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2 M. Tekitek, M. Bouzidi, F. Dubois and P. Lallemand1 IntrodutionPhysial wave phenomena often take plae in unbounded domains. The nu-merial study of suh phenomena requires to reate a �nite omputationalregion and thus to introdue arti�ial boundaries. The aim of these bound-aries is to absorb all the waves and redue the re�etion of waves within theomputational domain as muh as possible.Among the lassial absorbing methodologies [3, 7, 1℄ we hoose to simulatethe perfetly mathed layer method using the Lattie Boltzmann method.The perfetly mathed layer (PML) method was introdued by Bérenger [1℄in the ontext of eletromagneti wave propagation by surrounding the trun-ated physial domain of interest with a bu�er/sponge layer whih has theproperty of absorbing all inoming waves without re�etion for any frequenyand any inident angle (see Fig. 1).
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Figure 1: Left : Domain of interest Ω and bu�er/sponge domain (PML), Right : Interfae :
Ω− aoustis domain / Ω+ PML domainHu [5℄ applies in (1996) the PML approah to aeroaousti problem modeledwith the linearized Euler equation for the domain of interest Ω− (see Fig 1) :
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Towards perfetly mathing layers for Lattie Boltzmann Equation 3In the PML bu�er Ω+ (see Fig 1) we use the non-physial equations [5℄ :
(2)
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= 0,where the oe�ient σ is introdued for the absorption of waves in the PML.We will refer to it as zero-order damping term in this work and it will beassumed to be non negative. We note that when σ = 0, we are left with theoriginal aoustis equations with : ρ = ρx + ρy.We notie here that the mass ρ is assumed to be ontinuous at the interfaebetween the domain of interest Ω− and the PML Ω+.Our work is strutured as follows. We �rst onstrut a Bérenger LattieBoltzmann (BLB) sheme to model an absorbing medium without dampingterms and we study the properties of this new model. Then we proposea method to simulate damping terms by hanging the advetion step. Insetion three we show numerial tests of an interfae between lassial D2Q9medium and BLB medium. Finally in setion �ve we propose a methodto redue re�eted waves in the simple ase of wave inident normal to theinterfae.2 Bérenger Lattie Boltzmann shemeIn this setion we onstrut the BLB sheme whih has equations (2) asequivalent marosopi equations up to order 1 relatively ∆t (de�ned below).First we reall the lassial D2Q9 [6℄ sheme.2.1 Classial D2Q9 shemeWe onsider the lassial D2Q9 [8℄ model. Let L a regular lattie parametrizedby a spae step ∆x, omposed by a set L0 ≡ {xj ∈ (∆xZ) × (∆xZ)} ofnodes or verties. ∆t is the time step of the evolution of LBE and λ ≡ ∆x

∆t



4 M. Tekitek, M. Bouzidi, F. Dubois and P. Lallemandis the elementary elerity. We hoose the veloities vi, i ∈ (1 . . . 9) suhthat vi ≡ ci
∆x
∆t

= ciλ, where the family of vetors {ci} is de�ned by :
c = (0, 0), (1, 0), (0, 1), (−1, 0), (0,−1), (1, 1), (−1, 1), (−1,−1), (1,−1).The LBE is a mesosopi method and deals with a small number of fun-tions {fi} that an be interpreted as populations of �titious �partiles". Thepopulations fi evolve aording to the LBE sheme whih an be written asfollows [2℄ :(3) fi(xj, t + ∆t) = f ∗

i (xj − vi∆t, t), 1 ≤ i ≤ 9,where the supersript ∗ denotes post-ollision quantities. Therefore duringeah time inrement ∆t there are two fundamental steps : advetion andollision.
• The advetion step desribes the motion of a partile whih has ollisionedin node xj − vi∆t having the veloity vj and goes to the jth neighbouringnode xj.
• Following d'Humières [6℄, the ollision step is de�ned in the spae of mo-ments. The 9 moments {mℓ} are obtained by a linear transformation ofvetors fj :

mℓ =
9∑

j=1

Mℓ jfj,where the matrix M ≡ (Mℓ j)1≤ℓ,j≤9 is given by :
(4) M =




0 λ 0 −λ 0 λ −λ −λ λ

0 0 λ 0 −λ λ λ −λ −λ

1 1 1 1 1 1 1 1 1
0 1 −1 1 −1 0 0 0 0

0 0 0 0 0 1 −1 1 −1
−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1
0 −2 0 2 0 1 −1 −1 1

0 0 −2 0 2 1 1 −1 −1




.

