On numerical reflected waves in lattice Boltzmann schemes

M.M. Tekitek ${ }^{1}$, M. Bouzidi, F Dubois ${ }^{13}$ and P. Lallemand ${ }^{4 *}$
${ }^{1}$ Numerical Analysis and Partial Differential Equations Department of Mathematics, Paris Sud University, Orsay, France.
${ }^{2}$ Université Clermont 2, I.U.T., Ave. A. Briand 03107, Montluçon Cedex, France.
${ }^{3}$ Conservatoire National des Arts et Métiers, Paris, France.
${ }^{4}$ Applications Scientifiques du Calcul Intensif, Orsay, France.

$$
23 \text { April } 2007 \dagger
$$

Abstract

In this contribution, we study the transmission of a monodimensional acoustic wave between two fluid media with the classical lattice Boltzmann scheme. The two media have the same hydrodynamic equations but different equilibrium distributions. We take here the case where the incident wave is normal to the interface. The theoretical modal study of this problem shows the presence of a reflected wave and Knudsen modes localized at the interface. This analysis leads to results in good agreement with numerical simulations.

Keywords: Lattice Boltzmann; acoustic propagation; acoustic reflection.

1 Introduction

Our motivation is to demonstrate that artificial phenomena can occur at the interface between two Lattice Boltzmann fluids that are used to simulate

[^0]the same physical fluid in the large scale limit. We first briefly recall the Lattice Boltzmann Equation using moments, then we study theoretically an interface between two D2Q9 media. We find three families of waves: the acoustics, the Knudsen and the transverse ones. For normal incidence transverse and longitudinal waves decouple and we determine the spatial behaviour of the different waves and give a generalization of Fresnel formula for the simple D1Q3 model. In section four we compare the theoretical results to the numerical one and analyze the Knudsen modes generated at the interface.

2 D2Q9 scheme

We analyze the LBE model [1, 2]

$$
\begin{equation*}
f_{i}\left(x+v_{i} \Delta t, t+\Delta t\right)=f_{i}(x, t)+Q_{i}(f)(x, t), \quad 0 \leq i \leq 8 \tag{1}
\end{equation*}
$$

where $Q_{i}(f)(x, t)=\sum_{j=0}^{8} S_{i, j}\left(f_{j}-f_{j}^{e q}\right)(x, t)$ and S is the matrix collision, using moments for the collision step. For the D2Q9 model, we consider a regular lattice \mathcal{L} parametrized by a space step Δx, composed by a set $\mathcal{L}^{0} \equiv\left\{x_{j} \in(\Delta x \mathbb{Z}) \times(\Delta x \mathbb{Z})\right\}$ of nodes or vertices. We define Δt as a small time step of the evolution of LBE and let the celerity $\lambda \equiv \frac{\Delta x}{\Delta t}$. We choose the velocities $v_{i}, i \in(0 \ldots 8)$ such that $v_{i} \equiv c_{i} \frac{\Delta x}{\Delta t}=c_{i} \lambda$, where the family of vectors c_{i} is defined by :

$$
c_{i}= \begin{cases}(0,0), & i=0 \\ \left(\cos \left((i-1) \frac{\pi}{2}\right), \sin \left((i-1) \frac{\pi}{2}\right)\right), & i=1, \ldots, 4 \\ \left(\cos \left((2 i-9) \frac{\pi}{4}\right), \sin \left((2 i-9) \frac{\pi}{4}\right)\right), & i=5, \ldots, 8\end{cases}
$$

We note that the LBE scheme given by (1) can be written as follows [3]:
(2) $f_{i}\left(x_{j}, t+\Delta t\right)=f_{i}^{*}\left(x_{j}-v_{i} \Delta t, t\right), \quad 0 \leq i \leq 8$,
where the superscript $*$ denotes post-collision quantities. Therefore during each time increment Δt there are two fundamental steps : collision and advection.

