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a b s t r a c t 

In this work, we study numerically the convergence of the scalar D2Q9 lattice Boltzmann scheme with 

multiple relaxation times when the time step is proportional to the space step and tends to zero. We 

do this by a combination of theory and numerical experiment. The classical formal analysis when all 

the relaxation parameters are fixed and the time step tends to zero shows that the numerical solution 

converges to solutions of the heat equation, with a constraint connecting the diffusivity, the space step 

and the coefficient of relaxation of the momentum. If the diffusivity is fixed and the space step tends 

to zero, the relaxation parameter for the momentum is very small, causing a discrepancy between the 

previous analysis and the numerical results. We propose a new analysis of the method for this specific 

situation of evanescent relaxation, based on the dispersion equation of the lattice Boltzmann scheme. 

A new asymptotic partial differential equation, the damped acoustic system, is emergent as a result of 

this formal analysis. Complementary numerical experiments establish the convergence of the scalar D2Q9 

lattice Boltzmann scheme with multiple relaxation times and acoustic scaling in this specific case of 

evanescent relaxation towards the numerical solution of the damped acoustic system. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Lattice Boltzmann models are simplifications of the continuum

oltzmann equation obtained by discretizing in both physical space

nd velocity space. The discrete velocities v i retained typically cor-

espond to lattice vectors of the discrete spatial lattice. That is,

ach lattice vertex x is linked to a finite number of neighboring

ertices by lattice vectors v i �t . A particle distribution f is therefore

arameterized by its components in each of the discrete velocities,

he vertex x of the spatial lattice, and the discrete time t . A time

tep of a classical lattice Boltzmann scheme [15] then contains two

teps: 

(i) A relaxation step where the distribution f at each vertex x is

ocally modified into a new distribution f ∗, and 
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(ii) an advection step based on the method of characteristics

s an exact time-integration operator. We employ the multiple-

elaxation-time approach introduced by d’Humières [10] , wherein

he local mapping f � −→ f ∗ is described by a diagonal operator in

 space of moments. 

In [6] , we have studied the asymptotic expansion of various lat-

ice Boltzmann schemes with multiple-relaxation times for differ-

nt applications. We used the so-called acoustic scaling, in which

he ratio λ≡�x / �t is kept fixed. We supposed also that the relax-

tion operator remains fixed. In this manner, we demonstrated the

ossibility of approximating diffusion processes described by the

eat equation. 

The importance of using small values of relaxation parame-

ers was recognized for linear viscoelastic fluids by Lallemand

t al. [14] . Independently, unexpected results in simulations for

dvection-diffusion processes have been described by Dellacherie

n [4] . We have studied experimentally in [3] the curious con-

ergence of the D1Q3 multiple-relaxation time lattice Boltzmann

cheme with one conserved variable when using the acoustic scal-

ng in one spatial dimension. The asymptotic equation of the lattice

oltzmann scheme is no longer an advection-diffusion model but a

amped acoustic model. In this contribution, we show and analyze
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Fig. 1. Particle distribution f j for 0 ≤ j ≤ 8 of the D2Q9 lattice Boltzmann scheme. 
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an analogous phenomenon for two spatial dimensions with the

scalar D2Q9 lattice Boltzmann scheme. The difficulty concerns the

highlighting of the convergence with the numerical experiments. 

In Section 2 , we recall some fundamentals relative to the

D2Q9 lattice Boltzmann scheme for scalar conservation laws. In

Section 3 , we study convergence of this scheme for diffusive and

acoustic scaling. A formal analysis is proposed in Section 4 , with

the dispersion equation method, initially proposed in [16] . We es-

tablish that with acoustic scaling, the convergence of the scalar

D2Q9 scheme is not the heat equation but an unexpected model!

Finally, we study the experimental convergence of the scalar D2Q9

scheme in several situations in Section 5 . 

2. Scalar D2Q9 lattice Boltzmann scheme for thermal problems 

The D2Q9 lattice Boltzmann scheme uses a set of discrete ve-

locities described in Fig. 1 . A density distribution f j is associated to

each velocity v j ≡λe j , where λ ≡ �x 
�t 

is the fixed numerical lattice

velocity. The first three moments for the density and momentum

are defined according to ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

ρ = 

8 ∑ 

j=0 

f j = m 0 , 

J x ≡ ρu x = 

8 ∑ 

j=0 

λe 1 j f j = m 1 , 

J y ≡ ρu y = 

8 ∑ 

j=0 

λe 2 j f j = m 2 , 

(1)

where the e α
j 

are the αth cartesian components of the vectors e j 
introduced previously. We complete this set of moments and con-

struct a vector m of moments m k according to 

m = M f, (2)

with an invertible fixed matrix M usually [15] given by 

M = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

1 1 1 1 1 1 1 1 1 

0 λ 0 −λ 0 λ −λ −λ λ
0 0 λ 0 −λ λ λ −λ −λ
−4 λ2 −λ2 −λ2 −λ2 −λ2 2 λ2 2 λ2 2 λ2 2 λ2 

0 λ2 −λ2 λ2 −λ2 0 0 0 0 

0 0 0 0 0 λ2 −λ2 λ2 −λ2 

0 −2 λ3 0 2 λ3 0 λ3 −λ3 −λ3 λ3 

0 0 −2 λ3 0 2 λ3 λ3 λ3 −λ3 −λ3 

4 λ4 −2 λ4 −2 λ4 −2 λ4 −2 λ4 λ4 λ4 λ4 λ4 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. 

