)
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Proof. Theorem (2-2) of [13] (page 858) reads

λ
(p+k)/(2kp)
j ' (j + σ)

∑
i≥0

b′i(j + σ)−i/(p+k)

with some sequences (b′i)i≥0 and b′0 > 0. Then our asymptotic expansion is obtained by
composition with the function x 7→ x2kp/(p+k) around b′0. �

We prove Proposition 2.2.1 by choosing k = 1 in the last theorem, hence

λj = b0j
p̂ + β1j

(2p−1)/(p+1) + · · ·+ β2p−1j
1/(p+1) + β2p + o(1)

Consequently, for all j1, j2 ≥ 1, the difference |λj1 − λj2| is greater than

b0(j2p̂
1 − j

2p̂
2 )−

2p−1∑
i=1

|βi||j(2p−i)/(p+1)
1 − j(2p−i)/(p+1)

2 | − |R(j1)−R(j2)|

where lim
j→+∞

R(j) = 0. For j1 > j2 large enough, we have

b0(j2p̂
1 − j

2p̂
2 ) > c > |R(j1)−R(j2)|

So we just have to control the other terms. Recall that, for all ω ∈ (0, 1), the map
x 7→ x1/ω is convex on (0,+∞), thus if j1 > j2 then

|j2p̂
1 − j

2p̂
2 |

|j2p̂ω
1 − j2p̂ω

2 |
≥ d(x1/ω)

dx
(j2p̂ω

2 ) =
j

2p̂(1−ω)
2

ω

Let us choose ω such that 2p̂ω lives in {(2p−i)/(p+1), i ∈ [[1, 2p−1]]}, and we understand
that there is some J ≥ 1 such that the following holds :

∀j1 > j2 ≥ J λj1 − λj2 ≥ c(j2p̂
1 − j

2p̂
2 )

Recall that λj ' j2p̂ and Proposition (2.2.1) comes with the two facts

inf
j1>J≥j2

λj1 − λj2
(j2p̂

1 − j
2p̂
2 )

> 0, inf
J≥j1>j2

λj1 − λj2
(j2p̂

1 − j
2p̂
2 )

> 0

The same proof shows
λj1 − λj2 ≤ C(j2p̂

1 − j
2p̂
2 )

2.3. Commutator Lemma

Like in [5], we will show a commutator lemma. In this part, the map u : N3 → R
satisfies the next conditions, for all n ∈ N, α ∈ [0, n] and β ∈ [0, 2n− α] :

i) u(0, 0, 0) = 0,

ii) u(n, α, β) ≤ u(n+ 1, α, β),

iii) u(n, α, β) ≤ u(n+ 1, α, β + 2),
7



iv) u(n, α, β) ≤ u(n+ 1, α, β + 1),

v) u(n, α, β) ≤ u(n+ 1, α+ 1, β + 1),

vi) u(n, α, β) ≤ u(n+ 1, α+ 1, β),

vii) if 1 ≤ k ≤ α then u(n, α, β) + 1 ≤ u(n+ 1, α− k, β).

The condition vii) shows u must not be zero. For instance, we may choose u(n, α, β) =
1
2 (n− α). But for our purpose we will use

u(n, α, β) =
2n− α− β

2
(10)

It would be relevant to find the minimal u which satisfies the above mysterious con-
ditions because of the following lemma :

Lemma 2.3.1. Let T = −∆ + V be a differential operator on S(R), where V is a
polynomial of degree d ∈ N, and a ∈ C∞(R,R) such that

∀n ∈ N ∃c > 0 |a(n)(x)| ≤ c(1 + |x|)c

The operator A0 : f 7→ af is well defined on S(R). By induction, we define the operator

∀n ∈ N An+1 = AnT − TAn

Then we have

a) An is a differential operator of order ≤ n, and precisely

An =

n∑
α=0

2n−α∑
β=0

Vα,β,na
(β)

Dα (11)

and Vα,β,n is a polynomial of degree ≤ (d−1)u(n, α, β). Furthermore the coefficients
of Vα,β,n depend only on α, β, n and V .

b) If φ and ψ ∈ S(R) satisfy Tφ = λφ, Tψ = µψ and λ 6= µ, then∣∣∣∣∫
R
a(x)φ(x)ψ(x)dx

∣∣∣∣ ≤ 1

|λ− µ|n

∣∣∣∣∫
R

(Anφ)(x)ψ(x)dx

∣∣∣∣
Proof.

a) The assumption on the derivatives of a proves that A0 is well defined on S(R). Let
us see the first differential operators, for all f ∈ S(R), we have T (f) = −f ′′ + V f ,
then

A1(f) = aT (f)− T (af) = a(2)f + 2a′f ′

A2(f) = (2V ′a′ + a(4))f + 4a(3)f ′ + 4a(2)f (2)

A3(f) = (2V (3)a′+8V (2)a(2)+6V ′a(3)+a(6))f+(4V (2)a′+12V ′a(2)+6a(5))f ′+12a(4)f (2)+8a(3)f (3)
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A4(f) = (4V ′V (2)a′ + 2V (5)a′ + 12V (4)a(2) + 12(V ′)2a(2)+
32V (3)a(3) + 32V (2)a(4) + 12V ′a(5) + a(8))f
+(8V (4)a′ + 40V (3)a(2) + 80V (2)a(3) + 48V ′a(4) + 8a(7))f ′

+(8V (3)a′ + 32V (2)a(2) + 48V ′a(3) + 24a(6))f (2)

+32a(5)f (3) + 16a(4)f (4)

For instance, we check that the degree deg Vα,β,n is less than (d−1)
2 (2n − α − β) for

the first computations. Let us see the general case by an induction.

We have A0 = a, the polynomials are constant, their degrees are less than (d −
1)u(0, 0, 0) = 0.

Let us assume that An has the form (11). We have to compute An+1 :

An+1 = −An ◦∆ + ∆ ◦An +AnV − V An

The part −An ◦∆ + ∆ ◦An will contribute to rise the derivation orders but will not
increase polynomial degrees, whereas the other part AnV − V An does the contrary.

Let us begin with −An∆ + ∆An, for all f ∈ S(R) we have

−An(f (2)) + (An(f))(2) =

n∑
α=0

2n−α∑
β=0

(
Vα,β,na

(β)f (α)
)(2)

− Vα,β,na(β)f (α+2)

The summand is linear combination of the five terms

V
(2)
α,β,na

(β)f (α), Vα,β,na
(β+2)f (α), V ′α,β,na

(β+1)f (α), Vα,β,na
(β+1)f (α+1), V ′α,β,na

(β)f (α+1)

The conditions 0 ≤ α ≤ n and 0 ≤ β ≤ 2n − α prove that −An(f (2)) + (An(f))(2)

is indeed a polynomial combination of a(β)f (α) with 0 ≤ α ≤ n + 1 and 0 ≤ β ≤
2n − α + 2 = 2(n + 1) − α. Furthermore, we must check on the five terms that the
degree polynomial coefficient of a(β)f (α) is less than (d−1)u(n+ 1, α, β). In fact, for
each term we have

V
(2)
α,β,na

(β)f (α) ⇒ deg(V
(2)
α,β,n) ≤ deg(Vα,β,n) ≤ (d− 1)u(n, α, β) ≤ (d− 1)u(n+ 1, α, β)

Vα,β,na
(β+2)f (α) ⇒ deg(Vα,β,n) ≤ (d− 1)u(n, α, β) ≤ (d− 1)u(n+ 1, α, β + 2)

V ′α,β,na
(β+1)f (α) ⇒ deg(V ′α,β,n) ≤ deg(Vα,β,n) ≤ (d− 1)u(n, α, β) ≤ (d− 1)u(n+ 1, α, β + 1)

Vα,β,na
(β+1)f (α+1) ⇒ deg(Vα,β,n) ≤ (d− 1)u(n, α, β) ≤ (d− 1)u(n+ 1, α+ 1, β + 1)

V ′α,β,na
(β)f (α+1) ⇒ deg(Vα,β,n) ≤ (d− 1)u(n, α, β) ≤ (d− 1)u(n+ 1, α+ 1, β)

By that way, we can see that the new polynomials Vα,β,n+1 depend only on the last
polynomials Vα,β,n and V . Now, let us compute AnV − V An.