The moments have an expliit physial signi�ane [8℄ : m1 ≡ jx and m2 ≡ jyare x-momentum, y-momentum, m3 ≡ ρ is the density (density), m4 and m5are diagonal stress and o�-diagonal stress, m6 is the energy, m7 is related to



Towards perfetly mathing layers for Lattie Boltzmann Equation 5energy square, and m8, m9 are x-heat �ux and y-heat �ux. Note that wehave hanged the usual order of moments to simplify the introdution of theBérenger Lattie Boltzmann sheme.To simulate �uid problems, we onserve the �ux momentum jx, jy and thedensity moment ρ in the ollision step and obtain three marosopi salarequation. The other quantities (non-onserved moments) are assumed torelax towards equilibrium values m
eq
ℓ following :(5) m∗

ℓ = (1 − sℓ)mℓ + sℓm
eq
ℓ , 4 ≤ ℓ ≤ 9,where sℓ (sℓ > 0, for ℓ ≥ 4) are relaxation rates, not neessarily equal toa single value as in the so alled BGK ase [9℄. The equilibrium values m

eq
iof the non onserved moments in equation (5) determine the marosopibehavior of the sheme (i. e. equation (3)). Indeed with the following hoieof equilibrium values (negleting non-linear ontributions) : m

eq
4 = 0, m

eq
5 =

0, m
eq
6 = −2ρ, m

eq
7 = ρ, m

eq
8 = −jx and m

eq
9 = −jy and using Taylorexpansion [2℄ we �nd the aoustis equations up to order two in ∆x :(6) ∂jα

∂t
+

λ2

3

∂ρ

∂xα

= λ2∆t
σ6

3

∂(divj)

∂xα

+ λ2∆t
σ4

3
△j + O(∆2x),

∂ρ

∂t
+ divj = O(∆2x),where σℓ ≡

(
1
sℓ
− 1

2

)
, 4 ≤ ℓ ≤ 9, and in the ase of s5 = s4. Valuesof the sound speed cs, bulk visosity ζ and shear visosity ν are cs = λ√

3
,

ζ = c2
s∆tσ6 and ν = λ2∆t

3 σ4.2.2 Bérenger Lattie Boltzmann sheme (BLB)To have a perfetly mathed layer for lattie Boltzmann method, we onstruta Lattie Boltzmann sheme whih models the bu�er of Bérenger (BLB).At �rst we propose a sheme whih has the aousti PML equations (2)as marosopi behavior without zero-order damping term (i. e. σ = 0).Later, we hange the advetion step of the BLB sheme to add the termsproportional to σ.As there are four marosopi equations (2) in the Bérenger sheme, we needto use four onserved quantities in the ollision step. For simpliity, we keep



6 M. Tekitek, M. Bouzidi, F. Dubois and P. Lallemandthe lassial D2Q9 veloity set (hopefully this will allow simple boundariesbetween the LBE and BLB domains), and we replae the list of momentsgenerated with matrix M , by those generated with a new matrix MB givenbelow.
(7) MB =




0 λ 0 −λ 0 λ −λ −λ λ

0 0 λ 0 −λ λ λ −λ −λ

1 1 1 1 1 1 1 1 1

MB
4 1 MB

4 2 MB
4 3 MB

4 4 MB
4 5 MB

4 6 MB
4 7 MB

4 8 MB
4 9

0 0 0 0 0 1 −1 1 −1

−4 −1 −1 −1 −1 2 2 2 2
4 −2 −2 −2 −2 1 1 1 1

0 −2 0 2 0 1 −1 −1 1
0 0 −2 0 2 1 1 −1 −1




,

Note that M and MB di�er only in the de�nition of the fourth moment, thatwe all m
′

4 and whih will be onserved in ollision (i. e. s
′

4 = 0) to get afourth marosopi equation. Later we shall identify m3 to ρ ≡ ρx + ρy and
m

