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ABSTRACT

Nowadays, most of the research works in the area of image
retrieval try to build image signature by considering the im-
age as a whole. In this paper, we proposed an alternative
based on the detection of some salient points in the image.
For this purpose, we propose a new efficient salient point
detector based on a wavelet transform. The efficiency of
our detector lies in the representation of the wavelet coeffi-
cients by a zerotree data structure and by a saliency formu-
lation that does not favor any direction. Thus, the detected
salient points are located on region contours whatever their
direction. From the detected salient points, we propose to
extend to well-known color correlogram to salient features
in order to build a saliency-based image retrieval system.
This modified correlogram is built in the recently proposed
clc2c3 color model in order to get a photometric invariant
color descriptor. Experimental results have shown that our
descriptor outperforms the MPEG-7 SCD, based on the con-
struction of a color histogram in the HSV color space.

1. INTRODUCTION

Today, most of the research works in the area of content-
based image retrieval aim at giving a global description of
an image or a region by designing an image signature con-
sidering all pixels of the image or the region of interest.
Consequently, all pixels of the image or the region have the
same importance during the signature computation. How-
ever, it seems natural to consider that some pixels are more
perceptually important than others and computing an im-
age signature from features extracted around these pixels
may lead to better retrieval results. Moreover, when this
approach is applied to object-based queries, we gain robust-
ness against occlusions since we only use a local description
of the object of interest.

This approach to content-based image retrieval is said to be
salient features-based [18] because the information of the
image is condensed into a limited number of feature values.
As a result, the salient features must be extracted with pre-
cision for greatest saliency and proven robustness. ldeally,

one should be able to repeat the extracted salient features
whatever the geometric transform applied to the image (ro-
tation, scale change, translation, etc.), the point of view and
the imaging conditions. Moreover, most of the image infor-
mation content should be extracted from the neighborhood
of salient features.

Image retrieval based on salient features extraction follows a
similar computation flow compared to other image retrieval
approaches: first, a robust salient feature extractor must be
designed. Then, a salient signature is computed by analyz-
ing image data located in the neighborhood of the extracted
features. Finally, a similarity measure must be designed
to compare two salient signatures. Obviously, the signa-
ture design and the similarity measure greatly depend on
the salient feature extractor used.

The salient features can be of different types (edge, junc-
tions, corners, etc.) and a good overview is given in [18].

In this paper, we focus on salient features represented by
single points located in image area where the information
is considered as perceptually important. A wide variety of
salient point! detectors have been proposed in literature [14]
due to the lack of definition about the concept of salient
point. One of the oldest and probably the most used detec-
tor is the corner detector proposed by Harris and Stephens
in [5]. This detector (and a precise version of it) has been
first used in the image retrieval topic by Schmid and Mohr
in [13]. Then, it has been extended to cope with color im-
ages in [10].

In [1], Bres and Jolion consider that relevant information is
located in image area where local contrast is high. For this
purpose, they adopt a multi-resolution framework in which
they build a contrast pyramid.

In [7], the authors also adopt a multi-resolution scheme in
which salient points are those presenting the highest wavelet
coefficient values. Consequently, salient points are located
on sharp region boundaries. This last approach seems to us
the most interesting one for two reasons:

1This kind of point is often called key point or point of interest in liter-
ature.



e image contours are more perceptually important than
corners that are used in [3, 13];

e salient points detected by a corner detector may be
gathered in small image regions in the case of tex-
tured images. As a result, the detected points only
provide a very local image description.

These drawbacks are naturally avoided by the use of

wavelet analysis since texture areas are gradually smoothed
by the multi-resolution framework avoiding thus the gather-
ing of salient points in these zones. Regarding the contrast-
based detector proposed in [1], we are convinced that the
detected points are approximatively the same than those de-
tected by the wavelet approach since a high contrast value
generally lead to a contour and thus a high corresponding
wavelet coefficient.
In this paper, we propose a new wavelet-based salient point
detector. Our approach is more computationnal efficient
than the one presented in [7] thanks to a zerotree represen-
tation of wavelet coefficients. As a result, the computation
time is independent of the wavelet filter size which is not
the case for the detector presented in [7]. Moreover, our de-
tector does not favor any contour direction by merging the
wavelet coefficients from all detail subbands. Our detector
will be detailed in section 2. Due to the limited text size,
we will not present in this paper the performance of our de-
tector in terms of repeatability rate but experimental results
have shown its good behavior. In section 3, we will propose
an example of color image indexing framework based on
our salient point detector. In this section, we will extend the
well-know color correlogram [6] to salient features and we
will work in a photometric invariant color model recently
proposed by Gevers and Smeulders in [2]. Finally, our con-
clusions and perspectives will be discussed in section 4.