An(V f)− V An(f) =

n∑
α=0

2n−α∑
β=0

Vα,β,na
(β)
(

(V f)(α) − V f (α)
)

=

n∑
α=1

2n−α∑
β=0

Vα,β,na
(β)
(

(V f)(α) − V f (α)
)
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This time, the summand is a linear combination of Vα,β,nV
(k)a(β)f (α−k) for k ∈ [1, α].

Hence, An(V f) − V An(f) is polynomial combination of a(β)f (α) with α ∈ [0, n] ⊂
[0, n + 1] and β ∈ [0, 2n − α] ⊂ [0, 2n + 2 − α]. As above, we have to check in
An(V f)− V An(f) that the polynomial coefficient of a(β)f (α) has a degree less than
(d − 1)u(n + 1, α, β). It is sufficient to look at the term Vα,β,nV

(k)a(β)f (α−k) if
k ∈ J1, αK :

deg
(
Vα,β,nV

(k)
)
≤ (d− 1)u(n, α, β) + (d− 1)

≤ (d− 1)u(n, α− k, β)

Again, the new polynomials depend only on the last polynomials and derivatives of
V .

b) The operator T is clearly self-adjoint, and then∫
R
(An+1φ)ψ =

∫
R
(AnTφ)ψ −

∫
R

(Anφ)(Tψ) = (λ− µ)

∫
R

(Anφ)ψ

The conclusion comes with an easy induction.

�

2.4. Some bounds of eigenfunctions and product functions

Recall that V (x) has degree 2p ≥ 4. Theorem 1.5 of [21] (page 576) explains the
asymptotic behavior of eigenfunctions in the Lebesgue spaces :

Theorem 2.4.1. For all r ∈ [2,∞] and p ≥ 2 there is σ(r, p) ≥ −1
8p such that

||φj ||Lr ' Cr,pjσ(r,p)

with
2 ≤ r < 4 ⇒ σ(r, p) = 1

2p

(
1
r −

1
2

)
≤ 0

4 < r ≤ 4p−2
p−2 ⇒ σ(r, p) = 1

3

(
1− 1

r

) (
1− 1

2p

)
− 1

4 ≤ 0

4p−2
p−2 ≤ r ≤ +∞ ⇒ σ(r, p) = 1

3

(
1− 1

r

) (
1− 1

2p

)
− 1

4 ≥ 0

In particular, we have σ(r, p) ≤ 1
3

(
1− 1

2p

)
− 1

4 .

The Hölder inequality leads to the following easy corollary.

Corollary 2.4.2. For each p ≥ 2, k ≥ 3, there is γ(k, p) > 0 such that for all j1 ≥ · · · jk
we have ∣∣∣∣∫

R
φj1(x) · · ·φjk(x)dx

∣∣∣∣ ≤ Cjγ3 (12)

Proof. Choose r1 = r2 <
4p−2
p−2 and r3, . . . , rk ≥ 2 such that 1

r1
+ 1
r2

+ 1
r3

+ · · ·+ 1
rk

= 1.

Consider γ := (k − 2)
(

1
3

(
1− 1

2p

)
− 1

4

)
and apply Hölder’s inequality to dominate the

left of (12) by

||φj1 ||Lr1 ||φj2 ||Lr2
k∏
i=3

||φji ||Lri ≤ Cj
γ
3

�
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Lemma 2.4.3. For all f ∈ S(R) and a, b ∈ N, s ≥ 0 we have

||xaf (b)||Ĥs ≤ C(s, a, b)||f ||Ĥs+a/p+b

Proof. With the help of the c) norm of Theorem 2.1.4, we can show that the case
s = 0 is sufficient. This particular case is an easy consequence of Weyl calculus. The

pseudo-differential operator xa
db

dxb
◦T−a/2p−b/2 is bounded on L2(R) because of Calderón-

Vaillancourt Theorem ([7]): the following map has bounded derivatives

(x, ξ) 7→ xaξb

(1 + ξ2 + V (x))a/2p+b/2
< +∞

Hence, there is C(a, b) > 0 such that

||xaf (b)||L2 ≤ C(a, b)||T a/2p+b/2f ||L2 ≤ C(a, b)||f ||Ĥa/p+b

�

Proposition 2.4.4. For all s > 1
2 and f, g ∈ Ĥs we have f, g ∈ L∞(R) and

||fg||Ĥs ≤ C(s)(||f ||Ĥs ||g||∞ + ||f ||Ĥs ||g||∞)

In other words, Ĥs is stable by product.

Proof. We have Ĥs ⊂ Hs ⊂ L∞ and Ĥs ⊂ L2(R), thus the following inequality holds
(see [1, page 98, chapter 2, Proposition 2.1.1])

||fg||Hs ≤ C(s)(||f ||Hs ||g||∞ + ||f ||∞||g||Hs)

And finally,

||fg||Ĥs = ||fg||Hs + ||xpsf(x)g(x)||L2 ≤ C(s)(||f ||Hs ||g||∞+ ||f ||Hs ||g||∞)+ ||f ||
Ĥs
||g||∞

�

Theorem 2.1.4 and the estimate (9) let us understand ||φj ||Ĥs ≤ Cjsp̂. Theorem
2.4.1, last proposition and an easy induction lead to

Corollary 2.4.5. There is some η(p) > 0 which depends only on p, such that for every
j3 ≥ · · · ≥ jk ∈ N, we have

||φj3 · · ·φjk ||Ĥs ≤ kC(s)j
sp̂+η(p)
3 (13)

Now we check that a holomorphic functional calculus is possible on Ĥs.