For scalar lattice Boltzmann applications, the density ρ is the “con-

served variable”. 
• The particle distribution at equilibrium f eq is a function only

of this conserved variable. For this thermal D2Q9 lattice Boltz-

mann scheme, the vector of equilibrium moments m 

eq is given

by 

 

eq = 

(
ρ, 0 , 0 , αλ2 ρ, 0 , 0 , 0 , 0 , λ4 βρ

)t 
. (3)

n most applications, the coefficients α and β are usually taken to

e 

= −2 , β = 1 . (4)

he lattice Boltzmann scheme is comprised of two fundamental

teps : Relaxation and advection. During the relaxation step, the

onserved variable ρ is not modified, and the non-conserved mo-

ents m 1 to m 8 relax towards an equilibrium value: m 

eq 

k 
= ψ k (ρ)

or k ≥ 1, where the ψ k are the linear functions of the conserved

oment given by (3) . The specification of this step also needs re-

axation rates s k : For k ≥ 1 such that 

 

∗
k = m k + s k 

(
m 

eq 

k 
− m k 

)
, 

here the superscript ∗ denotes the moment m k after the relax-

tion step. The table of relaxation parameters s k chosen in our sim-

lations is as follows 

 s ] = 

(
s J , s J , s e , s x , s x , s q , s q , s ε 

)
. (5)

e introduce also the 8 × 8 diagonal matrix S whose diagonal el-

ments are the components of the vector [ s ]. In our computations,

e take the following numerical values 

 e = 1 . 7 , s x = 1 . 1 , s q = 1 . 1 , s ε = 1 . 7 . (6)

nly the relaxation coefficient s J for the first order momentum is

llowed to vary in our numerical experiments. 

Then using the matrix M 

−1 the relaxation step becomes in f

pace : 

f ∗i (x, t) = 

∑ 

	 

M 

−1 
i	 

m 

∗
	 . (7)

uring the advection step f i ( x j ) is transported from the node x j by

he discrete velocity v i to the node x j + v i �t. Thus the evolution

f populations f i for 0 ≤ i ≤ 8 at internal node x is described by: 

f i (x, t + �t) = f ∗i (x − v i �t , t ) , 0 ≤ i ≤ 8 . (8)

In [6] , we have analyzed several lattice Boltzmann models with

he Taylor-expansion method, including the present one defined by

qs. (2) , ( 3 ), ( 5 ) and (8) . The hypothesis used was that the refer-

nce velocity λ and the relaxation coefficients s J , s e , s x , s q and s ε
emain constant as the spatial step �x tends to zero. Then the con-

erved variable ρ satisfies (at least formally!) the heat equation: 

∂ρ

∂t 
− κ�ρ = O(�x 2 ) , (9)

here the thermal diffusivity κ is given by the relation 

≡ 4 + α

6 

σλ�x, σ ≡
(

1 

s J 
− 1 

2 

)
. (10)

he coefficient σ is known as the “Hénon parameter” in reference

o the pioneering work of Hénon [9] . Observe that when the relax-

tion coefficient s J and the mesh velocity λ are fixed, the thermal

iffusivity tends to zero as the space step �x tends to zero. This

attice Boltzmann scheme is stable in the fluid case (see [15] ) un-

er the condition: 

4 < α < 2 . 

or the scalar case, the condition α + 4 > 0 is clear to assume that

he thermal diffusivity κ is positive (see (10) ) and the condition

< 2 corresponds to our experimental know how. Observe that



B.M. Boghosian et al. / Computers and Fluids 172 (2018) 301–311 303 

w  

b  

t  

p

s  

a

 

w

r  

e  

i  

s  

A  

m  

t  

t  

t  

z  

s

S  

d

3

 

m  

e  

p  

c  

m

i  

i

ρ  

T  

(

s

W

κ

W  

c  

t  

n  

fi

 

a  

k  

Fig. 2. Two-dimensional heat Eq. (12) , κ = 

1 
18 

. D2Q9 scheme with diffusive scaling 

(left) vs. explicit finite differences (right) ; mesh 111 × 111, time = 0.19479. 

Fig. 3. Two-dimensional heat Eq. (12) , κ = 

1 
18 

. D2Q9 scheme with diffusive scaling 

(left) vs. explicit finite differences (right) ; mesh 223 × 223, time = 0.16473. 

Table 1 

D2Q9 numerical experiments with diffusive scaling, s J given by (14) and diffusivity 

κ by (15) . 

Number of cells 13 × 13 27 × 27 55 × 55 111 × 111 223 × 223 

Nb. of time steps D2Q9 8 36 128 600 2048 

Final time 0.18935 0.19753 0.17741 0.19479 0.16473 

s  

s  

s  
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s

ρ

W⎧⎪⎪⎪⎨⎪⎪⎪⎩
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o  

1  

s  

v  

n  

c  

t

ith these choices, the value of the relaxation parameter s J has to

e fit with the physical diffusivity κ and the mesh size �x through

he relation (10) if the space step and time step are varying pro-

ortionately. In particular, we have the expansion 

 J = 

4 + α

6 κ
λ�x + O(�x 2 ) (11)

s �x tends to zero. 
• Diffusive scaling can also be used and we refer, e.g., to the

ork of Junk et al. [11] . In this case, the ratio 

( �x ) 
2 

�t 
= λ�x 

emains fixed. This diffusive scaling is intensively used with the

xplicit finite difference method for solving the heat equation. It

s well known [17] that the time step must be proportional to the

quare of the spacial step in order for the method to be stable.

n asymptotic analysis can be done for this simple lattice Boltz-

ann thermic model, as, e.g., in our contribution [7] , and we ob-

ain again the heat Eq. (9) as the scaling limit of the model. With

his diffusive scaling, the parameters σ and s J remain constant if

he thermal diffusivity is given and the mesh size �x tends to

ero. Remark also that the convergence of the lattice Boltzmann

cheme was rigorously proved for the diffusive scaling for Navier–

tokes flows in periodic and bounded domains in [12] and for one

imensional convection-diffusion-reaction equations in [13] . 