- Following d'Humières [4], the collision step is defined in the space of moments. We consider the moments obtained by orthogonalization from the
conserved moments : density (ρ), flux of linear momentum (j_{x} and j_{y}) and the non-conserved moments : energy (e), square of energy (ϵ), components of the stress tensor ($p_{x x}$ and $p_{x y}$) and flux of kinetic energy (q_{x} and q_{y}). The above non-conserved moments relax following :

$$
m_{k}^{*}=\left(1-s_{k}\right) m_{k}+s_{k} m_{k}^{e q}, \quad 3 \leq k \leq 8,
$$

where $s_{k} \equiv \frac{\Delta t}{\tau_{k}}$ is the relaxation ratio and τ_{k} is the relaxation time. The relaxation rates s_{k} are not necessarily identical as in the so called BGK case [2].

- The advection step describes the motion of a particle which has collisioned in node $x_{j}-v_{i} \Delta t$ having the velocity v_{j} and goes to the $j^{t h}$ neighbouring node x_{j}.

3 Interface between two D2Q9 media

We consider two domains $\Omega_{1} \equiv\{(x, y) ; x<0\}, \Omega_{2} \equiv\{(x, y) ; x>0\}$ and the interface $\Sigma \equiv\{(x, y) ; x=0\}$. We suppose that we have the following classical acoustics problem in each domain :

$$
\left\{\begin{align*}
\frac{\partial \rho}{\partial t}+\operatorname{div} j & =0 \tag{3}\\
\frac{\partial j_{x}}{\partial t}+c_{s}^{2} \frac{\partial \rho}{\partial x}-\zeta \frac{\partial(\operatorname{div} j)}{\partial x}-\nu \triangle j_{x} & =0 \\
\frac{\partial j_{y}}{\partial t}+c_{s}^{2} \frac{\partial \rho}{\partial y}-\zeta \frac{\partial(\operatorname{div} j)}{\partial y}-\nu \triangle j_{y} & =0
\end{align*}\right.
$$

where c_{s} is the celerity of sound and ζ, ν the bulk and shear kinematic viscosities and we neglect any nonlinear effects.
To simulate this equation with LBE we have to fix the equilibrium moments as follows : $e^{e q}=-2 \rho, \epsilon^{e q}=\alpha_{\epsilon} \rho, q_{x}=-j_{x}, q_{y}=-j_{y}, p_{x x}^{e q}=0, p_{x y}^{e q}=0$ and $s_{p_{x x}}=s_{p_{x y}}$. Hence we have the sound celerity $c_{s}^{2}=\frac{\lambda^{2}}{3}$, the bulk viscosity $\zeta=\frac{\lambda^{2} \Delta t}{3}\left(\frac{1}{s_{\epsilon}}-\frac{1}{2}\right)$ and shear viscosity $\nu=\frac{\lambda^{2} \Delta t}{3}\left(\frac{1}{s_{p r r}}-\frac{1}{2}\right)$ [4]. We remark here that the coefficient α_{ϵ} of the moment ϵ equilibrium value does not appear in the hydrodynamics equations. That is why we shall study the transmission of an acoustic wave between the two media Ω_{1} and Ω_{2} with different coefficients α_{ϵ}. Intuitively no hydrodynamic reflected wave occurs. So we take
$\epsilon^{e q}=\alpha_{\epsilon} \rho$ in Ω_{1} and $\widetilde{\epsilon}^{e q}=\widetilde{\alpha}_{\epsilon} \rho$ in Ω_{2}.
To study theoretically this problem we perform a modal analysis of the LBE scheme for an harmonic solution.