Proposition 2.4.6. Consider s > 1
2 , f, g ∈ Ĥs and K : C2 → C a real analytic function

which vanishes in (0, 0) :

K(ξ1, ξ2) =
∑

(n1,...,n4)∈N4\{(0,0,0,0)}

α(n1, . . . , n4)ξn1
1 ξ1

n1
ξn3
2 ξ2

n4

Then, K(f, g) is well defined in Ĥs and equals the map x 7→ K(f(x), g(x)).
11



Proof. By bilinearity and Proposition 2.4.4, there is C(s) > 0 such that

∀f, g ∈ Ĥs ||fg||Ĥs ≤ C(s)||f ||Ĥs ||g||Ĥs

Theorem 2.1.4 shows that Ĥs is invariant by f 7→ f and ||f ||Ĥs = ||f ||Ĥs . Hence,

the following series converges uniformly on bounded subsets of Ĥs × Ĥs for the sub-
multiplicative norm C(s)|| · ||Ĥs :

K(f, g) :=
∑

(n1,...,n4)∈N4\{(0,0,0,0)}

α(n1, . . . , n4)fn1f
n1
gn3gn4

As s > 1
2 , the convergence in Ĥs implies the convergence in L∞(R). That means

K(f, g) equals the map

x 7→
∑

(n1,...,n4)∈N4\{(0,0,0,0)}

α(n1, . . . , n4)f(x)n1f(x)
n1
g(x)n3g(x)

n4
= K(f(x), g(x))

�

2.5. Integrals of eigenfunctions products

Recall that p̂ = p
p+1 ∈

(
2
3 , 1
)
. We can now give an estimation of eigenfunctions

products.

Proposition 2.5.1. For all p ≥ 2, k ≥ 3, N ≥ 1, there are ν = ν(p, k) > 0 and
C(k,N, p) > 0 such that

∀j ∈ Nk
∣∣∣∣∫

R
φj1(x) · · ·φjk(x)dx

∣∣∣∣ ≤ C(k,N, p)jν3A(j)N (14)

where j1 ≥ j2 ≥ ... ≥ jk and

A(j) :=
(j2j3)p̂

(j2j3)p̂ + j2p̂
1 − j

2p̂
2

Remark 2.5.2. This estimate generalizes the one we obtained in [11] for Hermite prod-
uct integrals.

Remark 2.5.3. Thanks to Proposition 2.2.1, it is not hard to see

cA(j) ≤
√
λj2λj3√

λj2λj3 + λj1 − λj2
≤ CA(j)

Proof. For convenience, p will not appear in the constants. We now consider two cases.

• j2p̂
1 − j

2p̂
2 ≤ (j2j3)p̂. It is clear because A(j) ≥ 1

2 and Corollary 2.4.2.

12



• (j2j3)p̂ ≤ j2p̂
1 − j

2p̂
2 . In particular j1 > j2.

We introduce the operator A : f 7→ af where a = φj3 · · ·φjk . Lemma 2.3.1 let us see∣∣∣∣∫
R
φj1 · · ·φjkdx

∣∣∣∣ =

∣∣∣∣∫
R
(Aφj2)φj1

∣∣∣∣
≤ 1

|λj1 − λj2|N
||ANφj2||L2

≤ 1

|λj1 − λj2|N
N∑
α=0

2N−α∑
β=0

||Vα,β,N (Dβa)(Dαφj2)||L2

≤ 1

|λj1 − λj2|N
N∑
α=0

2N−α∑
β=0

||Vα,β,NDβa||L∞ ||Dαφj2||L2

≤ C

|λj1 − λj2|N
N∑
α=0

2N−α∑
β=0

||Vα,β,NDβa||H1 ||Dαφj2||L2

Lemma 2.4.3 and the inclusion H1(R) ⊂ Ĥ1(R) give us∣∣∣∣∫
R
φj1 · · ·φjkdx

∣∣∣∣ ≤ C

|λj1 − λj2|N
N∑
α=0

2N−α∑
β=0

||a||
Ĥ1+β+(1/p) deg Vα,β,N ||φj2||Ĥα

≤ C(N)

|λj1 − λj2|N
max

α∈J0,NK,β∈J0,2N−αK
||a||

Ĥ1+β+(1/p) deg Vα,β,N ||φj2||Ĥα

Now, remember Proposition 2.2.1, estimate (13) and ||φj ||Ĥα ≤ Cj
p̂α, hence∣∣∣∣∫

R
φj1 · · ·φjkdx

∣∣∣∣ ≤ C(k,N)j
η(p)
3

(j2p̂
1 − j

2p̂
2 )N

max
α∈J0,NK,β∈J0,2N−αK

j
p̂(1+β)+(deg Vα,β,N )/(p+1)
3 jαp̂2

(15)

Lemma 2.3.1 implies deg Vα,β,N ≤ 2p−1
2 (2N − α− β). Considering now ν = η(p) + p̂,

we get

(j2p̂
1 − j

2p̂
2 )N

∣∣∣∣∫
R
φj1 · · ·φjkdx

∣∣∣∣ ≤ C(k,N)jν3 max
α,β

jp̂α2 j
p̂β+(2N−α−β)(2p−1)/(2p+2)
3

≤ C(k,N)jν3 max
α,β

jp̂α2 j
β/(2p+2)+(2N−α)(2p−1)/(2p+2)
3

≤ C(k,N)jν3 max
α

jp̂α2 j
(2N−α)2p/(2p+2)
3

≤ C(k,N)jν+2p̂N
3 max

α

(
j2
j3

)p̂α
≤ C(k,N)jν3 (j2j3)p̂N

Recall that (j2j3)p̂ + j2p̂
1 − j

2p̂
2 ≤ 2(j2p̂

1 − j22p̂), hence we get (14).

�
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3. Abstract Model

3.1. Discretization of PDE

For convenience, we recall that N = N\{0} and Z = Z\{0}.

Definition 3.1.1. We endow
[
− 1

2 ,
1
2

]N
with the natural product Lebesgue measure.

Hence, for (mj)j≥1 ∈
[
− 1

2 ,
1
2

]N
, we considerMk the unique bounded operator of L2(R)

such that Mkφj = j−kmjφj . Thus, the spectrum of T+Mk is of course ωj := λj+j
−kmj .

Let us introduce the space on which we will transfer the PDE (1).

Definition 3.1.2. We define `s(Z) the space of sequence (zj)j∈Z such that

||z||s :=

∑
j∈Z

|j|2sp̂|zj |2
1/2

< +∞

We define by the same way `s(N).

Definition 3.1.3. A sequence which has the form (z, z) with z ∈ `s(N) is called real.
Thus, we identify `s(N) to a subset of `s(Z).

For each s ≥ 0, Theorem 2.1.4 and λj ' j2p̂ show the map (2) is a bounded isomor-
phism, in particular it is a C∞-diffeomorphism. The method to solve the PDE (1) in the

space C0((−T,+T ), Ĥs) is to transfer it in the space C0((−T, T ), `s(Z)) with the help of
z(t) = Γs(ψ(t, ·)), in other words

ψ(t, x) =
∑
j≥1

zj(t)φj(x) ∀j ≥ 1 z−j(t) = zj(t)

The PDE (1) becomes

i
∑
j≥1

z′j(t)φj(x) =
∑
j≥1

ωjzj(t)φj(x) + ∂2g

∑
j≥1

zj(t)φj(x),
∑
j≥1

z−j(t)φj(x)


Consider now the two functions on `s(Z) defined by (4). In fact, it is easy to check that
H0 is C∞ regular on `s(Z) for s large because ωj is polynomially bounded. Proposition
4.0.4 will show that P is also C∞ for s large, and especially for each j ≥ 1 we have

∂1g

∑
j≥1

zj(t)φj(x),
∑
j≥1

z−j(t)φj(x)

 =
∑
j≥1

φj(x)
∂P

∂zj

∂2g

∑
j≥1

zj(t)φj(x),
∑
j≥1

z−j(t)φj(x)