. First numerical experiments 

We study the diffusion of a Gaussian profile in a square do-

ain. In order to control the computer cost during the numerical

xperiment and to be certain that the numerical experiment is not

olluted by the boundary scheme, we impose periodic boundary

onditions. We use two variants of the scalar D2Q9 lattice Boltz-

ann scheme: Diffusive and acoustic scaling. 

• Scalar D2Q9 numerical experiments with diffusive scaling 

We solve numerically the heat equation 

∂ρ

∂t 
− κ�ρ = 0 , (12) 

n the square  = [ −1 , 1] 2 , with periodic boundary conditions. The

nitial condition is a Gaussian: 

0 (x, y ) = exp 

(
− x 2 + y 2 

0 . 09 

)
, −1 ≤ x, y ≤ 1 . (13)

he coefficients α and β of the equilibrium are fixed according to

4) and we keep fixed the relaxation coefficient for momentum : 

 J = 

3 

2 

. (14) 

e use the particular diffusive time step �t = �x 2 . Then σ ≡ 1 
s J 

−
1 
2 = 

1 
6 and the diffusivity follows the relation κ = 

σJ 

3 and 

= 

1 

18 

. (15) 

e have chosen an odd number of mesh cells in these numeri-

al experiments. With the constraint �t = �x 2 , it is not possible

o obtain exactly the same exact final time. We have adapted the

umber of time steps in order to have very close values for the

nal time with the different meshes. 

• Comparison with finite-difference approximation 

Remark that the solution of the heat equation on a square with

n initial Gaussian and periodic boundary conditions has to our

nowledge no analytical solution. In consequence, we compare the
olution obtained by the lattice Boltzmann scheme with the re-

ult computed with two-dimensional finite differences, centered in

pace and explicit in time. The degrees of freedom are located at

alf-integer positions, exactly as done with the lattice Boltzmann

cheme: 

n 
i + 1 2 , j+ 1 2 

≈ ρ
((

i + 

1 

2 

)
�x, 

(
j + 

1 

2 

)
�x, n �t 

)
. 

e finite difference the heat Eq. (12) in the following way : 

 

 

 

 

 

 

 

 

 

1 

�t 

(
ρn +1 

i + 1 2 , j+ 1 2 

− ρn 
i + 1 2 , j+ 1 2 

)
−κ

[ 
1 

�x 2 

(
ρn 

i + 3 2 , j+ 1 2 

− 2 ρn 
i + 1 2 , j+ 1 2 

+ ρn 
i − 1 

2 , j+ 1 2 

)
+ 

1 

�y 2 

(
ρn 

i + 1 2 , j+ 3 2 

− 2 ρn 
i + 1 2 , j+ 1 2 

+ ρn 
i + 1 2 , j− 1 

2 

)] 
= 0 . 

e use exactly the same grid in space for both schemes and ex-

ctly the same time step (and in consequence the same number

f time steps). The parameters for both schemes are compared in

able 1 . 

The results follow what is expected. The approximate solutions

f both schemes are very similar as observed in Figs. 2 and 3 for

11 × 111 and 223 × 223 meshes. The difference between the two

chemes at the final time is presented in Fig. 4 . The order of con-

ergence of this residual is approximately of order 4. Since the fi-

ite difference method is of second order accuracy [17] , this indi-

ates that the lattice Boltzmann method approaches the heat equa-

ion with second-order accuracy. 
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Table 2 

D2Q9 numerical experiments with acoustic scaling. The diffusivity κ = 

1 
18 

is imposed in all the sim- 

ulations. 

Number of cells 13 × 13 27 × 27 55 × 55 111 × 111 223 × 223 

D2Q9 s J parameter 1.5 1.182 0.830 0.52 0.298 

Nb. of time steps D2Q9 8 16 32 64 128 

Nb. of time steps, finite differences 8 32 128 512 2048 

Final time 0.18935 0.18234 0.17902 0.17741 0.17661 

Fig. 4. Two-dimensional heat Eq. (12) , κ = 

1 
18 

. Difference of the numerical results 

computed with the D2Q9 scheme with diffusive scaling and explicit finite differ- 

ences at the final times presented in Table 1 . The order of convergence for this 

residual in the L ∞ norm is equal to 3.41 and in the L 2 norm it is 3.96. 

Fig. 5. Two-dimensional heat Eq. (12) , κ = 

1 
18 

. D2Q9 lattice Boltzmann scheme with 

acoustic scaling (left) vs. explicit finite differences (right) ; results at time = 0.17741 

for a 111 × 111 mesh. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Two-dimensional heat Eq. (12) , κ = 

1 
18 

. D2Q9 lattice Boltzmann scheme with 

acoustic scaling (left) vs. explicit finite differences (right) ; results at time = 0.1766 

for a 223 × 223 mesh. 

Fig. 7. Two-dimensional heat Eq. (12) , κ = 

1 
18 

, D2q9 scheme with acoustic scaling 

vs. explicit finite differences at the final times presented in Table 2 . There is no nu- 

merical evidence of coherence between the two methods when the mesh is refined. 
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• Scalar D2Q9 numerical experiments with acoustic scaling 

We still wish to solve the heat Eq. (12) in the square  =
[ −1 , 1] 2 with periodic boundary conditions. The initial condition

is again given by a Gaussian profile (13) . The given diffusivity is

imposed by the value (15) . We adopt an acoustic scaling with

�t = �x for the D2Q9 lattice Boltzmann simulations. We compare

the results with explicit finite differences; in this case, we take

�t � �x 2 and the time step is chosen in order to obtain exactly

the same final time than with the lattice Boltzmann method. 
• The numerical results presented in Figs. 5 and 6 for the two

meshes of 111 × 111 and 223 × 223 seem correct. But a quantitative

examination of the results ( Fig. 7 ) shows that after a convergence

similar to the one obtained for diffusive scaling (see Fig. 4 ), a per-

sistent difference appears. This qualitative behavior is very similar

to what has been observed in [3] in one spatial dimension. 
A new analysis of the scheme is necessary to explain this lack

f convergence towards the expected diffusive model. 