2. A NEW WAVELET-BASED SALIENT POINT
DETECTOR

2.1. Introduction

To detect salient points in an image, our detector proceeds
as follows:

o awavelet transform is firstly performed on the image
of interest, resulting in a sub-sampled scale image and
a pyramid of detail images;

e the obtained wavelet coefficients are zerotree repre-
sented [17] resulting in a hierarchical data structure
(tree) of wavelet coefficients;

e thistree is traversed a first time from leaves to the root
node by computing at each level the saliency value of
each wavelet coefficient;

o from the saliency maps previously computed, the tree
is traversed a second time from root to leaves by choos-
ing at each tree level the most salient wavelet coeffi-
cient.

All these steps are detailed in the next sections.

2.2. Wavelet Transform

The wavelet transform is a powerful tool approximating a
function at different resolution levels [8]. Thus, this theory
can describe any function f with a coarse approximation of
f and a set of detail functions allowing to perfectly recon-
struct the original function f. For a good overview of the
wavelet theory, the reader is referred to [8].

In our case, any image I can be considered as a discrete bi-
dimensional function sampled over a discrete compact sup-
port D; withn = 2F (k € Z) rowsand m = 2! (I € 2)
columns. Moreover, we consider only luminance informa-
tion that we suppose quantized over 256 values i.e. I(p) €
[0,255] foreachp € Dy.

As mentioned previously, the wavelet transform of I allows
a multi-resolution representation of I. At each resolution
level 27 (j < —1), I is represented by a coarse approx-
imation of I denoted by A,;I and by three detail images
denoted by D3; I with s = 1,2, 3 and representing respec-
tively vertical, horizontal and diagonal details. These four
images are of size 2%1J x 2!+7, All these images are ob-
tained from a low pass scaling filter H and a high pass
wavelet filter G obtained respectively by dilating and trans-
lating a scaling function ®(«) and a wavelet function ¥ (z).
In our case, we focus on orthogonal wavelets with compact
support for which the functions ® and ¥ are separable, re-
sulting in separable filters H and G. In this case, the wavelet
transform can be implemented in a pyramidal framework as
illustrated in Figure 1.

2.3. Zerotree Representation of Wavelet Coefficients

Once the wavelet transform is performed up to a fixed res-
olution 2" (r < —1), we get a coarse approximation image
Ay~ I and three details images D3; I (s = 1,2,3) per reso-
lution level 27 (r < j < —1).

We can then construct a hierarchical data structure of wavelet
coefficients based on the zerotree approach that has been
firstly proposed for image compression in [17]. This allows
to build hierarchical relationships between wavelet coeffi-
cients as illustrated in Figure 2:

e each pixel p(z,y) € As-1 is the root of a tree;

e each root p(z, y) has three children nodes designated
by the wavelet coefficients ws. (z,y) (s = 1,2,3)
located at (, y) in the corresponding detail subbands
D3, I,
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Fig. 1. Pyramidal wavelet transform

e due to the sub-sampling step performed during the
wavelet transform (see Figure 1), each wavelet co-
efficient w3, (z,y) (s = 1,2,3) of the detail sub-
band D3, I corresponds to an area of size 2 x 2 pixels
in the same detail subband at the higher resolution
level D3, 1. This area is located at (2, 2y) and all
wavelet coefficients belonging to this zone become
the children nodes of w3, (z,y).

D1 D}, D... !
A 69
DZ 1 4 g\ﬁ, Eg\
D21 \ \ @
(2Xv2Y)EE|\ D21

(4x,4y)
DSnz |
2

Fig. 2. Zerotree data structure

In a recursive way, we construct the zerotree data struc-

ture in which each wavelet coefficient ws. (z,y) (s = 1,2,3
and 0 > u > r) has four children nodes designated by the
wavelet coefficients of D3, ,, I belonging to the area of size
2 x 2 pixels and located at (2z, 2y).
Once all the trees are constructed, each wavelet coefficient
at the coarsest resolution level w3, (z,y) (s = 1,2,3) cor-
responds to a region of size 27" x 277" pixels in the detail
subband D3_, I