 =
∑
j≥1

φj(x)
∂P

∂z−j

14



Consequently, (1) is equivalent to the ordinary differential equations

∀j ≥ 1 iz′j = ωjzj +
∂P

∂z−j

But we must solve it in the space `s(N). In fact, as g is holomorphic and satisfies
g(ξ, ξ) ∈ R, we can show the following condition (see the proof of Lemma 4.0.6)

∀ξ ∈ C ∂2g(ξ, ξ) = ∂1g(ξ, ξ)

Finally, the previous remarks prove that solving (1) in the space C0((−T,+T ), Ĥs) is
equivalent to solve the following Hamiltonian system in the space C0((−T, T ), `2s(Z))

∀j ∈ N


żj = −i ∂

∂z−j
(H0 + P ) = −iωjzj − i ∂P∂z−j

˙z−j = i ∂
∂zj

(H0 + P ) = iωjz−j + i ∂P∂zj
(16)

Notice that the two equations are conjugate if z(0) ∈ `s(N). Local existence is easy
(see the next subsection). The main objective of the rest of the article is to develop an
abstract model to solve (16) for long time.

3.2. Symplectic structure and Poisson bracket

We will always have s > 0, so `s(Z) ⊂ `0(Z). Now, let us recall some usual definitions,
we start with the canonical symplectic structure on `s(Z) which is given by the following
automorphism of `s(Z)

J : ((zj)j<0, (zj)j>0) 7→ ((−z−j)j<0, (z−j)j>0)

Thus J2 = −Id and J? = J if `s(Z) is endowed with the canonical duality :

〈z, z′〉 =
∑
j∈Z

zjz
′
j

If f : `s → C is a regular map, then we define its gradient by the formula

∀x ∈ `s(Z) ∀h ∈ `2s(Z) 〈∇fx, h〉 =
∑
j∈Z

(
∂f

∂zj

)
x

hj

Remark that without any condition on f , the gradient ∇f lies in `−s(Z). The symplectic
gradient is just Xf = iJ∇f . Notice that (16) becomes

z′(t) = iXH0+P (z(t)) = iXH0
(z(t)) + iXP (z(t)) (17)

As we said in the Introduction, we prefer to reformulate the last equation as

z(t) = exp(itXH0)z(t) +

∫ t

0

exp(i(t− t′)XH0)iXP (z(t′))dt′ (18)

15



Proposition 4.0.4 will show that XP takes values on `s(Z). As (exp(itXH0))t∈R is a
unitary group of `s(Z) (solve (16) if P = 0), thus (1) has local existence by a classic
fixed-point argument.

When it is possible, we define Poisson bracket for two regular functions f and g ∈
C1(`s(Z),C)) :

{f, g} = i〈∇f , J∇g〉 = i
∑
j≥1

∂f

∂zj

∂g

∂z−j
− ∂f

∂z−j

∂g

∂zj
(19)

For instance, if Xf or Xg takes values in `s(Z). For any solution z(t) of (16) and regular
test function φ : `s(Z)→ C we have

d

dt
φ(z(t)) = 〈∇z(t)φ, z′(t)〉 = −i{H0 + P, φ}(z(t))

As we see in (18), the map P must have a gradient which takes values in `s(Z), that
is why we give the following definition :

Definition 3.2.1. For each s > 0, Hs is the class of functions F : `s(Z)→ C holomor-
phic on a neighborhood of 0 which satisfy

XF ∈ C∞(`s, `s)

and if (Fk)k≥0 is the F -polynomial Taylor sequence in 0, then

F0 = F1 = F2 = 0

Fk ∈ C∞(`s,C) XFk ∈ C∞(`s, `s)

Finally, we recall a usual condition for regularity polynomial. A homogeneous poly-
nomial P on `s(Z) is by definition given by

P =

n∑
k=0

φk(z, . . . , z)

where φk is a continuous k-linear form on `s(Z).

Proposition 3.2.2. Consider P : `s(Z)→ C a homogeneous polynomial of degree k ≥ 1
which satisfies

∀z ∈ `s(Z) |P (z)| ≤ C||z||ks
then P : `s(Z)→ C is of class C∞. If furthermore P satisfies ||XP (z)||s ≤ C||z||k−1

s

then XP : `s(Z)→ `s(Z) is a C∞ regular map.

In fact, in the last proposition P is a holomorphic map (see [9] for polynomial regu-
larity or [15] for holomorphy).
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3.3. The polynomial classes

Definition 3.3.1. A formal polynomial P on `2s(Z) is in the class Tk,ν if it is homoge-
neous of degree k and can be written :

P (z) =
∑

(j1,··· ,jk)∈Zk
ajzj1 · · · zjk

such that for all N > 0 we have

|aj | ≤ C(N)µ(j)νA(j)N

where we order (j1, · · · , jk) in (j?1 , · · · , j?k) such that |j?1 | ≥ · · · ≥ |j?k | and define

µ(j) = |j?3 | A(j) =
(|j?2j3|?)p̂

(|j?2j?3 |)p̂ + |j?1 |2p̂ − |j?2 |2p̂

In fact, with this definition the formal polynomials of class Tk,ν are regular.

Proposition 3.3.2. For each P ∈ Tk,ν and s > (ν + 1/2)/p̂, we have

|P (z)| ≤ C(P )||z||ks

Consequently, P : `s(Z)→ C is of class C∞ (and even holomorphic).

Proof. Like 0 ≤ A(j) ≤ 1 holds, we deduce

|P (z)| ≤ C(N)
∑
j∈Zk

µ(j)ν |zj1| · · · |zjk|

≤ C(N)
∑
j∈Zk

µ(j)ν∏k
i=1 |ji|s

k∏
i=1

|ji|s|zji|

≤ C(N)
∑
j∈Zk

1∏k
i=1 |ji|s−ν

k∏
i=1

|ji|s|zji|

≤ C(N)

∑
j∈Zk

1∏k
i=1 |ji|2s−2ν

1/2∑
j∈Zk

k∏
i=1

|ji|2s|zji|2
1/2

≤ C(N)

∑
j∈Z

1

|j|2s−2ν

k/2

||z||ksp̂

The conclusion comes with Proposition 3.2.2. �

Unfortunately it does not seem that the condition P ∈ Tk,ν implies that XP takes
values in `s(Z). Furthermore, the classes (Tk,ν)k≥3 does not seem to be invariant by the
Poisson bracket. That is why we introduce a new class of polynomials T+

k,ν .
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Definition 3.3.3. A formal polynomial P on `s(Z) is in the class T+
k,ν if it is homoge-

neous of degree k of the form :

P (z) =
∑

(j1,··· ,jk)∈Zk
ajzj1 · · · zjk

and if for each N > 0, we have :

|aj | ≤ C(N)
µ(j)νA(j)N

1 + S(j)
, S(j) = |j?1 |2p̂ − |j?2 |2p̂

Lemma 3.3.4. If j,l are two multi-indexes, we call A(j, l) := A((j, l)) the number ob-
tained with the multi-index (j, l). Here, if l ∈ Z, we have

|l|A(j, l) ≤ C|j?1 |

Proof. If |l| ≤ 2|j?1 |, then it is clear because A(j, l) ≤ 1. If |l| > 2|j?1 | > |j1| ≥ |j?2 |, we
have

|l|A(j, l) = |l| (|j?1 ||j?2 |)p̂

(|j?1 ||j?2 |)p̂ + |l|2p̂ − |j?1 |2p̂
≤ |l| |j

?
1 |2p̂

C|l|2p̂
≤ C |j

?
1 |2p̂

|l|2p̂−1
≤ C|j?1 |

�

The Cauchy-Schwarz inequality leads to the easy following lemma :

Lemma 3.3.5. For each s ≥ 0, z ∈ `s+s0(Z) we have∑
k∈Z

|j|s|zj | ≤ C||z||(s+1)/p̂

For this new class, there is no loss of regularity.