′

4 to ρx − ρy.To simplify later formula, we introdue oe�ients γ1···9 suh that
MB

4 1 = γ3 − 4(γ5 − γ6),
MB

4 2 = λγ1 + γ3 + γ4 − γ6 − 2γ7 − 2γ8,
MB

4 3 = λγ2 + γ3 − γ4 − γ6 − 2γ7 − 2γ9,
MB

4 4 = −λγ1 + γ3 + γ4 − γ6 − 2γ7 + 2γ8,
MB

4 5 = −λγ2 + γ3 − γ4 − γ6 − 2γ7 + 2γ9,
MB

4 6 = λ(γ1 + γ2) + γ3 + γ5 + 2γ6 + γ7 + γ8 + γ9,
MB

4 7 = λ(−γ1 + γ2) + γ3 − γ5 + 2γ6 + γ7 − γ8 + γ9,
MB

4 8 = −λ(γ1 + γ2) + γ3 + γ5 + 2γ6 + γ7 − γ8 − γ9,
MB

4 9 = λ(γ1 − γ2) + γ3 − γ5 + 2γ6 + γ7 + γ8 − γ9.We note that this orresponds to MB
4• = M.(γ1, γ2, . . . , γ9)

t.For the non onserved moments, we take new equilibrium values, meq
5 = 0,

m
eq
6 = axρx + ayρy, m

eq
7 = cxρx + cyρy, m

eq
8 = c1

λ
jx and m

eq
9 = c2

λ
jy.We now determine the equivalent set of equations of the model de�nedabove at �rst order in ∆t and we try and identify these equations with theset of equations 2 with no linear damping (σ = 0). In addition we imposethat the matrix MB is invertible.



Towards perfetly mathing layers for Lattie Boltzmann Equation 7Using a �rst order Taylor expansion in ∆t of the BLB sheme [2℄, weobtain
∂jx

∂t
+ A1

∂jx

∂x
+ A2

∂jy

∂x
+ A3

∂ρ

∂x
+ A4

∂(ρx − ρy)

∂x
= O(∆t),(8)

∂jy
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∂jy

∂y
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∂jx

∂y
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∂ρ

∂y
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∂y
= O(∆t),(9)

∂ρ

∂t
+

∂jx

∂x
+

∂jx

∂y
= O(∆t),(10)

∂(ρx − ρy)

∂t
+ C1

∂(ρx − ρy)

∂x
+ C2

∂(ρx − ρy)

∂y
+ C3

∂ρ

∂x
+ C4

∂ρ

∂y

+C5
∂jx

∂x
+ C6

∂jx

∂y
+ C7

∂jy

∂x
+ C8

∂jy

∂y
= O(∆t).(11)

where A1 =
−1

2γ4
(γ1 + c1γ8) , A2 =

−1

2γ4
(γ2 + c2γ9) ,

A3 =
2

3
− γ3

2γ4
+

ax + ay

4

(
1

3
− γ6

γ4

)
− γ7(cx + cy)

4γ4
,

A4 =
1

2γ4
+

ax − ay

4

(
1

3
− γ6

γ4

)
− γ7(cx − cy)

4γ4
,

B1 =
1

2γ4
(γ2 + c2γ9) , B2 =

1

2γ4
(γ1 + c1γ8) ,

B3 =
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3
+

γ3

2γ4
+

ax + ay

4

(
1

3
+
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γ4

)
+
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,
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+
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(
1

3
+

γ6
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)
+
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(
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+
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+
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cx − cy

2
(
γ8

3
+

γ7

2γ4
(2γ8 − γ1)),
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2
(
γ2

6
+
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3
+

γ6

2γ4
(γ2 − 2γ9)) +
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2
(
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3
+
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2γ4
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C3 =

2γ1

3
+

γ3

2γ4
(2γ8 − γ1) +

ax + ay

2

(
γ8

3
+

γ1

6
+

γ6(2γ8 − γ1)

2γ4

)

+
cx + cy

2

(
γ8

3
+

γ7

2γ4
(2γ8 − γ1)

)
,

C4 =
2γ2

3
+

γ3

2γ4
(−2γ9 + γ2) +

ax + ay

2

(
γ9

3
+

γ2

6
+

γ6(−2γ9 + γ2)

2γ4

)

+
cx + cy

2

(
γ9

3
+

γ7

2γ4
(−2γ9 + γ2)

)
,

C5 = γ3 + γ6 + c1(γ6 + γ7) +
γ4

3
(1 − c1) +

γ8γ1

2γ4
(2 − c1) +

2c1γ
2
8 − γ2

1

2γ4
,

C6 =
γ5(2 + c1)