2.4. Construction of Saliency Maps

From the zerotree data structure previously constructed, we
propose to build a set of —r saliency maps (i.e. one saliency
map per resolution level). Each saliency map S»; (j =
—1,...,r) should reflect the importance of the wavelet co-
efficients at the resolution level 27. Let us recall that a per-
ceptually important wavelet coefficient should correspond
to a pixel located on a contour in the image I. Therefore, a
saliency map should satisfy the following properties:

o the more the information content embedded by a wavelet
coefficient is perceptually important and the more the
associated saliency value must be high;

¢ asalient wavelet coefficient must have a high saliency
value whatever the preferred direction (horizontal, ver-
tical or diagonal) of the corresponding detail subband
to which the coefficient belongs. Indeed, we are inter-
ested in image contours whatever their direction and
for this purpose, we have to merge information com-
ing from each detail subband;

e the saliency value of each wavelet coefficient at the
resolution level 27 must consider the saliency value
of its descending nodes in the zerotree data structure.

In order to tsatisfy these properties, the saliency value
Syi(z,y) of a wavelet coefficient located at (z,y) in the
resolution level 27 is given by the following recursion:

S = Z||A14Ufwlguy i)
= 3o (ZIJ'\Z)ZwaD%‘)I)+ @

i Z Z Soi+1(2¢ + u, 2y + v))

\ u=0 v=0

Sa; (il? 11/

where Maxz(D3;) (s = 1,2,3) denotes the maximum
wavelet coefficient value over the detail subband D3;, and
ay (with & € [r,—1] and 0 < ay, < 1) designates a weight-
ing factor allowing to tune the importance of saliency val-
ues following the resolution level. In practice, we assign
high saliency weights to wavelet coefficients at resolution
2" since they embed contour information of the biggest im-
age objects that can be considered as the most perceptually
important objects (little objects being deleted by the multi-
resolution framework). Therefore, we generally choose o j =
277,
It can be noted that equation (1) gives normalized saliency
values i.e. in the range [0, 1].



2.5. Choice of Salient Points

Once all saliency maps are constructed, we propose a method
to choose the most salient points in the original image I. For
this purpose, we build a hierarchy of saliency values from
the —r saliency maps by adopting a similar approach to the
construction of the zerotree data structure: 2*+1+2" trees of
saliency values can be constructed, each one being rooted
at a saliency value of Sy-. As with the zerotree approach,
each root node corresponds to an area of size 2 x 2 saliency
values in Sy-+1. We can thus recursively build the trees in
which each node has four children in the saliency map at
the next higher resolution. Figure 3 illustrates an example
of this construction.
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Fig. 3. Saliency tree construction

To localize the most salient points in the original image
I, we proceed as follows:

1. the 2k+1+27 trees are sorted in the decreasing order of
the saliency value associated to the root node;

2. the most salient branch is selected in each of the 2++!+2r

trees.

The first step is justified by the recursive definition of the

saliency (see equation (1)) showing that the saliency values
contained in the map So- embed the saliency values of all
descending nodes in the saliency hierarchy.
To select the most salient branch in the second step, we tra-
verse each tree from the root to the leaves by selecting at
each level the node with the highest saliency value (see Fig-
ure 4).

In this way, we obtain 2*+1+2" |ists of —r saliency val-
ues, each list corresponding to the most salient branch of a

SalientBranch={12,9,24}

Fig. 4. Extraction of a salient branch from the example
given in Figure 3

saliency tree:
Salient Branch(i) = {Sar (%, y!),..., S (", 4" )}

with i € [0, 25+1+2" — 1] and
(@, Yr)k>1 = ArgMaz{Sorsr—1 (2zk—1+u, 2yk—14v),0 <
u,v < 1}

We can thus select up to 2%+1+2" salient pixels in the image
1. These pixels are those with the highest gradient value
among all pixels located in the area of size 2 x 2 pixels and
located at (2z_,.,2y_,.).

In practice, we often need p < 2k+!+2" salient pixels. In
this case, the p chosen pixels are those generated by the first
p salient branches due to the ordering of the salient tree in
decreasing order of their root saliency value.

Figure 5 illustrates the salient point detection results.
Figure 5(a) shows the original image and Figure 5(b) shows
the 400 salient points detected with r = —2 and the Haar
wavelet basis.