Proposition 3.3.6. Consider k ≥ 3, ν > 0, s > (ν + 3)/p̂ and P ∈ T+
k,ν . We have

i) P is C∞ regular;

ii) The map XP is regular from `s(C) to `s(C), precisely for each z ∈ `s(Z) we have

||XP (z)||s ≤ C||z||k−1
s

Proof. Point i) comes from the inclusion T+
k,ν ⊂ Tk,ν (see Proposition 3.3.2). Let us

prove ii). We only consider the case k ≥ 4, but the same method gives the case k = 3.
We choose N = p̂s+ 1 in the T+

k,ν definition, a computation gives us∣∣∣∣∂P∂zl
∣∣∣∣ ≤ kC

∑
j∈Zk−1

µ(j, l)νA(j, l)N

1 + S(j, l)
|zj1 · · · zjk−1

|

≤ k × (k − 1)!C
∑

|j1|≥···≥|jk−1|

µ(j, l)νA(j, l)N

1 + S(j, l)
|zj1 · · · zjk−1

|

18



Now recall Lemma 3.3.5

∣∣∣∣∂P∂zl
∣∣∣∣ ≤ C

∑
j∈Z

|zj |

k−4 ∑
|j1|≥|j2|≥|j3|

µ(j, l)νA(j, l)N

1 + S(j, l)
|zj1zj2zj3 |


≤ C||z||k−4

s

∑
|j1|≥|j2|≥|j3|

µ(j, l)νA(j, l)N

1 + S(j, l)
|zj1zj2zj3 |

Thus

||XP (z)||2s =
∑
l∈Z

|l|2p̂s
∣∣∣∣∂P∂zl

∣∣∣∣2

≤ C||z||2(k−4)
s

∑
l∈Z

|l|2p̂s
 ∑
|j1|≥|j2|≥|j3|

µ(j, l)νA(j, l)N

1 + S(j, l)
|zj1zj2zj3 |

2

Define the following sets and maps for each l ∈ Z

Ω1(l) := {(j1, j2, j3) ∈ Z3
, |j1| ≥ |j2| ≥ |j3|, |j2| ≥ |l|}

Ω2(l) := {(j1, j2, j3) ∈ Z3
, |j1| ≥ |j2| ≥ |j3|, |l| > |j2|}

Ti(l) := |l|p̂s
∑
Ωi(l)

µ(j, l)νA(j, l)N

1 + S(j, l)
|zj1 ||zj2 ||zj3 |

Consequently, we aim to prove∑
l∈Z

Ti(l)
2 ≤ C||z||6s, i ∈ {0, 1} (20)

First, we deal with the case i = 1. We use Lemma 3.3.4 and the fact A(j, l) ≤ 1 ≤ |j2|/|l|
:

T1(l) ≤ C
∑
Ω1(l)

|l|p̂s|j2|νA(j, l)sp̂+1|zj1zj2zj3 |

≤ C
∑
Ω1(l)

|l||j1|sp̂−1|j2|νA(j, l)2|zj1zj2zj3 |

≤ C|l|−1
∑
Ω1(l)

|j1|sp̂−1|j2|ν+2|zj1zj2zj3 |

≤ C|l|−1
∑
j1Z

|j1|p̂s−1|zj1 |
∑
j2∈Z

|j2|ν+2
∑
j3∈Z

|zj3 |

Now call Lemma 3.3.5 to get (20) for i = 1 :

T1(l) ≤ C|l|−1||z||3s
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Let us deal with the estimate of T2(l). Remark thatA(j, l)N ≤ A(j, l)p̂s ≤ C|j1|p̂s|l|−p̂s
and that j3 does not appear in A(j, l), we get :

T2(l) ≤ C|l|p̂s||z||s
∑
j1,j2

|j2|νA(j, l)N

1 + S(j, l)
|zj1 ||zj2 |

≤ C||z||s
∑
j1,j2

|j1|p̂s|zj1 ||zj2 ||j2|ν

1 + ||j1|2p̂ − |l|2p̂|

≤ C||z||s
∑
j2

|zj2 ||j2|ν
∑
j1

|j1|s|zj1 |
1 + ||j1| − |l||2p̂

≤ C||z||2s
∑
j1

|j1|p̂s|zj1 |
1 + ||j1| − |l||2p̂

∑
l∈Z

T2(l)2 ≤ C||z||4s

∑
j1

|j1|p̂s|zj1 |
1 + ||j1| − |l||2p̂

2

Now, if we decompose (l, j1) ∈ Z2
on the different subsets ±N × ±N, we see four con-

volution products (or discrete Fubini) of (|j1|sp̂zj1) ∈ `2 with ((1 + |j1|)−2p̂)) ∈ `1, thus
(20) holds for i = 2. �

Finally, we define now the normal form polynomials class :

Definition 3.3.7. For all j ∈ N, we call the j-th action Ij : `s 7→ zjz−j.
For each even integer k = 2m, a homogeneous polynomial Z on `s(Z) is said to be in

normal form of degree k if we have

Z(z) =
∑

j∈N\{0}m
bjIj1 · · · Ijm

Notice that for each map f : `s(Z) → C we have {Ij , f} = i
(
zj∂zj − z−j∂z−j

)
f ,

in particular if f is a polynomial in normal form then {Ij , f} = 0. Following [11]
(Proposition 2.13,iv), we have the following crucial fact.

Proposition 3.3.8. Consider k ≥ 3, ν > 0, there is ν = ν(s) such that if s > ν and if
Z ∈ Tk,ν is in normal form. The map XZ is C∞ from `s(C) to `s(C).

3.4. Poisson bracket estimate

Thus, the same proof as [11] (Lemmas 2.19 and 2.20) gives us the following lemma
because the analogue of A(j) is exactly √

|j∗2j∗3 |√
|j∗2j∗3 |+ |j?1 | − |j?2 |

Lemma 3.4.1. For each i ∈ Zk1 , j ∈ Zk2 , l ∈ Z, we have

A(j, l)2A(i, l)2 ≤ CA(i, j)

max
(
µ(j, l)A(i, l)1/p̂, µ(i, l)A(j, l)1/p̂

)
≤ Cµ(i, j)1/p̂
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Proposition 3.4.2. Consider k1, k2 ≥ 2, ν1, ν2 ≥ 0. There is ν := ν(ν1, ν2) > 0 such
that the Poisson bracket (P,Q) 7→ {P,Q} is well defined from T+

k1+1,ν1
× Tk2+1,ν2 to

Tk1+k2,ν .