3
+

1

2γ4
(c1γ8 + γ1)(γ2 − 2γ9),

C7 =
γ5(2 + c2)

3
− 1

2γ4
(c2γ9 + γ2)(γ1 − 2γ8),

C8 = γ3 + γ6 + c2(γ6 + γ7) −
γ4

3
(1 − c2) −

γ9γ2

2γ4
(2 − c1) −

2c2γ
2
9 − γ2

2

2γ4
.The identi�ation between a suitable linear ombination of equations (8),

(9), (10), (11) and the PML system (2) where σ = 0 leads to the followingrequirements :
γ1 = γ2 = γ8 = γ9 = 0,
ax = −4 + 6c2

s, ay = −4 + 6c2
s,

cx =
(4γ6 − 6γ6c

2
s − γ3 + 1)

γ7
, cy =

(4γ6 − 6γ6c
2
s − γ3 − 1)

γ7
,

c1 =
(3γ3 + γ4 + 3γ6 − 3)

(γ4 − 3γ6 − 3γ7)
, c2 =

(−3γ3 + γ4 − 3γ6 − 3)

(γ4 + 3γ6 + 3γ7)
.For γ3,4,5,6,7 we �nd two possible sets of solutions for γ3,4,5,6,7 :

i) γ3 = γ6 + 2γ7, γ4 = 1,

ii) γ5 = 0.Note that there are some free parameters left (γ5,6,7 for the �rst ase or γ3,4,6,7for the seond one). To have a stable sheme, we have found that only theseond is aeptable.



Towards perfetly mathing layers for Lattie Boltzmann Equation 92.3 Dissipation properties of BLB sheme without damping termsTo study the dissipation properties of the BLB sheme without absorbingterms (i. e. σ = 0), we determine the marosopi equations up to order 2relatively to ∆t.Proposition 1In the ase where s6 = s7, s8 = s9, cs = λ√
3
and γ5 = 0, the BLB shememodels the following system of marosopi equations up to order two on

∆t :
∂jx

∂t
+

λ2

3

∂(ρx + ρy)

∂x
+ Axx

∂2jx

∂x2
+ Ayy

∂2jx

∂y2
+ Axy

∂2jy

∂xy
= O(∆t2),

∂jy

∂t
+

λ2

3

∂(ρx + ρy)

∂y
+ Bxx

∂2jy

∂x2
+ Byy

∂2jy

∂y2
+ Bxy

∂2jx

∂xy
= O(∆t2),

∂ρx

∂t
+

∂jx

∂x
+ Cxx

∂2ρx

∂x2
+ Cyy

∂2ρx

∂y2
+ Dxx

∂2ρy

∂x2
+ Dyy

∂2ρy

∂y2
= O(∆t2),

∂ρy

∂t
+

∂jy

∂y
− Cxx

∂2ρx

∂x2
− Cyy

∂2ρx

∂y2
− Dxx

∂2ρy

∂x2
− Dyy

∂2ρy

∂y2
= O(∆t2),where Axx = −λ2∆t(4γ4−1)

6γ4
σ6, Ayy = −λ2∆t

3
(3(γ3−γ6−2γ7+γ4)−1)

γ4−3(γ6+γ7)
σ5,

Axy = −λ2∆t
3

[
3(γ6+γ7)+γ4(6(γ7−γ3)+4γ4−1)

2γ4(γ4+3(γ6+γ7))
σ6 + 3(γ6−γ3+2γ7+γ4)−1

γ4+3(γ6+γ7)
σ5

],
Bxx = −λ2∆t

3
(3(−γ3+γ6+3γ7+γ4)−1)

γ4+3(γ6+γ7)
σ5, Byy = −λ2∆t(2γ4+1)

3γ4
σ6,

Bxy = −λ2∆t
3

[
3(γ6+γ7)+γ4(3(γ3−γ7)+2γ4−2)