3.1 Modal study

To simplify the analysis we consider the case of normal incidence to the interface Σ. The wave number $k \equiv\left(k_{x}, 0\right)$ is therefore parallel to the x-axis. Let $f(x, t)=e^{i(\omega t-k . x)} \phi$ be a solution of the LBE scheme. The equation (1) then becomes in Fourier space:
(4) $f(x, t+\Delta t)=e^{i \omega \Delta t} f(x, t)=A\left(I+M^{-1} C M\right) f(x, t)$,
where M is the moment matrix, C the collision operator and A the advection operator matrix represented by the following diagonal matrix :

$$
A=\operatorname{diag}\left(1, p, 1, \frac{1}{p}, 1, p, \frac{1}{p}, \frac{1}{p}, p\right), \quad \text { where } \quad p \equiv e^{i k \Delta x}
$$

Note that p is a phase factor that is unknown when simulating an acoustics situation. The above equation is a finite difference equation which has a general solution at time $t=n \Delta t$:

$$
\begin{equation*}
\phi(x=m \Delta x, t=n \Delta t)=K^{m} z^{n} \phi_{0} \tag{5}
\end{equation*}
$$

where ϕ_{0} is the initial state. Equation (4) can be written as :
(6) $z f(x, t)=G(p) f(x, t)$
where $z=e^{(i \omega \Delta t)}$ and $G(p) \equiv A\left(I+M^{-1} C M\right)$ is the global operator of the LBE scheme. In our problem the frequency ω is imposed, so we search p solution of the following dispersion equation :
(7) $\operatorname{det}(G(p)-z I)=0$,

This equation is a polynomial function of degree 3 in $\left(p+\frac{1}{p}\right)$. We note that if we use the moment matrix \widetilde{M} defined by :

$$
\left(\begin{array}{rrrrrrrrr}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & -1 & 0 & 1 & -1 & -1 & 1 \\
-4 & -1 & -1 & -1 & -1 & 2 & 2 & 2 & 2 \\
4 & -2 & -2 & -2 & -2 & 1 & 1 & 1 & 1 \\
0 & -2 & 0 & 2 & 0 & 1 & -1 & -1 & 1 \\
0 & 1 & -1 & 1 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & -1 & 1 & 1 & -1 & -1 \\
0 & 0 & -2 & 0 & 2 & 1 & 1 & -1 & -1 \\
0 & 0 & 0 & 0 & 0 & 1 & -1 & 1 & -1
\end{array}\right),
$$

then the matrix $\widetilde{M}(G(p)-z I) \widetilde{M}^{-1}$ is a block diagonal matrix :

Hence we have the property :

$$
\operatorname{det}(G(p)-z I)=\operatorname{det}\left(\widetilde{M}(G(p)-z I) \widetilde{M}^{-1}\right)=\operatorname{det}\left(D_{1}(p)\right) \operatorname{det}\left(D_{2}(p)\right)
$$

so to solve (7) we have to solve $\operatorname{det}\left(D_{1}(p)\right)=0$ and $\operatorname{det}\left(D_{2}(p)\right)=0$, which are polynomial functions of degree 2 and 1 in $\left(p+\frac{1}{p}\right)$ respectively. We find the six solutions : p_{+}and $p_{-}, p_{K, 1}$ and $p_{K, 2}, p_{t, 1}$ and $p_{t, 2}$, which are functions of z, of the different parameters of the equilibrum and of the relaxation rates of the non-conserved moments. We also have the following asymptotic
expansions in ω :

$$
\begin{align*}
p_{+} & =1+i \frac{\omega}{c_{s}}+\mathrm{O}\left(\omega^{2}\right), \tag{8}\\
p_{-} & =1-i \frac{\omega}{c_{s}}+\mathrm{O}\left(\omega^{2}\right), \tag{9}\\
p_{K, 1} & =\alpha_{1}+\beta_{1} \omega+\mathrm{O}\left(\omega^{2}\right), \text { where } \alpha_{1}<-1, \tag{10}\\
p_{K, 2} & =\alpha_{2}+\beta_{2} \omega+\mathrm{O}\left(\omega^{2}\right), \text { where }-1<\alpha_{2}<0, \tag{11}\\
p_{t, 1} & =1+\left(\alpha_{t, 1}+i \beta_{t, 1}\right) \sqrt{\omega}+i \gamma_{t, 1} \omega+\mathrm{O}(\omega \sqrt{\omega}), \tag{12}\\
p_{t, 2} & =1+\left(\alpha_{t, 2}+i \beta_{t, 2}\right) \sqrt{\omega}+i \gamma_{t, 2} \omega+\mathrm{O}(\omega \sqrt{\omega}) . \tag{13}
\end{align*}
$$