Proof. Consider M > 0, N := 2M + ν2
p̂ and N ′ := 2M + 1 + ν1

p̂ . We assume

P =
∑

j∈Zk1+1

ajz
j1 · · · zjk1+1 , |aj | ≤ C(N)

µ(j)ν1A(j)N

1 + S(j)

Q =
∑

j∈Zk2+1

bjz
j1 · · · zjk2+1 , |bj | ≤ C(N ′)µ(j)ν2A(j)N

′

We have
{P,Q} =

∑
(i,j)∈Zk1+k2

ci,jzi1 · · · zik1 zj1 · · · zjk2

|ci,j | ≤
∑
l∈Z

µ(j, l)ν1

1 + S(j, l)
A(j, l)Nµ(i, l)ν2A(i, l)N

′

Now, just write

|ci,j | ≤
∑
l∈Z

A(i, l)

1 + S(j, l)

(
µ(j, l)A(i, l)1/p̂

)ν1 (
µ(i, l)A(j, l)1/p̂

)ν2
(A(j, l)A(i, l))

2M

≤ C

∑
l∈Z

A(i, l)

1 + S(j, l)

µ(i, j)(ν1+ν2)/p̂A(i, j)M

The conclusion will come with the following inequality∑
l∈Z

A(i, l)

1 + S(j, l)
≤ Cµ(i, j)2p̂

First, we have the obvious case∑
|l|>|j?2 |

A(i, l)

1 + S(j, l)
≤

∑
|l|≥|j?2 |

1

1 + ||j1| − |l||2p̂
≤
∑
l∈Z

1

1 + |l|2p̂
< +∞

The second case will come with the inequality and two sub-cases :∑
|l|≤|j?2 |

A(i, l)

1 + S(j, l)
≤

∑
|l|≤|j?2 |

A(i, l)

a) |j?2 | ≤ µ(i, j). Like A(i, l) ≤ 1, we have
∑
|l|≤|j2|A(i, l) ≤ µ(i, j) ≤ µ(i, j)2p̂.

b) |j?2 | > µ(i, j). Obviously, we have |j?1 | ≥ |j?2 | > µ(i, j) ≥ |i?1|. Thus :∑
|l|≤|j?2 |

A(i, l) =
∑
|l|≤|i?1 |

A(i, l) +
∑

|i?1 |<|l|≤|j?2 |

A(i, l) ≤ µ(i, j) +
∑

|i?1 |<|l|≤|j?2 |

A(i, l)
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In the last summand, we have

A(i, l) =
(|i?1i?2|)p̂

(|i?1i?2|)p̂ + |l|2p̂ − |i?1|2p̂
≤ µ(i, j)2p̂

1 + (|l| − |i?1|)2p̂

∑
|i?1 |<|l|≤|j?2 |

A(i, l) ≤ µ(i, j)2p̂
∑
|i?1 |<|l|

1

1 + (|l| − |i?1|)2p̂
≤ Cµ(i, j)2p̂

�

3.5. Lie transform of T+
k,ν

Definition 3.5.1. A map f : `s(Z) → C is in th class Tν if there is some s0 > 0 such
that

- for each s ≥ s0, f is analytic on a neighborhood Us ⊂ `s(Z) of 0,

- 0 is a triple zero of f ,

- for each k ≥ 3, the k-th Taylor polynomial lives in Tk,ν .

Let χ be in T+
l,δ, we know that χ lives in C∞(`s,C) if s is sufficiently large (see

Proposition 3.3.6). In particular, we can introduce the symplectic flow of χ :

∀z ∈ `s
d

dt
Φt(z) = Xχ(Φt(z))

As l ≥ 3, a bootstrap argument shows that Φt(z) is well defined if t ∈ [0, 1] and ||z||s < ε
(for ε small). And in fact, Φt(z) is analytic in z.

We say that the Lie transform φ := Φ1 of χ is well defined. The map φ is relevant
because it is a symplectic map : the Poisson brackets are conserved. In other words, for
every maps A and B of class C∞, we have

{A ◦ φ,B ◦ φ} = {A,B} ◦ φ

Definition 3.5.2. If F : `s(Z)→ C satisfies F (z, z) ∈ R in a neighborhood of 0, we say
that F is real.

Proposition 3.5.3. Let χ be a homogeneous real polynomial ∈ T+
l,δ with δ ≥ 0,l ≥ 3.

And consider s sufficiently large.

i) The Lie transform of χ is well defined and analytic in a ball Bε = {z ∈ `s(Z), ||z|| <
ε} and takes values in B2ε. Furthermore, we have

∀z ∈ Bε ||φ(z)− z||s ≤ Cs||z||l−1
s ≤ Cs||z||2s

ii) For each F ∈ Hs with s > s1, F ◦ φ ∈ Hs. If χ is real then F ◦ φ is also real.

iii) Considering P ∈ Tn,ν ∩Hs with ν ≥ 0, n ≥ 3 and r ≥ n, we have

P ◦ φ = Qr +Rr,
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- Qr is a polynomial (not necessarily homogeneous) of degree ≤ r and lives in Hs
and Tν′ for some ν′ > 0,

- Rr is a map who lives in Hs ∩ Tν′′ , for some ν′′ > 0, and admits 0 as a zero of
order ≥ r + 1.

Proof. i) For ε > 0 small, Proposition 3.3.6 gives us sup
||z||s<ε

||Xχ(z)||s ≤ Cε2. Recall

that Φ0(z) = z and ||z|| < ε. A bootstrap argument let us show that Φt(z) is defined
when |t| ≤ ε

Cε2 , which implies |t| ≤ 1 when ε is rather small.
ii) The map F is C∞ on a neighborhood of `s (see Definition 3.2.1), so is F ◦φ. Again,

XF = iJ∇F ∈ C∞(`s, `s) and dφ is C∞ from `s to the space of linear bounded maps.
We check for z near 0

XF◦φ(z) = iJ∇F◦φ(z) = iJdφ?z(∇F (φ(z))) = −idφ?z(J∇F (φ(z))) = −idφ?z(XF (φ(z)))

Thus XF◦φ is C∞ regular on a neighborhood of 0 ∈ `s and takes values to `s.
If χ is real, Φt transports the real part of `s(Z), i.e. {(z, z), z ∈ `s(N)} in itself.
We want to get the Taylor polynomials of h(t) = F ◦ Φt around t = 0. We pose

F [0] = F and F [k+1] = {F [k], χ} by induction. We can write

d

dt
Φt(z) = Xχ(Φt(z)) Φ0(z) = z Φt(0) = 0

h′(t) = 〈∇Φt(z)F,Xχ(Φt(z))〉 = {F, χ}Φt(z)
Thus, an induction gives h(k)(t) = F [k](Φt(z)). The Taylor formula leads to

h(t) =

n∑
k=0

h(k)(0)
tk

k!
+
tn+1

n!

∫ 1

0

(1− u)nhn+1(tu)du

F ◦ φ(z) =

n∑
k=0

F [k](z)
1

k!
+

1

n!

∫ 1

0

(1− u)nF [n+1] ◦ Φu(z)du

Define Fk the k-th polynomial Taylor of F in 0 and recall that deg{P, χ} = (degP +
degχ)− 2. Hence,

F ◦ φ(z) =

n∑
k=0

1

k!