γ4(γ4−3(γ6+γ7))
σ6 + 3(γ3−γ6−2γ7+γ4)−1

γ4−3(γ6+γ7)
σ5

],
Cxx = λ2∆t

18 σ8(3(γ6 + γ7) − γ4)(2(γ7 − γ6) + γ3 − 1),
Cyy = λ2∆t

18 σ8(3(γ6 + γ7) + γ4)(2(γ7 − γ6) + γ3 − 1),
Dxx = λ2∆t

18 σ8(3(γ6 + γ7) − γ4)(2(γ7 − γ6) + γ3 + 1)and Dyy = λ2∆t
18

σ8(3(γ6 + γ7) + γ4)(2(γ7 − γ6) + γ3 + 1).We note that this model is not isotropi.Proof of Proposition 1To obtain the marosopi equations we an use the usual Chapman-Enskoganalysis [4℄ or Taylor expansion [2℄. The details are given in [10℄. In gen-eral the seond order spae derivatives in the preeding equations are notisotropi. To obtain isotropy, the following onditions have to be met :
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Axx = Byy, Ayy = Bxx, Axy = Bxy and Axx − Axy = Ayy, where Axx,yy,xyand Bxx,yy,xy are the oe�ients appearing in the equivalent equations ofthe model BLB (see proposition 1). This an be satis�ed only for s5 = 0.This fat introdues a new onservation law whih is inompatible with theBérenger model. Therefore our model is not isotropi.2.4 Stability analysisWe study numerially the stability of the BLB sheme by using the VonNeumann analysis. It onsists in onsidering the solution of the sheme fora plane wave fj(xi, t) = φje

i(ωt−k.xi) and by using the Fourier transform ofthe equation (3). We obtain the following equation :(12) f(xi, t + ∆t) = G(p, q)f(xi, t),where p = eikx∆x, q = eiky∆x, (kx, ky) = k and G(p, q) = A(p, q)M−1
B CMB.The advetion operator A(p, q) an be written as follows :

A = diag
(
1, p, q, 1

p
, 1

q
, pq, q

p
, 1

pq
, p

q

)
, the moments matrix MB is given by (7)and the ollision matrix is given by :

C=




1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 − s5 0 0 0 0

axs6
ax−ay

2
s6 0 0 0 1 − s6 0 0 0

cxs7
cx−cy

2 s7 0 0 0 0 1 − s7 0 0
0 0 c1

λ
s8 0 0 0 0 1 − s8 0

0 0 0 c2

λ
s9 0 0 0 0 1 − s9




.

Let introdue z = eiω∆t, then equation (12) beomes :
zf(xi, t) = G(p, q)f(xi, t).So the stability relies on the eigenvalue problem for the operator G. Thereforewe ompute numerially the eigenvalues zα and the stability ours when

Re(lnzα) < 0 (i. e. |zα| < 1 ) for all wave vetor k.
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(d)Figure 2: Real part of logarithmi eigenvalues of the BLB model versus |k|. The value ofthe parameters are γ3 = 7, γ6 = 3, γ7 = 2, γ4 = 1 and cs = 1
√

3
. The relaxation parametersare s5 = 1.4, s6 = 1.6, s7 = 1.65, s8 = 1.3 and s9 = 1.8. (a) For θ = 0 angle of wavevetor k (i. e. k is parallel to Ox). (b) for θ =

π

12
. (c) for θ =

π

6
. (d) for θ =

π

4
.For the ase where sound speed cs = λ√

3
we �nd that the BLB sheme is notstable for the �rst hoie : γ5 6= 0, γ3 = γ6 + 2γ7 and γ4 = 1. So we takethe seond hoie (i. e. γ5 = 0). We �nd that the BLB algorithm is stablefor the following on�guration : γ4 = 1, γ3 = γ6 + 2γ7, γ6 ∈ [0.88, 3.22],

γ7 ∈ [0.77, 2.22], s5 ∈]0, 1.6[, s6,7 ∈]0, 1.66[ and s8,9 ∈]0, 1.8[. Figures 2(a),2(b), 2() and 2(d) show the real part of logarithm of the eigenvalues asfuntion of wave vetor k. We see that for this hoie of the parameters theBLB algorithm is stable. We note that we have not �nd situations where theattenuation is less 10−2 typially (i. e. one order of magnitude greater thanthe lassial D2Q9).2.5 BLB with damping termsUntil now we studied the ase of BLB without absorbing terms (i. e. σ = 0in the system of equations (2)) to represent only the non-re�eting propertyof the BLB sheme. To model the zero-order damping terms we propose tohange the advetion step of the BLB sheme as follows :