. Dispersion equation for an evanescent relaxation 

In this section, we propose a first-order analysis when the last

elaxation coefficients in (6) remain fixed or when the relaxation

oefficient s J for the momentum J follows the choice presented in

q. (11) , id est 

 J = 

4 + α

6 

λ2 �t 

κ
+ O(�t 2 ) . (16)

• Fixed relaxations 

We write the relation (8) in terms of the moments m defined

n (2) : 

 k (x, t + �t) = 

∑ 

j	 

M k j M 

−1 
j	 

m 

∗
	 (x − v j �t , t ) . (17)
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efore doing a Taylor expansion at order 1, we introduce the fol-

owing “momentum velocity” operator matrix � defined according

o 

k	 ≡ −
∑ 

j	α

M k j v αj M 

−1 
j	 

∂ 

∂x α
. (18) 

or the D2Q9 scheme, this matrix can be explicitly calculated

5] and we have 

(19) 

e split the moment vector into two blocks: 

 = 

(
W 

Y 

)
(20) 

ith W = ρ in our scalar example and Y a column vector with 8

omponents. We decompose also the operator matrix � into four

locks that respect the decomposition (20) : 

≡
(

A B 

C D 

)
. (21) 

n our case, A is a scalar 1 × 1 matrix, B has one line and 8

olumns, C is composed by 8 lines and 1 column and D is a 8 × 8

quare matrix as shown in the right-hand side of relation (19) . We

an also introduce a constant matrix E with 8 lines and one col-

mn such that the relation (3) can be written in the form 

 

eq ≡ Em. (22) 

he relation (17) is expanded at first order: 

 + �t∂ t m + O(�t 2 ) = m 

∗ + �t�m 

∗ + O(�t 2 ) (23)

nd due to (22) , we have 

 

∗ = 

(
I 0 

SE I − S 

)
m. (24) 

he relation (23) can be written in the form 

m ≡ m 

∗ − m + �t 
(

− ∂ t m + �m 

∗) = O(�t 2 ) , (25)

ith 

 ≡
(

0 0 

SE −S 

)
+ �t 

[(
−∂ t 0 

0 −∂ t 

)
+ 

(
A B 

C D 

)(
I 0 

SE I − S 

)]
. (26) 

he dispersion relation associated with the relation (25) can be

ritten in a simple way: 

et L = 0 . (27) 

e expand this determinant in order to eliminate the non-

onserved moments Y . Moreover, due to the right-hand side of

q. (25) , we can neglect all the terms of second or third order rel-

tive to �t . We write the expression (26) of the matrix L in the

orm 

 = 

(
�t(−∂ t + A + BSE) �tB (I − S) 
SE + �t(C + DSE) −S + �t(−∂ t + D (I − S)) 

)
. 
e apply Gaussian elimination in order to make explicit the con-

ition (27) . We multiply this matrix at left by the regular matrix K

efined by 

 = 

(
I �tB (I − S) S −1 

0 I 

)
. (28) 

hen we have, after some lines of algebra, 

L = 

(
I �tB (I − S) S −1 

0 I 

)
×

(
�t(−∂ t + A + BSE) �tB (I − S) 
SE + �t(C + DSE) −S + �t(−∂ t + D (I − S)) 

)
= 

(
�t(−∂ t + A + BSE) + �tB (I − S) S −1 SE O(�t 2 ) 
SE + O(�t) −S + O(�t) 

)
nd we have the following triangular form for the product KL : 

L = 

(
�t(−∂ t + A + BE) O(�t 2 ) 
SE + O(�t) −S + O(�t) 

)
. 

hen the relation (27) is equivalent at first order to the following

et of first order partial differential equations: 

(−∂ t + A + BE) W = O(�t) , (29)

ecovering the first step of the Berlin algorithm presented in Augier

t al. [2] . For the scalar diffusion problem, this equation expresses

imply that 

 t ρ = O(�t) . 

his result is consistent with the second-order analysis presented

t the relation in (9) . 

When we use diffusive scaling, this dispersion equation can be

dapted in order to recover the heat equation at zero order of ac-

uracy. It is then equivalent to the Taylor expansion method with

he diffusive scaling, as used in [7] . 

• Evanescent relaxations 

When �t and �x tend to zero with the acoustic scaling, these

wo infinitesimals are of the same order. The expansion (16) of the

elaxation coefficient s J implies that the previous asymptotic cal-

ulus has to be made more precise. The coefficient s J is now at

rst order proportional to the time step �t . We decompose the

on-conserved moments Y into two families: The quasi-conserved

oments U id est the two components of the momentum J in the

calar case– and the other truly non-conserved moments Z : 

 = 

(
U 

Z 

)
. (30) 

he 8-component vector Y is split into a first vector U ∈ R 

2 and

 second one Z with 6 components. In other words, the family of

oments is split into three components: 

 = 

( 

W 

U 

Z 

) 

. 

hen the 8 × 8 relaxation matrix S can be decomposed into two

locks: 

 = 

(
�t ̃  S + O(�t 2 ) 0 

0 S Z 

)
. (31) 

he top left block in the right hand side of (31) tends to zero as the

esh is refined. The equilibrium vector E is naturally split into the

uasi-conserved component E U and the truly relaxing component

 Z : 

 = 

(
E U 
E Z 

)
. (32) 
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We have: SE = 

(
�t ̃  S 0 

0 S Z 

)(
E U 
E Z 

)
= 

(
�t ̃  S E U 
S Z E Z 

)
and the relation

(24) takes the form 

m 

∗ = 

( 

I 0 0 

�t ̃  S E U I − �t ̃  S 0 

S Z E Z 0 I − S Z 

) 

m. (33)

Then the momentum velocity operator matrix � is split into 9

blocks: 

� = 

( 

A A 2 B 1 

A 3 A 4 B 2 

C 1 C 2 D 4 

) 

. (34)

This block structure (34) is explicitly given for our thermal D2Q9

in the form 

Then 

L = 

( 

0 0 0 

�t ̃  S E U −�t ̃  S 0 

S Z E Z 0 −S Z 

) 

− �t 

( 

∂ t 0 0 

0 ∂ t 0 

0 0 ∂ t 

) 

+ �t 

( 

A A 2 B 1 

A 3 A 4 B 2 

C 1 C 2 D 4 

) ( 

I 0 0 

�t ̃  S E U I − �t ̃  S 0 

S Z E Z 0 I − S Z 

) 

. 