Considering the ω-dependence of the previous solutions, we remark that p_{+} and p_{-}are associated to acoustic waves which progress with speed $\pm c_{s}, p_{K, 1}$ and $p_{K, 2}$ are associated to Knudsen modes [6]. The two solutions $p_{t, 1}$ and $p_{t, 2}$ are associated with transverse shear waves and they will play no role for the particular situation of incident acoustic waves normal to the boundary that are considered later. For the sake of completeness, we indicate that

$$
\left(\alpha_{t, 1}+i \beta_{t, 1}\right)=\frac{1}{\sqrt{\nu}} \frac{(1+i)}{\sqrt{2}}
$$

and

$$
\left(\alpha_{t, 2}+i \beta_{t, 2}\right)=-\frac{1}{\sqrt{\nu}} \frac{(1+i)}{\sqrt{2}} .
$$

The expression of the first terms in the expansion of the Knudsen phase factor $p_{K, 1}$ and $p_{K, 2}, \alpha_{1}$ and α_{2} are complex functions of relaxation rates s_{i} and α. But in the particular case of equal relaxation rates (i.e. $s_{i}=s$), we have :

$$
\begin{aligned}
& p_{K, 1}=\frac{1-s}{z}=(1-s)-i(1-s) \omega+\mathrm{O}\left(\omega^{2}\right), \\
& p_{K, 2}=\frac{z}{1-s}=\frac{1}{1-s}+i \frac{1}{1-s} \omega+\mathrm{O}\left(\omega^{2}\right)
\end{aligned}
$$

From now on, we study cases where the wave vector of the incident wave k is normal to the interface so transverse waves do not contribute and thus will not be considered any more. Now we can find the eigenvectors ϕ_{p} of the matrix $G(p)$. Let ϕ_{+}and ϕ_{-}be the eigenvectors associated to $p_{ \pm}$and $\phi_{K, 1}$ and $\phi_{K, 2}$ the eigenvectors associated to $p_{K, 1}$ and $p_{K, 2}$. Note that for general
directions the simple separation of longitudinal and transverse modes does not exist.

3.2 Analysis of the interface problem

The solution f_{l} for the left hand side of the interface can be written as follows :

$$
\begin{equation*}
f_{l}=z^{n} p_{+}^{m} \phi_{+}+\beta_{1} z^{n} p_{-}^{m} \phi_{-}+\eta_{1} z^{n} p_{K, 1}^{m} \phi_{K, 1}+\delta_{1} z^{n} p_{K, 2}^{m} \phi_{K, 2}, \tag{14}
\end{equation*}
$$

with incident and reflected acoustic waves. For the right hand side of the interface we have :

$$
\begin{equation*}
f_{r}=\gamma_{2} z^{n} \widetilde{p}_{+}^{m} \widetilde{\phi}_{+}+\eta_{2} z^{n} \widetilde{p}_{K, 1}^{m} \widetilde{\phi}_{K, 1}+\delta_{2} z^{n} \widetilde{p}_{K, 2}^{m} \widetilde{\phi}_{K, 2} . \tag{15}
\end{equation*}
$$

with only transmitted waves. As we focus on an interface located at $x=0$, we set $\eta_{2}=0$ and $\delta_{1}=0$ to prevent the existence of unphysical growing Knudsen modes on either sides of the boundary.

We have the following four unknown coefficients :

- β_{1}, γ_{2} which determine the coefficients of reflection $r=\beta_{1} \frac{\left\langle\phi_{-}, j_{x}\right\rangle}{\left\langle\phi_{+}, j_{x}\right\rangle}$ and transmission $t=\gamma_{2} \frac{\left\langle\tilde{\phi}_{+}, j_{x}\right\rangle}{\left\langle\phi_{+}, j_{x}\right\rangle}$.
- η_{1}, δ_{2} which determine the amplitude of the Knudsen modes.