12 M. Tekitek, M. Bouzidi, F. Dubois and P. LallemandProposition 2If we modify the advetion step of the BLB sheme as follows :
fj(xi, t + ∆t) = f ∗

j (xi − vj∆t, t) −
9∑

ℓ=1

σ̃B
ℓ,jf

∗
ℓ (xi − vℓ∆t, t) , 1 ≤ j ≤ 9.where the matrix σ̃B ≡ (σ̃B

ℓ,j)1≤ℓ,j≤9, is given by :
σ̃B

2, • = σ∆t
4 (1 + a1, 4, 0, 0, 0, a2 + 3, a2 − 1, a2 − 1, a2 + 3),

σ̃B
4, • = σ∆t

4
(1 + a1, 0, 0, 4, 0, a2 − 1, a2 + 3, a2 + 3, a2 − 1),and σ̃B

ℓ,j = 0 for ℓ 6= (2, 4), 1 ≤ j ≤ 9, where a1 = γ3 − 4(γ6 − γ7) and
a2 = γ3 + 2γ6 + γ7. We simulate the terms of damping proportional to σ inthe PML system of equations (2). We note here that we give the matrix σ̃only for the ase where the BLB sheme is stable.Proof of Proposition 2We use here the Taylor expansion [2℄ for the above equation to �nd themarosopi equivalent equations (2). So we write the Taylor expansion upto order 2 on ∆t of the BLB sheme equation (see Proposition 2) :
fj(xi, t) + ∆t∂tfj(xi, t) =

(
f ∗

j (xi, t) − ∆tvj∇f ∗
j (xi, t)

)

−
9∑

ℓ=1

σ̃B
j,ℓ (f ∗

ℓ (xi, t) − ∆tvℓ∇f ∗
ℓ (xi, t)) + O(∆t2),With the help of the moment matrix MB, using the fat f ∗

j = f
eq
j + O(∆t)and negleting the terms in (∆t2), we obtain :

mℓ+∆t∂tmℓ=m∗
ℓ −∆t

∑

j=1,9

MB
ℓ,jv

β
j ∂βf

eq
j −

9∑

j=1

MB
ℓ,j

9∑

p=1

σ̃B
j,pf

eq
p (x, t)+O(∆t2),We rewrite the above equation as follows :

m∗
ℓ − mℓ = ∆t∂tmℓ + ∆t

∑

j=1,9

MB
ℓ,jv

β
j ∂βf

eq
j +

9∑

j=1

Ψℓ,jf
eq
j (x, t) + O(∆t2),where the matrix (Ψℓ,j)1≤ℓ,j,≤9 = MB.σ̃B is the produt of matrix MB and

σ̃B. So with the help of the matrix Ψ we alulate the terms :∑9
j=1 Ψℓ,jf

eq
j (x, t), for ℓ = 1..9 whih is equal to :
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σ∆tjx for ℓ = 1, 0 pour ℓ = 2, σ∆t

ρ+(ρx−ρy)
2 = σ∆tρx for ℓ = 3 and

σ∆t
ρ+(ρx−ρy)

2 = σ∆tρx pour ℓ = 4.Now we write equation (13) for the four onserved moments (i. e. ℓ =
{1, 2, 3, 4}) and with the help of m∗

ℓ = mℓ we obtain the PML system (2)with absorption.3 Numerial test of interfaesIn this setion we present numerial simulations for aousti waves normallyinident to an interfae between a lassial D2Q9 medium (on the left) andvarious situations on the right : �rst a BLB without absorption then BLBwith absorption and �nally lassial D2Q9 with absorption.3.1 Classial D2Q9/BLB without absorptionSo let Ω = [0, l] × [0, h], where l = 4000 and h = 5 be omposed by Ω− =
[0, l

2
] × [0, h] and Ω+ = [ l

2
, l] × [0, h].

• In Ω−, we use the lassial D2Q9 sheme with the following relaxationrates : s4 = s5 = 1.95, s6 = 1.97, s7 = 1.9 and s8 = s9 = 1.7.
• In Ω+, we use the BLB sheme without absorption and we take the followingon�guration for di�erent parameters : γ3 = 7, γ4 = 1, γ6 = 3, γ7 = 2,
cs = 1√

3
, s5 = 1.8, s6 = 1.6, s7 = 1.6 and s8 = s9 = 1.7.Here we take periodi boundary onditions for the y diretion and a simpleboune bak in the outer edges in xi = l. In the inlet edges at xi = 0 weimpose an harmoni wave jx = sin(ω∆t) where ω = 2π