This expression can be expanded to first order in �t without

any change in the result of the Gaussian elimination. Then we can

neglect the terms of order one in �t in the last product of two

matrices. We obtain ( 

A A 2 B 1 

A 3 A 4 B 2 

C 1 C 2 D 4 

) ( 

I 0 0 

0 I 0 

S Z E Z 0 I − S Z 

) 

= 

( 

A + B 1 S Z E Z A 2 B 1 (I − S Z ) 
A 3 + B 2 S Z E Z A 4 B 2 (I − S Z ) 
C 1 + D 4 S Z E Z C 2 D 4 (I − S Z ) 

) 

, 

and, up to order O( �t ), we have 

L= 

( 

�t(−∂ t + A + B 1 S Z E Z ) �tA 2 �tB 1 (I −S Z ) 

�t( ̃  S E U + A 3 + B 2 S Z E Z ) �t(−̃  S −∂ t + A 4 ) �tB 2 (I −S Z ) 
S Z E Z + �t(C 1 + D 4 S Z E Z ) �tC 2 −S Z +�t(−∂ t +D 4 (I−S Z ) 

)
(35)

With the method of Gaussian elimination used previously, we mul-

tiply the matrix L obtained in (35) on the left by the following ma-

trix 

K 

′ = 

( 

I 0 �tB 1 (I − S Z ) S 
−1 
Z 

0 I �tB 2 (I − S Z ) S 
−1 
Z 

0 0 I 

) 

whose determinant is equal to 1. After some elementary algebra,

we obtain 

K 

′ L = 

( 

�t(−∂ t + A + B 1 E Z ) �tA 2 O(�t 2 ) 

�t( ̃  S E U + A 3 + B 2 E Z ) �t(−˜ S − ∂ t + A 4 ) O(�t 2 ) 
S Z E Z + O(�t) �tC 2 −S Z + O(�t)

On one hand, det K 

′ = 1 and on the other hand, the last column of

the matrix K 

′ L is composed of negligible terms except for the last

p  
ne. Then we have the condition (27) if and only if the determi-

ant of the 2 × 2 upper block matrix is null. In other terms, this

atrix has a nontrivial kernel at order one relative to �t and we

ave 

−∂ t + A + B 1 E Z A 2 ˜ S E U + A 3 + B 2 E Z −∂ t − ˜ S + A 4 

)(
W 

U 

)
= O(�t) . (36)

hen the equivalent partial differential equations are written as

 system involving the conserved variable W and the quasi con-

erved moments U : 

∂ t W = (A + B 1 E Z ) W + A 2 U + O(�t) 

∂ t U + ̃

 S U = (A 3 + B 2 E Z + ̃

 S E U ) W + A 4 U + O(�t) . 
(37)

his result generalizes the first analysis done in [3] for the D1Q3

cheme. When we replace the block matrices introduced in the

elations (31), (32) and (34) by their D2Q9 values, we estab-

ish that with the acoustic scaling, the scalar D2Q9 lattice Boltz-

ann scheme with acoustic scaling admits the following asymp-

otic damped acoustic model 
 

 

 

 

 

∂ρ

∂t 
+ div J = O(�x ) 

∂ J α

∂t 
+ c 2 0 

∂ρ

∂x α
+ gJ α = O(�x ) , 1 ≤ α ≤ 2 , 

(38)

ith a sound velocity c 0 and a damping coefficient g given by the

elations 

 

2 
0 = 

λ2 

6 

(4 + α) , g = 

c 2 0 

κ
. (39)

he above is a very interesting analysis, and clearly the correct

wo-dimensional analog of the earlier result for D1Q3. We point

ut that it is equivalent to a damped wave equation. 

. Scalar D2Q9 scheme converging towards damped acoustic 

We have now two partial differential equations with which to

ompare the numerical solution obtained with the scalar D2Q9 lat-

ice Boltzmann scheme: The initial heat Eq. (12) and the damped

coustic system (38) . We first consider numerical experiments

one in Section 3 and compare our previous results with this

ew model. We also study in detail the eigenmodes of the sys-

em (38) and propose a simple numerical experiment with a si-

usoidal analytic solution. The evolution of an initial Gaussian is

gain performed, with two diffusion coefficients varying by one or-

er of magnitude. 

• Damped acoustics as a limiting model for the previous numeri-

cal experiments? 

We wish to approximate the system of damped acoustic

qs. (38) . The sound velocity is given by (39) . With the choice (4) ,

e obtain the classical value c 0 = 

λ√ 

3 
. The imposed diffusivity κ

nd the relation (39) fix the value g = 6 for the zero-order damp-

ng in the momentum equation of (38) . The geometry is the square

= [ −1 , 1] 2 with periodic boundary conditions. The initial density

s still given by a Gaussian profile (13) . Because the momentum J

t equilibrium is identically null, we have taken this specific value

s initial condition of our lattice Boltzmann simulations. We sup-

ose in consequence that the initial condition for the momentum

s simply J(x, t = 0) = 0 . 