The value of the above coefficients will be determined by studying one step of the LBE scheme in the nodes closest to the interface ($x_{l}=-\frac{\Delta x}{2}$ is the node on the left hand side of the interface and $x_{r}=\frac{\Delta x}{2}$ is the node on the right hand side of the interface).
So we write the advection part of the LBE scheme which is described by the equation (2) and we use (14), (15) and $z \phi=A\left(I+M^{-1} C M\right) \phi(i . e . \phi$ is an eigenvector). This leads to :

- For $i=3$ and $i=6$ in $x_{l}=-\frac{\Delta x}{2}$:

$$
\begin{aligned}
& \quad \sqrt{p_{+}} \phi_{3}^{+}+\beta_{1} \sqrt{p_{-}} \phi_{3}^{-}+\eta_{1} \sqrt{p_{K, 1}} \phi_{3}^{K, 1}= \\
& (16)=\gamma_{2} \sqrt{\widetilde{p}_{+}} \widetilde{\phi}_{3}^{+}+\delta_{2} \sqrt{\widetilde{p}_{K, 2}} \widetilde{\phi}_{3}^{K, 2}
\end{aligned}
$$

$$
\begin{align*}
& \sqrt{p_{+}} \phi_{6}^{+}+\beta_{1} \sqrt{p_{-}} \phi_{6}^{-}+\eta_{1} \sqrt{p_{K, 1}} \phi_{6}^{K, 1}= \\
& =\gamma_{2} \sqrt{\widetilde{p}_{+}} \widetilde{\phi}_{6}^{+}+\delta_{2} \sqrt{\widetilde{p}_{K, 2}} \widetilde{\phi}_{6}^{K, 2} \tag{17}
\end{align*}
$$

- For $i=1$ and $i=5$ in $x_{r}=\frac{\Delta x}{2}$:

$$
\begin{aligned}
& \quad \frac{1}{\sqrt{p_{+}}} \phi_{1}^{+}+\beta_{1} \frac{1}{\sqrt{p_{-}}} \phi_{1}^{-}+\eta_{1} \frac{1}{\sqrt{p_{K, 1}}} \phi_{1}^{K, 1}= \\
& (18)=\gamma_{2} \frac{1}{\sqrt{\widetilde{p}_{+}}} \widetilde{\phi}_{1}^{+}+\delta_{2} \frac{1}{\sqrt{\widetilde{p}_{K, 2}}} \widetilde{\phi}_{1}^{K, 2}, \\
& \quad \frac{1}{\sqrt{p_{+}}} \phi_{5}^{+}+\beta_{1} \frac{1}{\sqrt{p_{-}}} \phi_{5}^{-}+\eta_{1} \frac{1}{\sqrt{p_{K, 1}}} \phi_{5}^{K, 1}= \\
& (19)=\gamma_{2} \frac{1}{\sqrt{\widetilde{p}_{+}}} \widetilde{\phi}_{5}^{+}+\delta_{2} \frac{1}{\sqrt{\widetilde{p}_{K, 2}}} \widetilde{\phi}_{5}^{K, 2} .
\end{aligned}
$$

So the system of equations (16), (17),(18) and (19) provides the unknown coefficients $\beta_{1}, \gamma_{2}, \eta_{1}$ and δ_{2} which are functions of the different eigenvectors and phase factors p. The expansion of $\beta_{1}, \gamma_{2}, \eta_{1}$ and δ_{2} with respect to ω cannot be calculated analytically in the general case for Multiple Relaxation Time (MRT), except for some special cases (e.g. BGK or for D1Q3). Nevertheless, we can find the expansion with respect to ω for a fixed value of the different parameters for LBE scheme (i.e. relaxation rates, equilibrium moments ...) and by using various formal calculation software. To validate our theoretical calculation we shall compare it to the numerical results obtained by lattice Boltzmann automata.