100 (implemented byboune-bak and appliation of 2jx with appropriate weight fators for theveloities inoming in the omputational domain). We take a �uid at restfor initial onditions and the total duration T = n∆t of the simulations ishosen suh that waves have not reahed the outlet (see Fig. 3(a)). We notehere that the aousti wave is more absorbed for xi > 2000 Fig. 3(a), andthis is due to the hange of visosity in the BLB medium.To determine the re�eted wave, we perform another simulation in the do-main ΩR = [0, l] × [0, h]. In this domain we take the same on�guration asin the domain Ω− with the same boundary onditions for the inlet edges at
xi = 0. This simulation gives us the referene solution. To see the re�eted
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x vs Nx. Aousti wave transmis-sion between Ω− (lassial D2Q9 medium) and Ω+ (BLB without absorption medium) attime T = 6000, interfae at xi = 2000. Right: jtest

x − jref
x vs Nx, di�erene between thetest and referene ases in the lassial D2Q9 aousti medium.wave and the Knudsen modes that are generated at the interfae we drawthe di�erene between the �ux jtest

x in Ω (the test ase) and the �ux jref
xin ΩR (the referene ase) for the same number of time steps = 6000. Itshould be noted here that we have a small re�eted wave between lassialD2Q9 aousti medium and BLB without absorption medium. So in Fig.

3(b) (for xi ∈ (1, 2, . . . .2000)) we see a re�eted aousti wave whih has anamplitude of the order 3.10−3. This re�eted aousti wave is generated bythe hange in the visosity between the two media. As indiated above, theBLB sheme is anisotropi and is not stable for parameters orresponding toa visosity as small as that an be obtained with D2Q9 (for more details see[11℄).3.2 Classial D2Q9/BLB with absorptionTo test this interfae we make the same simulation as above, but now weonly hange the Ω+ medium. Indeed in Ω+ we use the BLB sheme withabsorption (i. e. hanging the advetion step as desribed in proposition 2).We take the following parameters : γ3 = 7, γ4 = 1, γ6 = 3, γ7 = 2, cs = 1√
3
,

s5 = 1.8, s6 = 1.6, s7 = 1.6, s8 = s9 = 1.7 and σ(xi) = 10−7(xi − 2000)2.Figure 4(a) shows that the transmitted aousti wave is absorbed (for
xi > 2000) in the BLB with absorption medium. We note also that there�eted aousti wave (see Fig. 4(b)) in the D2Q9 medium has the same
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x − jref
x vs Nx Re�eted wave in the lassial D2Q9aousti medium: di�erene between the test and referene ases.amplitude as in the ase D2Q9/BLB without absorption.3.3 Classial D2Q9/ Classial D2Q9 with absorptionNow to test the lassial D2Q9/lassial D2Q9 with absorption we onlyhange the medium Ω+. So we take the following D2Q9 sheme where wehave only hanged the advetion step in Ω+ :

fj(xi, t + ∆t) = (Id − σ̃)f ∗
j (xi − vj∆t, t) , 1 ≤ j ≤ 9,where the matrix σ̃ ≡ (σ̃ℓ,j)1≤ℓ,j≤9 is given by : σ̃2,• = σ∆t

2 (1, 2, 1, 0, 1, 2, 0, 0, 2),
σ̃4,• = σ∆t

2 (1, 0, 1, 2, 1, 0, 2, 2, 0), and σ̃ℓ,j = 0 for ℓ 6= (2, 4), 1 ≤ j ≤ 9. Thissheme has the following marosopi equation up to order 1 in ∆t :




∂tρ + σρ + ∂xjx + ∂yjy = O(∆t),
∂tjx + σjx + c2

s∂xρ = O(∆t),

∂tjy + c2
s∂yρ = O(∆t).at xi = 2000 and T = 6000.℄In Ω+ we take the following onditions : m

eq
4 = m

eq
5 = 0, m

eq
6 = −2ρ,

m
eq
7 = ρ, m

eq
8 = −jx, m

eq
9 = −jy, s4 = s5 = 1.9, s6 = 1.8, s7 = 1.75,

s8 = s9 = 1.7, and σ(xi) = 10−7(xi − 2000)2. Figure 5(a) shows that thetransmitted wave is absorbed (for xi > 2000) in the D2Q9 with absorptionmedium. We note here that this interfae generates a very small re�eted
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x vs Nx :Aousti wave, interfae at xi = 2000 and T = 6000. Right: jtest
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x vs Nx, di�erenebetween the test and referene ases. jtest
x − jref