We adopt acoustic scaling with �t = �x for the D2Q9 lattice

oltzmann simulations. For the acoustic system (38) , we use ex-

licit finite differences with staggered grids, hereafter named as

HaWAY” method and described with some details in the Ap-

endix. In this case, the acoustic time step �t a for finite-difference
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Table 3 

Numerical experiments with the D2Q9 lattice Boltzmann test case studied in Section 3 com- 

pared with the damped acoustic model (38) simulated with the HaWAY method. 

Number of cells 13 × 13 27 × 27 55 × 55 111 × 111 223 × 223 

D2Q9 s J parameter 1.5 1.182 0.830 0.52 0.298 

Nb. of time steps d2q9 8 16 32 64 128 

Idem, finite differences 32 64 128 256 512 

Final time 0.18935 0.18234 0.17902 0.17741 0.17661 

Fig. 8. Numerical results for the damped acoustic model with the experimental 

plan proposed in Table 3 . 

Fig. 9. Two-dimensional wave with wave vector k = 2 π(1 , 1) . Initial condition. 

s  

b  

T

 

l  

r  

t  

v  

F

{

Fig. 10. Two-dimensional wave with wave vector k = 2 π(1 , 1) , g � 6, 2| k | c 0 � 5.924. 

Autocorrelation of density. 

Fig. 11. Two-dimensional wave with wave vector k = 2 π(1 , 1) , g � 6, 2| k | c 0 � 5.924. 

Convergence towards the damped acoustic model (38) . 

f  

f

−  

A  

a  

T

γ  

T

g  
imulations is proportional to the spatial step �x , with a sta-

ility constraint. The corresponding experiments are described in

able 3 . 

The results obtained with this new experiment are very simi-

ar to the one obtained in Section 3 . In particular, the numerical

esults computed with the damped acoustic model are very close

o the ones presented in Figs. 5 and 6 . When we look to the con-

ergence with quite fine grids ( Fig. 8 ), the signal is better than in

ig. 7 but this experiment is still not entirely convincing. 

• Waves for the damped acoustic model 

We search modes of the type 
 

ρ = ρ0 exp (−γ t + ik · x ) 
J = J 0 exp (−γ t + ik · x ) 

(40) 
or the damped acoustic model 38 –(39) . Then we have to solve the

ollowing ill-posed linear system: 

γ ρ0 + ik · J 0 = 0 , ik · ρ0 + (g − γ ) J 0 = 0 . (41)

 first solution is a transverse stationary wave with γ = g, ρ0 = 0

nd k · J 0 = 0 . We do not consider this mode in this contribution.

hen the other modes satisfy the following dispersion relation 

2 − gγ + | k | 2 c 2 0 = 0 . (42)

his equation has complex propagative roots when 

 < 2 | k | c 0 , (43)
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Fig. 12. Two-dimensional wave with wave vector k = 2 π(1 , 1) , g � 5.6470. Autocor- 

relation of density with 2| k | c 0 � 5.924 for various meshes. 

Fig. 13. Two-dimensional wave with vector k = 2 π(1 , 1) , g � 5.6470. Convergence 

towards the damped acoustic model (38) with 2| k | c 0 � 5.924. The order of conver- 

gence is 1.27 for the L 2 norm and 1.30 in norm L ∞ . 

 

 

 

 

 

 

 

c  

s  

m

 

o

�

i  

g

 

t  

c  

(  

s  

d  

i  

p  

s  

o  

w  

fi

 

w  

E  

o  

a  

s  

G  

h  

κ  

t

 

i  

s  

H  

t  

d  

f  

s  

t  

n  

a  

a  

s  

e

 

i  

n  

I  

F  

D  

v  

t  

e  

t  

fi

6

 

s  
i.e., when the diffusivity κ is sufficiently large measured in a scale

system based on the sound velocity and wave number: 

κ > 

c 0 
2 | k | . 

In that case, the eigenvalue γ takes the form 

γ = 

g 

2 

∓ iω, ω = 

√ 

| k | 2 c 2 
0 

− g 2 

4 

. (44)

The eigenvectors are finally given according to ⎧ ⎨ ⎩ 

ρ = ρ0 exp 

(
− g 

2 

t 

)
exp 

(
i (k · x ± ωt) 

)
J = i 

k 

| k | 2 ρ0 

(
− g 

2 

∓ iω 

)
exp 

(
− g 

2 

t 

)
exp 

(
i (k · x ± ωt) 

)
. 

(45)

We consider a pure analytical test case as the next experiment. 

• A two-dimensional sinusoidal wave 

We keep the value κ = 

1 
18 � 0 . 05555 of the diffusivity intro-

duced in (15) . We use the traditional value c 0 = 

1 √ 

3 
and the dis-

sipation coefficient g (see (39) ) is still equal to g = 6 . We change

the domain and consider [0, 2 π ] 2 with the initial condition ρ =
os 
(
(2 π(x + y ) 

)
and J = 0 . Then k = 2 π(1 , 1) and the right-hand

ide of (43) is 2| k | c 0 � 5.924. In this case, the damped acoustic

odel (38) exhibits a non-propagative mode. 

The initial condition is presented in Fig. 9 . The autocorrelation

f density 

(t) ≡

∫ 


ρ(x, t) ρ(x, 0)d x ∫ 


| ρ(x, 0) | 2 d x 

s typical of a diffusion process as shown in Fig. 10 . The conver-

ence for simple dyadic meshes is presented in Fig. 11 . 

A second numerical experiment has been conducted. We keep

he same domain [0, 2 π ] 2 with the same initial condition ρ =
os 

(
(2 π(x + y ) 

)
. Then k = 2 π(1 , 1) and the right-hand side of

43) is equal to 2| k | c 0 � 5.924. We change the value of the diffu-

ivity κ introduced in (15) to κ = 

17 
288 � 0 . 05903 . We keep the tra-

itional value c 0 = 

1 √ 

3 
. Then the dissipation coefficient g (see (39) )

s now g � 5.6470. Then the damped acoustic model (38) exhibits a

ropagative mode in this case. The autocorrelation function is pre-

ented in Fig. 12 . The convergence curve is depicted in Fig. 13 . We

bserve that this convergence is not regular. An extra-fine mesh

ith dimensions 1024 × 1024 has been necessary in order to con-

rm the order of accuracy. 