3.3 Interface of two D1Q3 media

Let medium $\Omega_{1}=\{x \in \mathbb{R}, x<0\}$ and medium $\Omega_{2}=\{x \in \mathbb{R}, x>0\}$ be two domains with sound velocity and viscosity c_{1}, ν_{1}, and c_{2}, ν_{2}, respectively. So, if we have an incident wave f_{i} with a wave number k^{+}in medium Ω_{1}, then there is a reflected wave f_{r} with a wave number k^{-}and a transmitted one f_{t} with a wave number \widetilde{k}^{+}in medium Ω_{2}. The theoretical reflection coefficient
is given by the Fresnel formula : $r_{t h}=\frac{J_{r}}{J_{i}}=\frac{\tilde{k}^{+}-k^{+}}{k^{+}+\tilde{k}^{+}}$. With the help of the hydrodynamic modes of D1Q3, and the study of the LBE algorithm in the two nodes at left and right of the interface, we conduct an analysis similar to the one done above for a D2Q9 interface. We find the reflection coefficient[5]
(20) $r_{c a l}=\frac{p_{+}-\widetilde{p}_{+}}{1-p_{+} \widetilde{p}_{+}}$,
where $p_{+}=e^{\left(i k^{+} \Delta x\right)}$ and $\widetilde{p}_{+}=e^{\left(\tilde{k}^{+} \Delta x\right)}$.
It should be mentionned that in the D1Q3 scheme, the dispersion equation is a polynomial function of degree 1 in $\left(p+\frac{1}{p}\right)$ and there are only two modes of wave character (the acoustic waves). Hence we can calculate the coefficient of reflection and transmission.
If we do an asymptotic development of p_{+}and $\widetilde{p_{+}}$in ω, we find that

$$
r_{t h}=r_{c a l}+\mathrm{O}\left(\omega^{2}\right)=\frac{c_{1}-c_{2}}{c_{1}+c_{2}}+\frac{i\left(\nu_{1} c_{2}^{2}-\nu_{2} c_{1}^{2}\right)}{c_{1} c_{2}\left(c_{1}+c_{2}\right)^{2}} \omega+\mathrm{O}\left(\omega^{2}\right)
$$

4 Theoretical calculation vs numerical results

In this section we compare the results obtained by the modal analysis method for D2Q9 scheme described in section 2 and the results obtained by the numerical test of D2Q9 LBE scheme.

4.1 Numerical tests

We simulate the transmission of waves between two acoustic domains which are described by the same macroscopic problem (3) and have different equilibrium moments distribution with the D2Q9 LBE scheme. So let $\Omega=$ $[0, l] \times[0, h]$, where $l=4000$ and $h=5$ be composed by $\Omega_{-}=\left[0, \frac{l}{2}\right] \times[0, h]$ and $\Omega_{+}=\left[\frac{l}{2}, l\right] \times[0, h]$.

- In Ω_{-}, we take the following configuration for equilibrium moments :
$e^{e q}=-2 \rho, \epsilon^{e q}=\alpha_{\epsilon} \rho, q_{x}=-j_{x}, q_{y}=-j_{y}, p_{x x}^{e q}=0, p_{x y}^{e q}=0$.
- In Ω_{+}, we take the following configuration for equilibrium moments :
$\widetilde{e}^{e q}=-2 \rho, \widetilde{\epsilon}^{e q}=\widetilde{\alpha}_{\epsilon} \rho, \widetilde{q}_{x}=-j_{x}, \widetilde{q}_{y}=-j_{y}, \widetilde{p}_{x x}^{e q}=0, \widetilde{p}_{x y}^{e q}=0$.
For the various relaxation rates s_{i} we first take the same values in the two
domains. (i.e $s_{e}=\widetilde{s}_{e}, s_{\epsilon}=\widetilde{s}_{\epsilon}, s_{q_{x}}=s_{q_{y}}=\widetilde{s}_{q_{x}}=\widetilde{s}_{q_{y}}$ and $s_{p_{x x}}=s_{p_{x y}}=\widetilde{s}_{p_{x x}}=$ $\widetilde{s}_{p_{x y}}$). Here we take periodic boundary conditions for the y direction and a simple bounce back in the outer edges in $x=l$. In the inlet edges at $x=0$ we impose an harmonic wave $J_{x}=\sin (\omega \Delta t)$ where $\omega=\frac{2 \pi}{100}$ (implemented by bounce-back and application of $2 J_{x}$ with appropriate weight factors for the velocities incoming in the computational domain). We take a fluid at rest for initial conditions and the total duration $T=n \Delta t$ of the simulations is chosen such that waves have not reached the outlet (see Fig. 1).
To determine the reflected wave and the Knudsen modes, we perform an-