x vs Nx : Re�eted wave in the D2Q9aousti medium.wave (see Fig. 5(b)) in normal inidene whih is due to the hange of thespeed of sound in the two media (for more details see [10, 11℄).3.4 Comparison between numerial interfaesThe BLB without absorption sheme generates an undesired re�eted aous-ti wave in the domain of interest. The BLB with absorption sheme isstable and does not generate any additional re�eted wave. Finally the las-sial D2Q9 sheme with absorption is more e�ient but it generates a smallre�eted wave for normal inidene. Thus we propose a new method to anelre�eted wave.4 Towards anellation of re�eted wavesLet Ω−, Ω+ be two one dimensional aousti domains simulated by D1Q3sheme with sound veloity and visosity (cs, ν) and (c̃s, ν̃) respetively. Sowe have the following re�etion oe�ient [11℄ :(13) r =
p+ − p̃+

1 − p+p̃+
=

c1 − c2

c1 + c2
+

i(ν1c2
2 − ν2c

2
1)

c1c2(c1 + c2)2
ω + O(ω2),



Towards perfetly mathing layers for Lattie Boltzmann Equation 17where p+ = e(ik+∆x), p̃+ = e(ik̃+∆x), ω is the frequeny of inident wave and
k+, k̃+ are the progressive wave vetors in Ω− and Ω+ respetively.In order to anel the re�eted wave we propose to hange the advetion stepat the interfae. Thus the new f1 in node xr = ∆x

2 is a linear ombination of
f ∗

1 in node xl = −∆x
2 and f ∗

1 in node xl −∆x (see Fig. 6). Whereas we keepthe same advetion step for f2 whih goes in the opposite diretion. Thus wepropose the following sheme at the interfae :
f1(t + ∆t, xi) = δ1f

∗
1 (t, xi − ∆x) + δ2f

∗
1 (t, xi − 2∆x), in xi =

∆x

2
,

f2(t + ∆t, xi) = f ∗
2 (t, xi + ∆x), in xi = −∆x

2
,where δ1 and δ2 are two salar oe�ients whih will be �xed in order toanel the re�eted wave.

Σ

∆x

xl ∆x x l xr

xx∆ ∆Figure 6: Connetion at interfae.Proposition 3For D1Q3 monodimensional aousti interfae, we an �nd oe�ients δ1 and
δ2 in order to anel terms of order 0 and 1 in ω of the re�etion oe�ientgiven in equation (13).Proof of Proposition 3To �nd oe�ients δ1 and δ2 we alulate the theoretial expression of there�etion oe�ient taking into aount the new advetion step at interfae.Then we resolve the equation r = O(ω2). (for more details see [10℄).
•Numerial test : LetΩ− = {xi, i = 1..1000} andΩ− = {xi, i = 1001..2000}with sound veloity and visosity (cs = 0.577, ν = 0.001) and (c̃s = 0.479, ν̃ =
0.2). Figure 7(a) shows that there is a re�eted wave whih has an amplitudeof the order 10−1. By using the new proposed method (see proposition 3)we have redued the re�eted wave. In �gure 7 (b) the re�eted wave has anamplitude about 10−4.
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x vs Nx : di�erene between test and referene ases at T = 1500,
(a) without hanging the advetion step at interfae and (b) with interpolation of theadvetion step at the interfae.5 ConlusionWe have proposed a new sheme alled BLB to model the perfelty mathedlayer of Bérenger. Unfortunately this sheme generates a re�eted wave in thedomain of interest and this is due to the non isotropi property of BLB. Themethod used here to obtain a fourth marosopi equation (as in the Bérengersheme) needs to be tested for more ompliated shemes than D2Q9 inorder to model �rst order equations without obtaining unsatisfatory seondorder equations (by this we mean anisotropi visous terms). We have alsoproposed a method to model the zero-order damping terms. This methodonsists in hanging the advetion sheme. This method is stable and doesnot generate a re�eted wave.We have proposed a new method to anel the re�eted wave for normalinidene based on a loal modi�ation of the propagation rules near theinterfae. Future work ould be the extension of the this method for two andthree dimensional interfae and for any inidene angle.Referenes[1℄ J.-P. Bérenger, A perfetly mathed layer for the absorption of eletro-magneti waves, Journal of Computational Physis, 114, p. 185�200,
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