• Complementary experiments for an initial Gaussian 

We have compared the scalar D2Q9 lattice Boltzmann scheme

ith acoustic scaling with numerical solutions of the heat

q. (12) as presented in Section 3 and with HaWAY simulations

f the damped acoustic system (38) in Section 4 . We consider

gain the first geometry studied in this contribution, id est the

quare  = [ −1 , 1] 2 with periodic boundary conditions. An initial

aussian profile (13) is given at t = 0 . Two numerical experiments

ave been considered: A quite viscous one with imposed diffusivity

= 0 . 15 and another one with κ = 0 . 015 . The numerical parame-

ers are displayed in Table 4 . 

The results for the first test case with κ = 0 . 15 are presented

n Figs. 14–17 . In Fig. 14 , a qualitative view of the numerical re-

ult on a given mesh shows that the scalar D2Q9 scheme and the

aWAY scheme for damped acoustic are closer to each other than

hey are to the solution of the heat equation. The three profiles of

ensity are shown in Fig. 15 and a comparison of autocorrelation

unctions in Fig. 16 . Even on a relatively coarse mesh, the conclu-

ion is the same and our new asymptotic analysis of the acous-

ic system (38) is consistent with the numerical results. Last but

ot least, both the error between D2Q9 and thermics on one hand,

nd that between D2Q9 and damped acoustics on the other hand

re displayed in Fig. 17 . The error between the lattice Boltzmann

cheme and the damped acoustic results tends to zero whereas the

rror between D2Q9 and the thermic model remains stationary. 

The second numerical experiment with κ = 0 . 015 is presented

n Figs. 18–20 . At time = 2 on a relatively coarse mesh, the three

umerical solutions can not be distinguished as shown in Fig. 18 .

t is also the case for the autocorrelation function as presented in

ig. 19 . The numerical convergence is delicate for this test case.

uring one decade of mesh refinement, the three methods present

ery close results as shown in Fig. 20 . Two additional computa-

ions on 895 × 895 and 1791 × 1791 refined meshes have been nec-

ssary to demonstrate the convergence of the scalar D2Q9 scheme

owards the damped acoustic system. Observe that the most re-

ned mesh contains more than 3 millions cells! 

. Conclusion 

We have first considered the scalar D2Q9 lattice Boltzmann

cheme with diffusive scaling. Our experiments confirm numeri-
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Fig. 14. Initial Gaussian, κ = 0 . 15 . Three simulations done for the damped acoustic model with finite differences HaWAY discretization (left), D2Q9 lattice Boltzmann scheme 

(middle), and for the heat equation with finite differences (right). Approximate solutions are presented for time T = 1 with 111 × 111 meshes. 

Table 4 

Initial Gaussian. D2Q9 numerical experiments with acoustic scaling ; values of s J for the viscosities κ = 

0 . 15 and κ = 0 . 015 . 

Number of cells 13 2 27 2 55 2 111 2 223 2 447 2 895 2 1791 2 

s J with κ = 0 . 15 0.292 0.152 0.0777 0.0392 0.0197 0.00989 

s J with κ = 0 . 015 1.262 0.903 0.575 0.333 0.181 0.0947 0.0484 0.0245 

Fig. 15. Initial Gaussian, κ = 0 . 15 . Three simulations done for the damped acoustic 

model with finite differences HaWAY discretization, D2Q9 lattice Boltzmann scheme 

and heat equation with finite differences. Density field at time = 2 of a 55 × 55 

mesh. 
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Fig. 16. Initial Gaussian, κ = 0 . 15 . Three simulations done for the damped acoustic 

model with finite differences HaWAY discretization, D2Q9 lattice Boltzmann scheme 

and heat equation with finite differences. Autocorrelation of density for a 55 × 55 

mesh. 

Fig. 17. Initial Gaussian, κ = 0 . 15 . Damped acoustic model with HaWAY finite dif- 

ferences, D2Q9 lattice Boltzmann scheme and heat equation. The order of conver- 

gence at time = 2 towards damped acoustic is 0.756 for the L 2 norm and 0.653 in 

norm L ∞ . 
al convergence to the solution of the heat equation. Of course,

he mathematical proof of this numerical fact has now to be es-

ablished. 

We have also studied convergence properties of the scalar D2Q9

cheme with an acoustic scaling for the diffusion of a Gaussian

rofile, when it is supposed to approximate diffusion problems.

ur numerical experiments show consistent results with the diffu-

ion equation solution for relaxation parameters that are not too

mall, s J ≥ 0.5 typically. When this relaxation coefficient is very

mall, however, numerical convergence is defective for the diffu-

ion of a Gaussian. 

For very small values of the relaxation parameter, the asymp-

otic analysis has been revised when the physical diffusion is

iven. We have developed a new analysis of the lattice Boltzmann

ethod using the dispersion equation and Gaussian elimination

hen relaxation parameters can tend to zero. This asymptotic anal-

sis shows that a damped acoustic model is emergent at first order.

omplementary numerical experiments (see Figs. 11, 13, 17 and 20 )

how the numerical convergence of the D2Q9 lattice Boltzmann

cheme with acoustic scaling and a relaxation coefficient s J deter-
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Fig. 18. Initial Gaussian, κ = 0 . 015 . Three simulations done for the damped acoustic 

model with finite differences HaWAY discretization, D2Q9 lattice Boltzmann scheme 

and for the heat equation with finite differences. Density field at time = 2 for a 

27 × 27 mesh. 