(b)

Fig. 5. Salient point detection results. (a)original image
(b)the detected 400 salient points

3. TOWARDSCOLOR IMAGE RETRIEVAL BY
USING WAVELET SALIENT POINTS

3.1. Problem Statement and Previous Works

The use of salient points for content-based image retrieval
need the design of (1) a signature computed from informa-
tion extracted in the neighborhood of salient points and (2)



a similarity measure allowing to compare two salient signa-
tures. Let us recall that the main task of designing an im-
age signature is to bridge the gap between image semantics
and pixel representation, that is, to create a better correla-
tion with image semantics. To reach this goal, the detected
salient points must be located in image area where infor-
mation content is perceptually relevant and the features ex-
tracted around the salient points should constitute a compact
representation of the perceptually relevant information con-
tained in the entire image.

In [3, 13], each salient point is described by a combina-
tion of differential invariants to obtain invariance under the
group SO(2) of similitudes. While only grayvalue infor-
mation is used in [13], Gouet and Boujemaa use in [3] the
Harris color detector [10] allowing them to use only the first
order invariants whereas invariants up to the third order are
needed in [13]. As a result, a feature vector of size 9 in [13]
and 8 in [3] is extracted from each salient point.

In[7, 15, 16, 20], a different kind of approach is proposed in
which the same number of salient points must be extracted
from all images in the database. Wolf et al. [20] extract
a region of size 32x 32 pixels around each salient point and
submit it to a Gabor filter bank with 3x8 filters (i.e. 3 scales
and 8 orientations). Thus, each salient point is described
by a texture feature of size 24 denoting the Gabor filter re-
sponses. In [7], Loupias et al. adopt the same method but
by using a wavelet-based salient point detector. In [16], the
signature is composed of the third first color moments (in
the HSV color space) computed in a small neighborhood of
the detected salient points. In [15], the authors complete
this approach by adding a texture feature computed by Ga-
bor filters in a 9x 9 neighborhood of salient points.

All these different approaches show that salient points
can be used in very different ways for content-based image
retrieval. Obviously, it seems natural to think that all in-
dexing methods proposed in literature can be adapted to the
saliency-based indexing model. However, it is important to
favorably take advantage of the information located in the
neighborhood of the salient points since it represents per-
ceptually relevant information.

In this paper, we present a new approach motivated by the
following observations:

1. the use of differential invariants only provide a very
local description of the salient points and differential
invariants are known to be sensitive to noise (although
the authors of [3] have limited this drawback by work-
ing only with the first order invariants);

2. we are not interested in methods using a fixed number
of salient points. Obviously, this number depends on
many factors such as the image size, image content,
imaging conditions, etc. and fixing the same number

for all images inevitably spoils retrieval results;

3. none of the existing methods consider the structure of
image content in the neighborhood of salient points.
The only structural constraint used in previous ap-
proaches is the geometric constraint between salient
points proposed in [3, 13]. It seems important to us to
strongly consider color spatial structure as an impor-
tant property of salient point neighborhood.

To satisfy these observations, our retrieval scheme uses an
adaptive approach to determine the number of salient points
to be extracted and compute a color descriptor based on the
correlogram introduced in [6] and adapted to salient fea-
tures. This approach is detailed in the next sections.

3.2. Adaptive Computation of the Number of Salient
Points to be Extracted

In this section, we propose a method determining automat-
ically the number p of salient points sufficient to provide a
good representation of the image content.

For this purpose, we consider the list A of the the 2*++2r
saliency values of S5~ that have been ordered in the decreas-
ing order of saliency during the choice of the salient points
(cf. section 2.5):

A= A{Sor(x1,91)s- -, Sor (Thtit2r Yrtit2r)}

with Sor (24, y¢) > Sor (Tp1,Yp41), 1 <t <k + 1+ 27
We then denote by £(\) the total energy embedded in the
saliency values of \:

k+I1+2r

EN) = Z Sor (T4, Yi)-

Finally, we compute a cumulative histogram # , of saliency
values that gives, for each ordered saliency index s (1 <
s < k + 1 + 2r), the percentage of £()\), reached up to s:

100 &
Ha(s) = 76} ; Sor(x4,Y:)

withl < s <k+1+2r.
By using an energy treshold 7, we can determine the number
p of salient points to be extracted according to:

p = Arg{H\(s) > 7}.
In practice, 30% < 7 < 50% provides a good image repre-
sentation.
3.3. Photometric Invariant Salient Color Signature

From the initial paper of Swain and Ballard [19], object
recognition by using photometric information has attracted



a big amount of research. Indeed, color histograms are
known to be relatively robust against various image trans-
forms such as translation, rotation, scale changes, occlu-
sions and view position. However, color histograms are not
robust against lighting changes [19] and using color his-
tograms without a color constancy algorithm can lead to
drastically poor results when the images of the database
have been taken under unconstrained imaging conditions.
In this paper, we have chosen to use the c1c2c3 color model
recently proposed by Gevers and Smeulders in [2] which is
known to be photometric invariant under the assumption of
a dichromatic reflection model with white light source for
matte, dull objects. This color model is defined by:

cl = arctan(#@)
2 = arctan( ;7757 )
c3 = arctan(m)

where R, G and B denotes respectively red, green and blue

pixel values.