Figure 1: J_{x} vs N_{x}, wave transmission between $\Omega_{-}=\left\{x_{i}, i \in(0 \ldots 2000)\right\}$ where $\alpha_{\epsilon}=1$ and $\Omega_{+}=\left\{x_{i}, i \in(2000 \ldots 4000)\right\}$ where $\widetilde{\alpha}_{\epsilon}=\frac{1}{2}$ at time $T=6464$.
other simulation in the domain $\Omega_{R}=[0, l] \times[0, h]$. In this domain we take the same configuration as in the domain Ω_{-}with the same boundary conditions for the inlet edges at $x=0$. This simulation gives us the reference solution. To see the reflected wave and the Knudsen modes we draw the difference between the flux J_{x} in Ω (the test case) and the flux J_{x} in Ω_{R} (the reference case) for the same number of time steps $=6464$. It should be noted here that we have a small reflected wave between two hydrodynamically equivalent LBE. So in Fig. 2 (for $x_{i} \in(1,2, \ldots .2000)$) we see a reflected hydrodynamic
wave which has an amplitude of the order 10^{-6}. We also note that $J_{x}^{\text {ref }}-J_{x}^{\text {test }}$ is not null for $x>2000$. Indeed there is a small change in the celerity of sound of order ω^{2} due to the change of α_{ϵ}. Hence we have a slight difference between the spatial periods of $J_{x}^{r e f}$ and $J_{x}^{\text {test }}$ which can be seen at $x>2000$ in Fig. 2. We have the same magnitude of reflected wave between two domains which have sound celerity variation $\Delta c_{s} \equiv\left(c_{s}-\widetilde{c}_{s}\right)=1.6 \cdot 10^{-5}$ or shear viscosity variation $\Delta \nu \equiv(\nu-\widetilde{\nu})=1.75 .10^{-4}$.

Figure 2: J_{x} vs N_{x}, difference between the test case and reference case.
To see the Knudsen modes we focus on the interface at $x=2000$. These Knudsen modes are localized near the interface and decay with oscillations for successive space steps Δx as can be seen in Fig. 3. Obviously this property of Knudsen modes is due to the first terms α_{1} and α_{2} of the asymptotic expansion (10) and (11) of $p_{K, 1}$ and $p_{K, 2}$.

4.2 Comparison between numerical and theoretical results

With the theoretical method introduced in section 1, we have an estimation of the different coefficients of the reflected, transmitted and Knudsen modes. We compare the predicted values to the results obtained in the numerical

Figure 3: Details of Fig. 2 showing Knudsen modes.
tests.
In Fig. 4 we plot the Knudsen amplitude vs the coefficient $\widetilde{\alpha}_{\epsilon}$ of moment equilibrium $\widetilde{\epsilon}^{e q}$ in the domain Ω_{+}, for $\alpha_{\epsilon}=1$ (i. e. $\epsilon^{e q}=\rho$ in the domain Ω_{-}). The curves show that the theoretical method is able to estimate the Knudsen amplitude. We find as shown in Fig. 4, that the Knudsen amplitude η is a linear function of $\Delta \alpha_{\epsilon} \equiv\left(\alpha_{\epsilon}-\widetilde{\alpha}_{\epsilon}\right)$. For the particular case of equal relaxation rates, the modal analysis of the equations (7), leads to the following Knudsen amplitude :

$$
\eta_{1}=\sqrt{1-s}\left(\alpha_{\epsilon}-\widetilde{\alpha}_{\epsilon}\right) \Delta t \omega+\mathrm{O}\left(\omega^{2}\right)
$$

and

$$
\delta_{2}=-\sqrt{1-s}\left(\alpha_{\epsilon}-\widetilde{\alpha}_{\epsilon}\right) \Delta t \omega+\mathrm{O}\left(\omega^{2}\right)
$$