∑
j+j′(l−2)=k

F
[j′]
j (z) +

1

n!

∫ 1

0

(1− u)nF [n+1] ◦ Φu(z)du

The last part is O(||z||n+1), so it does not contribute in degree. We end as in [11]
(Proposition 2.21)

iii) Let K be the integer part of r−n
l−2 , we decompose P ◦ φ = Qr +Rr

Qr =

K∑
k=0

P [k](z)
1

k!
, Rr =

1

n!

∫ 1

0

(1− u)nP [n+1] ◦ Φu(z)du

We have P [0] = P ∈ Tn,ν . By induction, Proposition 3.4.2 proves that P [k] ∈ Tn+k(l−2),ν′ .
As n+K(l− 2) ≤ r ≤ r+ 1 ≤ n+ (K + 1)(l− 2), we understand that Qr has degree ≤ r
and lives in Tν′ . Furthermore, P [k+1] ∈ Tn+(k+1)(l−2),ν′′ , for some ν′′ > 0, Rr admits
zero of order ≥ r + 1 and lives in Tν′′ . Consequently, Rr = P ◦ φ−Qr ∈ Hs. �

23



3.6. The normal form theorem

Now, we introduce the nonresonance definition.

Definition 3.6.1. A vector frequencies (ωj)j∈N is nonresonant if for all r ∈ N, there is

γ, δ > 0 such that for all j ∈ Nr and i ∈ [[1, r]] we have

|ωj1 + · · ·+ ωji − ωji+1
− · · · − ωjr | ≥

γ(1 + S(j))

µ(j)δ
(21)

except if {j1, . . . , ji} = {ji+1, . . . , jr}. Here, S(j) is the same that in definition (3.3.3).

Now, we claim that the following holds

Theorem 3.6.2. For each k ≥ 1, there is a full measure set Fk ⊂
[
− 1

2 ,
1
2

]N
such that

for every (mj) ∈ Fk, the vector frequencies

(
λj +

mj

jk

)
j≥1

is nonresonant.

The proof of the previous theorem is the same as Theorem 5.7 of [12], we do not
repeat it in this article, in fact it only needs growth condition on the sequence (λj)j≥1 :

i) (λj)j≥1 is positive and increasing,

ii) there are C > 1 and θ ≥ 1 such that 1
C j

θ ≤ λj ≤ Cjθ,

iii) the set Λ := {λj − λj′ , (j, j′) ∈ N2} satisfies for some σ > 0

∀t ≥ 1 Card(Λ ∩ [0, t]) ≤ Ctσ

Point iii) means the differences λj − λj′ do not accumulate to zero and is a consequence
of Proposition 2.2.1. We also claim that the crucial normal form theorem holds :

Theorem 3.6.3. Let P be in Hs ∩ Tν for s large and let H0 =
∑
j≥1 ωjIj be a Hamil-

tonian with nonresonant frequencies ω. The perturbation reads H := H0 + P . Consider
r ≥ 3, there are two neighborhoods Us and Ws of 0 ∈ `2s(Z) and τs : Us → Ws a real
symplectic diffeomorphism such that H ◦ τ = H0 + Z +R with

i) Z is polynomial of degree ≤ r, lives in Hs and depends only on actions Ij,

ii) R ∈ Hs and ||XR(z)||s ≤ C(s, r)||z||rs for each z ∈ Us,

iii) ||τ(z)− z||s ≤ Cs||z||2s for each z ∈ Us.

The proof of Theorem 2.23 is the same as this of [11], and the reality of τs means
τs(`s(N)) ⊂ `s(N). Let us recall formally the idea of the proof for r = 3. Write P =
P3 +P4 where P3 is the Taylor polynomial of degree 3 of P . First of all, we need to solve
the so-called homological, i.e. find some homogeneous polynomial

χ :=
∑

j1,j2,j3∈Z

q(j1, j2, j3)zj1zj2zj3
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of degree 3 such that Xχ lives in `s(Z) and Z := {H0, χ} + P3 is in normal form (so
depends only on the actions). Computing the Poisson bracket gives us

{H0, χ} = i
∑

j1,j2,j3∈Z

(sg(j1)ω|j1| + sg(j2)ω|j2| + sg(j3)ω|j3|)q(j1, j2, j3)zj1zj2zj3

Where sg(k) equals +1 if k > 0 and −1 if k < 0. As (ωj) is nonresonant, we can choose

q(j1, j2, j3) =
ip(j1, j2, j3)

sg(j1)ω|j1| + sg(j2)ω|j2| + sg(j3)ω|j3|

where of course P3 =
∑
p(j1, j2, j3)zj1zj2zj3 ∈ T3,ν . The nonresonance condition (21)

implies that χ lives in T+
3,ν+δ. As 3 is odd, we are able to eliminate all the terms of P3,

thus Z := {H0, χ}+P3 = 0, but other terms could appear if we would have started with
r = 4, for instance zj1zj2z−j1z−j2 . As χ lives in T+

3,ν+δ, we can define the Lie transform
φ of χ and we have

(H0 + P ) ◦ φ(z) = H0 + Z + (H0 ◦ φ−H0 − {H0, χ})+

(P3 ◦ φ− P3) + P4 ◦ φ

Point i) of Proposition 3.5.3 shows that φ is near the identity map, and consequently the
three terms (H0 ◦ φ−H0 − {H0, χ}), (P3 ◦ φ− P3) and P4 ◦ φ are less than ||z||4s near 0.
In the general case r ≥ 4, τ is constructed by composition of canonical transformations
φ for various real polynomials χ ∈ T+

k,ν which solve homological equations.

4. Perturbation regularity and conclusion

Theorem 1.0.1 is a consequence of Theorem 3.6.3, Lemma 4.0.6 and the fact that the
following nonlinear perturbation lives in Hs ∩ Tν for s and ν large.

∀z ∈ `s(Z) P (z) =

∫
R
g

∑
j>0

zjφj(x),
∑
j>0

z−jφj(x)

 dx

Proposition 4.0.4. For s large, the map P : `s(Z)→ C is C∞ regular and its gradient
takes values in `2s(C).

Proof. � The map P can be written

`2s/3(Z) −→ Ĥs × Ĥs −→ Ĥs −→ C

z 7−→
(∑

j>0 zjφj ,
∑
j>0 z−jφj

)
7−→ g

(∑
j>0 zjφj ,

∑
j>0 z−jφj

)
7−→ P (z)

The first arrow is just Γs, thus is a diffeomorphism. The third arrow is regular because
Ĥs ⊂ L1(R) for s large. Let us prove the second arrow is regular. The analytic condition
on g leads to the expression

g(ξ1, ξ2) =
∑

m+n≥3

αm,nξ
m
1 ξ

n
2
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Remembering the proof of Proposition 2.4.6, we understand the second arrow is uniform
limit of polynomials on each bounded set of Ĥs × Ĥs :

PN : (f1, f2) 7→
∑

m+n≤N

αm,nf
m
1 f

n
2

Consequently, (f1, f2) 7→ g(f1, f2) is holomorphic, hence C∞, on Ĥs × Ĥs (see [15] § 6
Proposition 4 and § 7 Proposition 3, or [16] appendix A Theorems 1 and 2).