Another drawback of color histograms is that they do not

consider the spatial structure of color values which is of

prime importance for content-based image retrieval. To over-
come this drawback, several alternatives to classical color

histograms have been proposed in literature, including the

correlogram [6] and more generally the geometric histograms
[12], or the color coherence vector [11]. In this paper, we

have extended the notion of correlogram to salient features.

Let us recall that the color correlogram of an image I is

defined by:

'V((fli)ﬁj(l) = Pr {p€ Io;, 1 —p2| =1}
p1€ls;
p2€l
where:

e 0;,0; denote color values quantized into 1 possible
values [o1,02,...,0m];

e |p1 — p2| denote the distance between pixels p; and
P using the L>° norm;

e pe I, issimilarto I(p) = o; (i.e. pis of color 0;);

e [ €l,...,d]isasetof distances of interest. A large
d leads to expensive computation and storage require-
ment but a small d might compromise the robustness
of the color signature.

Literally speaking, 7((,?7% (I) gives the probability that a pixel
of color ¢; is at distance [ from a pixel of color ¢;.

In practice, we use the autocorrelogram a((,” (I) for image
retrieval due to its low storage requirement (O (md) instead

of O(m?d) for the correlogram):

o) (1) = (1)

To obtain a photometric invariant salient correlogram, we
proceed as follows:

e we first apply a c1c2c3 color transform (cf. equation
2) to the original image I to obtain a photometric in-
variant color image 1 ¢t¢2<3;

e the image I¢1¢2¢3 is then uniformly quantized into ¢

bins per color axe resulting into a quantized image
—clc2e3 . 3 . i
I with ¢° possible color values;

e a RGB color mask J is created from I by inserting
the p detected salient points (p being fixed by the
method presented in section 3.2) along with their k-
neighborhood (k being small in practice);

o all pixels of J that have a local saturation and inten-
sity smaller than 5% of the total range are discarded
from the autocorrelogram computation since they are
known to have instable color values [2];

¢ asalient color correlogram is defined by:

_ —clc2c3

W= Fr, Am €T b il =)
pleficzcs
p26701c203

The corresponding salient autocorrelogram can be ob-
viously deduced:

a (1) =75 (1)

The salient autocorrelogram thus constitutes the feature vec-
tor of the image I and contains ¢®d components. Let us
point out that this size can be however quite important. Gev-
ers and Smeulders have indeed shown in [2] that good re-
trieval results can be expected by using the clc2c3 color
model with at least 16 bins per color axe. Moreover, Huang
et al. have shown that using the autocorrelogram with d = 4
possible distances provide good retrieval results. Combin-
ing these two parameters produces a salient feature vector of
size 16384 per image which may drastically increase the re-
trieval execution time. However, experimental results have
shown that most components of this vector have null values
and we can therefore easily run-length encode it so that only
non null values remain. Using this encoding allowed us to
greatly improve retrieval time.

Once the salient signatures are computed, a similarity mea-
sure must be proposed to compare the corresponding im-
ages. In [6], it is shown that the distance d;, defined by:

5 @) (1) —ad (1)

I_I/Edl =
| = 1+ @ (1) +ad (1)

o€lo1,0m]
l1€(1,d]



outperforms classical Minkowski metrics. This distance is
in fact a weighted version of the L' metric and has a theo-
retical justification as shown in [6]. We have thus decided
to use this distance to measure the retrieval performances of
our salient descriptor.

3.4. Retrieval Results

To measure the performances of our photometric invariant
salient autocorrelogram, we have used an image database
with N; = 2000 images that have been extracted from sev-
eral TV programs by a temporal segmentation software. It
is important to note that the so built database is a general-
purpose database in which images have been shot with var-
ious imaging conditions. Due to the lack of space, we do
not include in this paper an example view of our database
content. We have thus a high degree of changes between
images of the database including lighting changes and geo-
metric transforms (zoom, pan, etc.). We can thus consider
that this database constitutes a very difficult working basis.
From these 2000 key frames, we have extracted N, = 18
images @; (1 < 7 < 18) that will serve as queries to mea-
sure retrieval results. These query images have been chosen
so that there exist similar images in the database but with
some transformations such as changes in viewing position,
imaging conditions, geometric transforms, etc. We are thus
not interested in queries for which approximately the same
images can be found in the database. For each query @ ;, we
manually searched all similar images to ; in the database,
resulting in an image list S; of size |.S;| that represents the
ground truth for @ ;.