We have also studied the dependence of the first terms α_{1} and α_{2} of the asymptotic expansion (10) and (11) of $p_{K, 1}$ and $p_{K, 2}$, in relaxation rates s_{ϵ}. Fig. 5 plots α_{1}, α_{2} vs s_{ϵ} in the case where $\epsilon^{e q}=\rho\left(i . e . \alpha_{\epsilon}=1\right)$ in Ω_{-}and $\widetilde{\epsilon}^{e q}=\frac{\rho}{2}\left(i . e . \widetilde{\alpha}_{\epsilon}=1\right)$ in Ω_{+}. The curves show that the theoretical method gives a good estimate of the coefficients α_{1} and α_{2}.

Figure 4: Knudsen amplitude η vs $\widetilde{\alpha}_{\epsilon}$ equilibrium parameter for LBE in Ω_{+}, calculated by two methods.

Figure 5: α_{1}, α_{2} vs the relaxation rate s_{ϵ} for $\epsilon^{e q}=\rho$ in Ω_{-}and $\widetilde{\epsilon}^{e q}=\frac{1}{2} \rho$ in Ω_{+}calculated by two methods.

5 Conclusion

In this contribution, we have analyzed the effect of a boundary between two lattice Boltzmann models that are hydrodynamically equivalent and have different equilibrium distribution. We show that the transmission of an acoustic wave between these two media generates a numerical hydrodynamics reflected wave and Knudsen modes.
We have used a theoretical method of analysis which is based on finding spatial modes of the Boltzmann scheme and a detailed study of the dynamical equations at local level at points close to the interface. Hence we get a connection formula. In the simple case of the D1Q3 model we find the generalization of the classical Fresnel formula where we replace the wave number k by a phase factor $p=e^{i k \Delta x}$. For D2Q9 models we have treated only incident waves normal to the interface that is chosen parallel to one of the microscopic velocities of the model and we have determined the amplitude of different waves generated at the interface. The extension for any incidence angle is more difficult due to the fact that the simple separation of longitudinal and transverse modes does not exist any more.
The results show that direct simulation of acoustic phenomena e.g. propagation in inhomogeneous media (as done in wave localization studies) with LBE type techniques can be seriously affected by parasitic phenomena. They also show that work [5] aimed at transfering to LBE techniques ideas that are efficient in continuous CFD methods requires a detailed knowledge of the behaviour of basic LBE models.

References

[1] Benzi, R., Succi S. and Vergassola M. The lattice Boltzmann equation : theory and applications. Phys. Rep., vol. 222, p. 145-197, (1992).
[2] Qian Y.H., d'Humières D. and Lallemand P., Lattice BGK models for Navier-Stokes equation, Europhys. Lett., vol. 17, p. 479-484, (1992).
[3] Dubois F., Equivalent partial differential equations of a lattice Boltzmann scheme, Computers and Mathematics with Applications, to appear (2007).
[4] d'Humières D., in Rarefied Gas Dynamics: Theory and Simulations, Prog. Astronaut. Vol. 159, edited by Shizgal B.D. and Weaver D.P. AIAA, Washington, D.C, (1992).
[5] Tekitek M.M., Identification de modèles et de paramètres pour la méthode Boltzmann sur réseau, Thèse, Université Paris-Sud, Orsay, France, 2007.
[6] Cornubert R., d'Humières D., and Levermore D., A Knudsen layer theory for lattice gases, Physica D, vol. 47, p. 241-259, (1991).

[^0]: * mohamed-mahdi.tekitek@math.u-psud.fr, bouzidi@asci.fr, francois.dubois@math.u-psud.fr, lalleman@asci.fr
 \dagger in press, Progress in Computational Fluid Dynamics.