Fig. 19. Initial Gaussian, κ = 0 . 015 . Three simulations done for the damped acoustic 

model with HaWAY finite differences, D2Q9 lattice Boltzmann scheme and for the 

heat equation with finite differences. Autocorrelation of density at time = 2 for a 

27 × 27 mesh. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 20. Initial Gaussian, κ = 0 . 015 . Three simulations done for the damped acous- 

tic model with finite differences HaWAY discretization, D2Q9 lattice Boltzmann 

scheme and for the heat equation with finite differences. The order of convergence 

at time = 2 towards damped acoustic is 0.954 for the L 2 norm and 0.934 in norm 

L ∞ . 
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mined in such a way that the usual relation (10) is satisfied, to-

wards the damped acoustic system. Due to the mathematical con-

vergence of the lattice Boltzmann scheme with diffusive scaling

[13] , this result is unexpected, as pointed in the title. 

The results presented here can be interpreted physically in

terms of frequency dependent transport coefficients that should be

used when the time scale of the macroscopic phenomenon under

study is not very large compared to microscopic time scales. Fu-

ture study should focus on the extension of this analysis to second

order. A natural extension of this question concerns lattice Boltz-

mann models conserving a priori both mass and momentum. Our

preliminary results show that a system of five partial differential

equations is emergent in the case of two space dimensions. This

question will be studied in a forthcoming contribution. 
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ppendix 

1. HaWAY staggered finite differences 

We consider the acoustic model proposed in Eq. (38) : 
 

 

 

 

 

 

 

 

 

 

 

∂ρ

∂t 
+ 

∂ J x 

∂x 
+ 

∂ J y 

∂y 
= 0 

∂ J x 

∂t 
+ c 2 0 

∂ρ

∂x 
+ gJ x = 0 

∂ J y 

∂t 
+ c 2 0 

∂ρ

∂y 
+ gJ y = 0 . 

(46)

Given a spatial grid �x, �y and a time step �t , we consider in-

eger multiples of these parameters for the discretization in space

nd time. The density ρ is approximated at half-integer vertices in

pace and integer points in time whereas the momentum J x (re-

pectively J y ) is approximated at integer nodes (respectively half-

nteger nodes) in the x -direction, semi-integer nodes (respectively

nteger nodes) in the y -direction, and half-integer values in time:

≈ ρn 
i +1 / 2 , j+1 / 2 , J x ≈ J x,n +1 / 2 

i, j+1 / 2 
, J y ≈ J y,n +1 / 2 

i +1 / 2 , j 
. (47)

he Fig. A.21 gives an illustration of this classical choice [1,8,18] . 
• We discretize the first equation of Eq. (46) with a four-

oint centered finite-difference schemes around the vertex 
(
(i +

1 
2 )�x, ( j + 

1 
2 )�y, (n + 

1 
2 )�t 

)
: 

 

 

 

 

 

ρn +1 
i +1 / 2 , j+1 / 2 

− ρn 
i +1 / 2 , j+1 / 2 

�t 
+ 

J x,n +1 / 2 
i +1 , j+1 / 2 

− J x,n +1 / 2 
i, j+1 / 2 

�x 

+ 

J y,n +1 / 2 
i +1 / 2 , j+1 

− J y,n +1 / 2 
i +1 / 2 , j 

�y 
= 0 . 

(48)

e use the same approach for the discretization of the second

quation of Eq. (46) around the node 
(
i �x, ( j + 

1 
2 )�y, n �t 

)
: 

J x,n +1 / 2 
i, j+1 / 2 

− J x,n −1 / 2 
i, j+1 / 2 

�t 
+ 

c 2 0 

�x 

(
ρn 

i +1 / 2 , j+1 / 2 − ρn 
i −1 / 2 , j+1 / 2 

)
+ gJ x,n 

i, j+1 / 2 
= 0 

(49)
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Fig. A1. HaWAY grid for staggered (density, momentum) finite differences. 
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nd the third equation of Eq. (46) around the node 
(
(i +

1 
2 )�x, j�y, n �t 

)
: 

J y,n +1 / 2 
i +1 / 2 , j 

− J y,n −1 / 2 
i +1 / 2 , j 

�t 
+ 

c 2 0 

�y 

(
ρn 

i +1 / 2 , j+1 / 2 − ρn 
i +1 / 2 , j−1 / 2 

)
+ gJ y,n 

i +1 / 2 , j 
= 0 . 

(50) 

e interpolate the momentum at integer time vertices with a sim-

le average: 

 

x,n 
i, j+1 / 2 

= 

1 

2 

(
J x,n +1 / 2 
i, j+1 / 2 

+ J x,n −1 / 2 
i, j+1 / 2 

)
, J y,n 

i +1 / 2 , j 
= 

1 

2 

(
J y,n +1 / 2 
i +1 / 2 , j 

+ J y,n −1 / 2 
i +1 / 2 , j 

)
. 

e incorporate these expressions into the relations Eqs. (49) and

50) . We obtain 

 

 

 

(
1 

�t 
+ 

g 

2 

)
J x,n +1 / 2 
i, j+1 / 2 

+ 

c 2 0 

�x 

(
ρn 

i +1 / 2 , j+1 / 2 − ρn 
i −1 / 2 , j+1 / 2 

)
= 

(
1 

�t 
− g 

2 

)
J x,n −1 / 2 
i, j+1 / 2 

(51) 

nd 

 

 

 

 

 

(
1 

�t 
+ 

g 

2 

)
J y,n +1 / 2 
i +1 / 2 , j 

+ 

c 2 0 

�y 

(
ρn 

i +1 / 2 , j+1 / 2 − ρn 
i +1 / 2 , j−1 / 2 

)
= 

(
1 

�t 
− g 

2 

)
J y,n −1 / 2 
i +1 / 2 , j 

. 

(52) 
he numerical scheme is now entirely defined for internal nodes.

n this study we have used periodic boundary conditions. 
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