� Let us deal with the gradient. As first and third arrows are linear, the gradient of P
comes naturally by linearization of the second arrow around a point (f1, f2) ∈ Ĥs × Ĥs.
First, Taylor formula gives us three holomorphic maps G1, G12 and G2 on C4 such that
for each (ξ1, χ1, ξ2, χ2) ∈ C4 we have

g(ξ1 + χ1, ξ2 + χ2)− g(ξ1, ξ2) = χ1∂1g(ξ1, ξ2) + χ2∂2g(ξ1, ξ2)+

χ2
1G1(ξ1, χ1, ξ2, χ2) + χ1χ2G12(ξ1, χ1, ξ2, χ2) + χ2

2G2(ξ1, χ1, ξ2, χ2)

Hence, for h̃1, h̃2 ∈ Ĥs × Ĥs, Proposition 2.4.6 leads to

g(f1 + h̃1, f2 + h̃2)− g(f1, f2) = h̃1∂1g(f1, f2) + h̃2∂2g(f1, f2) +O(||h̃1, h̃1||2Ĥs×Ĥs)

Coming back to P , for all z and h ∈ `s(Z) we have

DzP (h) =
∑
j>0

hj

∫
R
φj(x)∂1g

∑
j>0

zjφj(x),
∑
j>0

z−jφj(x)

 dx+ (22)

+
∑
j<0

hj

∫
R
φj(x)∂2g

∑
j>0

zjφj(x),
∑
j>0

z−jφj(x)

 dx

Hence

||∇zP ||2Ĥs =
∑
j>0

j2sp̂

∣∣∣∣∣∣
∫
R
φj(x)∂1g

∑
j>0

zjφj(x),
∑
j>0

z−jφj(x)

 dx

∣∣∣∣∣∣
2

+

∑
j<0

|j|2sp̂
∣∣∣∣∣∣
∫
R
φ−j(x)∂2g

∑
j>0

zjφj(x),
∑
j>0

z−jφj(x)

 dx

∣∣∣∣∣∣
2

With the help of Γs, φj = φj , and Proposition 2.4.6, we conclude

||∇zP ||2Ĥs '

∣∣∣∣∣∣
∣∣∣∣∣∣∂1g

∑
j>0

zjφj(x),
∑
j>0

z−jφj(x)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

Ĥs

+

∣∣∣∣∣∣
∣∣∣∣∣∣∂2g

∑
j>0

zjφj(x),
∑
j>0

z−jφj(x)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

Ĥs

< +∞

�
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Now, we check the following

Proposition 4.0.5. For s and ν large, the map P lives in Hs ∩ Tν .

Proof.
Let us check that P ∈ Hs. We call P =

∑
k≥3 Pk the Taylor decomposition of P .

As P is holomorphic, each Pk is C∞. Thus, XP =
∑
XPk is holomorphic from `s(C) in

itself, so is each XPk . Now, let us check Definition 3.5.1. Like g is holomorphic, for each
k ≥ 3 there are holomorphic maps G1, · · · , Gk on C2 such that

∀ξ1, ξ2 ∈ C g(ξ1, ξ2) =

k∑
r=3

1

r!

r∑
`=0

(ξ`1ξ
r−`
2 )∂`1∂

r−`
2 g(0, 0) +

k+1∑
`=0

ξ`1ξ
k+1−`
2 G`(ξ1, ξ2)

Remember Proposition 2.4.6 and the proof of Proposition 4.0.4, the Taylor polynomial
Pr of P around (0, 0) appears

Pr(z) =
1

r!

r∑
`=0

∂`1∂
r−`
2 g(0, 0)

∫
R

∑
j>0

zjφj(x)

`∑
j<0

z−jφj(x)

r−`

dx

=
1

r!

r∑
`=0

∂`1∂
r−`
2 g(0, 0)

∑
j∈Nr

zj1 · · · zj`z−j`+1
· · · z−jr

∫
R
φj1(x) · · ·φjr (x)dx

Finally, we get that Pr lives in Tr,ν for large ν thanks to Proposition 2.5.1. �

To finish, as said in Section 3.1, the property g(z, z) ∈ R ensures the final lemma

Lemma 4.0.6. A solution z(t) of (16) is real, i.e. zj(t) = z−j(t), if and only if its
initial condition z(0) is real.

Proof. Let D be the complex line {(ξ, ξ), ξ ∈ C}. The holomorphic map g satisfies
g(D) ⊂ R. A differentiation gives us

∀z, ξ ∈ C ξ∂1g(z, z) + ξ∂2g(z, z) ∈ R

Consequently, ∂2g(z, z) = ∂1g(z, z). Thanks to (22), we have ∂P
∂z−j

(z) = ∂P
∂zj

(z). In other

words, the two equations of (16) are self-conjugate. �

Let us prove our main theorem. We apply Theorem 3.6.3 for r+2, let (z(t))t∈(−Tm,TM )

be a maximal solution of (17) in `s(Z) for s large. As τ and τ−1 are defined on a
neighborhood of 0 ∈ `s(Z) for ||ξ(0)||s < ε we can define ξ(t) := τ−1(z(t)). As τ is real
symplectic, we have

ξ−j(t) = ξj(t), ξ′(t) = iXH0+Z+R(ξ(t))
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Let us define N(z) = ||z||2s =
∑
j≥1 λ

s
jzjz−j for all z ∈ `s(Z). Let T+

M be the maximal

time in (0, TM ) such that ||ξ(t)||s ≤ 3
2ε for t ∈ [0, T+

M ]. We have for t ∈ [0, T+
M ]∣∣ d

dtN(ξ(t))
∣∣ = |{N,H0 + Z +R}(ξ(t))| = |{N,R}|(ξ(t))|

= |
∑
j≥1

λsj(ξj(t)∂−jR− ξ−j(t)∂−jR)|

≤ 2

∑
j≥1

λsj |ξj(t)|2
1/2

||XR(ξ(t))||s

≤ C||ξ(t)||r+3
s ≤ Cεr+3

|||ξ(t)||2s − ||ξ(0)||2s| ≤ Ctεr+3

For t = T+
M we get T+

M ≥ Cε−1−r. Let us check what happens when t ∈ [0, Cε−r]. By
the same estimate seen above, we have∑

j≥1

λsj |
d

dt
|ξj |2| =

∑
j≥1

λsj |{Ij , R}(ξ(t))| ≤ Cεr+3

Hence, ∑
j≥1

λsj ||ξj(t)|2 − |ξj(0)|2| ≤ Ctεr+3 ≤ Cε3

Remember that ||ξ(t)||s ≤ 2ε. Point iii) of Theorem 3.6.3 leads to

∀t ∈ [0, Cε−r] ||z(t)− ξ(t)||s ≤ Cs||z(t)||2s ≤ Csε2 (23)

Consequently, for small ε we have ||z(t)||s ≤ 3
2ε. Finally,

∑
j≥1 λ

s
j ||zj(t)|2 − |zj(0)|2| is

less than∑
j≥1

λsj ||zj(t)|2 − |ξj(t)|2|+
∑
j≥1

λsj ||ξj(t)|2 − |ξj(0)|2|+
∑
j≥1

λsj ||ξj(0)|2 − |zj(0)|2|

The first and third sums are less than ε4 thanks to (23). Theorem 1.0.1 is proved.
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