We have also decided to compare our salient descriptor to
the SCD (Scalable Color Descriptor) proposed by the MPEG-
7 standard [9]. Let us recall that SCD builds a color his-
togram by uniformly quantizing the HSV color space into
256 bins. This descriptor has been chosen for the follow-
ing reasons: firstly, SCD is based on the HSV color space
which is known to be robust to lighting changes [2]; sec-
ondly, SCD is based on a color histogram construction that
is known to be relatively robust to most of the classical im-
age transforms [19].

We have not implemented the compression step required by
SCD allowing us to use the powerful quadratic distance pro-
posed in [4] to compare the obtained color histograms. This
distance can be considered close to a perceptual distance
since it considers the similarity between histogram bins.

To obtain a measure that considers the rank of each retrieved
image, we do not use the classical precision/recall measures.
Instead, we define a ranking percentile metric by:

391 Ny — Rank(s*)

N3 —k

where N3 denotes the number of results displayed to the
user, Rank(I) denotes the position of the image I in the
result list displayed to the user (Rank(I) < N3) and S¥
denotes the k" element of S;.

This ranking measure ranges from #; = 0 for the worst pos-
sible match (i.e. none relevant image is found) to 7; = 1 for
a perfect match (i.e. all relevant images are found in the | S ;|
first positions).

The parameters chosen for our salient autocorrelogram
are the following:

e the wavelet transform is performed up to the resolu-
tion 22 and the Haar wavelet basis is used;

o the energy threshold 7 used to determine the number
of detected salient points is set to 7 = 30%;

e the clc2c3 color model is quantized into 32 bins per
color axe;

e all pixels belonging to the ¥ = 2-neighborhood of
salient points are considered during the color mask
computation (cf. section 3.3);

e the distances of interest for the autocorrelogram com-
putation are set to {1, 3,5, 7}.

Finally, we present the first N3 = 25 retrieval results to the
user (i.e. 1,25% of the database).

The figure 6 illustrates the retrieval results obtained by our
salient descriptor compared to those obtained by SCD.

-+ Salient autocorrelogram
-+ SCD

o
©

o
o

ranking measure

o
IS

0.2

o 5 10 15
Query image index

Fig. 6. Retrieval results and comparison with SCD

For 14 of the 18 queries, our salient detector outper-
forms SCD with a ranking gain ranging from 2,45% to 186%,
the average gain being 68,57%. For the four remaining
cases for which SCD performs better than our descriptor,
the gain ranges from 4% to 23% with an average gain of
9,5%. After a deeper analysis of these last four cases, we
are convinced that they are caused by:



e the fine quantization we have imposed in the clc2c3
color model (32 bins per color axe) whereas SCD per-
forms a coarse quantization into a total number of 256
bins. In few cases, a too much fine quantization can
spoil retrieval results;

o the use of the d; distance does not consider the sim-
ilarity between bins of the salient descriptor instead
of the quadratic distance. In fact, one should expect
better results with a more perceptual distance.

4. CONCLUSIONSAND PERSPECTIVES

In this paper, we have firstly proposed an efficient wavelet-
based salient point detector that we have then used to build
a saliency-based image retrieval system. The efficiency of
the proposed detector lies in a zerotree representation of the
wavelet coefficients and in the formulation of the saliency
that does not favor any direction. Then, our proposed salient
color descriptor has shown a good behaviour compared to
SCD proposed by MPEG-7 due to the use of a photometric
color model and to the extension of the well-known correl-
ogram allowing to consider the spatial structure of colors.
Now, some improvements can be proposed. Firstly, the
salient points are detected by working only on the lumi-
nance pixel values. With this approach, high lighting changes
may generate high saliency values and thus false salient
points. This scheme can thus be improved by detecting
salient points directly in a photometric invariant color space.
Secondly, the d; similarity measure is not a perceptual met-
ric and we are convinced that the extension of a percep-
tual distance to salient features can lead to better retrieval
results. Finally, combining salient correlogram with other
features such as texture can greatly improve results.
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