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AbstratWe use lattie Boltzmann method to model anisotropi di�usion problem alled �oblique�ow". We have adapted a general methodology for equivalent equations to the expliitdetermination of disrete gradient and �uxes for this problem. We validate this numerialapproah with a detailed omparison with �nite di�erenes.Keywords : Anisotropy benhmark, Lattie Boltzmann Method.1 Lattie Boltzmann shemeThe lattie Boltzmann sheme or Lattie Boltzmann Equation �LBE" is a mesosopimethod and deals with a small number of funtions {fi} that an be interpreted as popu-lations of �titious �partiles". We onsider in this work the partiular D2Q9 [dH92℄ model(i.e. d = 2 two-dimensional LBE model with nine veloities q = 9). The spae is dis-retized by a regular lattie L parametrized by a spatial sale ∆x. This lattie is omposedby a set L0 ≡ {xj ∈ (∆xZ)2} of nodes or verties. We hoose the veloities ci, i ∈ (0 . . . 8)de�ned by: c = (0, 0), (1, 0), (0, 1), (−1, 0), (0,−1), (1, 1), (−1, 1), (−1,−1), (1,−1) andwe de�ne ∆t as the time step of the evolution of LBE and let the elerity λ ≡ ∆x
∆t
. Wehoose the veloities vi, i ∈ (0 . . . 8) suh that vi ≡ ci

∆x
∆t

= ciλ.
∗ Presented at the Fifth FVCA Conferene, Aussois, 8-13 June 2008. To appear in HermesSiene Publiations. 1



2 François Dubois, Pierre Lallemand, Mahdi TekitekThe populations fi evolve aording to the LBE sheme whih an be written as fol-lows [Du08℄:(1) fi(xj , t + ∆t) = f ∗
i (xj − vi∆t, t), 0 ≤ i ≤ 8,where the supersript ∗ denotes post-ollision quantities. Therefore during eah timeinrement ∆t there are two fundamental steps: ollision and advetion.

• In the advetion step the �partiles� move from a lattie node xj to either itself (withthe veloity v0 = 0), one of the four nearest neighbors (with the veloity vi, 1 ≤ i ≤ 4),or one of the four next-nearest neighbors (with the veloity vi, 5 ≤ i ≤ 8).
• The ollision step onsists in the redistribution of the populations {fi} at eah node xj ,and it is modeled by the operator supersript ∗ in (1). This step is best desribed in thespae of moments mk [dH92℄. They are obtained by a linear transformation of vetors fj:
mk =

∑

j Mk jfj. Expliit formula for Mk j is given by
M =
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Note that matrix M is invertible and orthogonal. To simulate di�usion problems, we on-serve only the �rst moment m0 ≡ T in the ollision step and obtain one marosopi salarequation. For the other quantities (non-onserved moments), we assume that they relaxtowards equilibrium values meq
k that are nonlinear funtions of the onserved quantitiesand set:

m∗
k = (1 − sk) mk + skm

eq
k , 1 ≤ k ≤ 8,where sk is a relaxation rate whih satisfy 0 < sk < 2 to get a numerially stable sheme.The preise values of sk are given in the seond setion. With the following hoie ofequilibrium values: meq

1 = 0, meq
2 = 0, meq

3 = αT, meq
4 = βT, meq

5 = 0, meq
6 = 0, meq

7 =

axxT and meq
8 = axyT and using Taylor expansion [DLT08℄, we �nd the di�usion equationup to order three in ∆t:

∂T

∂t
− div(K∇T ) = O(∆t3).where K = (ki,j)1≤i,j≤2 is the di�usion tensor where k11 = λ2∆t

6
( 1

s1

− 1
2
)(4 + α + 3axx),

k12 = k21 = λ2∆t
2

( 1
s1

+ 1
s2

− 1)axy and k22 = λ2∆t
6

( 1
s2

− 1
2
)(4 + α − 3axx).



Using lattie Boltzmann sheme for anisotropi di�usion 32 Numerial results
• Test 3 Oblique �ow, min = 0, max = 1, uniform retangular mesh, mesh2 Wehave used LBE D2Q9 sheme to solve the following anisotropi di�usion problem so alled�oblique �ow�:

−div(K∇u) = 0 in Ω =]0, 1[2, u = u on ∂Ω.(2)where K = Rθ diag(1, 10−3) R−1
θ , Rθ is the rotation of angle θ = 40 degrees, and u = 1on (0, 0.2) × {0} ∪ {0} × (0, 0.2), 0 on (0.8, 1) × {1} ∪ {1} × (0.8, 1), 1

2
on (0.3, 1) ×

{0} ∪ {0} × (0.3, 1), 1
2
on (0, 0.7) × {1} ∪ {1} × (0, 0.7). Figure 1 and Figure 2 show theapproximate solution on the following uniform retangular mesh, mesh2: (2i+1×2i+1), i =

2..7, alulated by D2Q9 sheme after onvergene (i.e. 2.106 iterations) with s1 = 1.3,
s2 = 1.8 and β = 1 and other parameters are �xed to have K as the di�usion tensor given(2). To impose u on boundary we have use a �rst order sheme for boundary onditionsdesribed in [DLT08℄.

Figure 1. Solutions for the oblique �ow on mesh2_i for i=2 (left), i=3 (enter), i=4(right). The Grey sale of the �gure orresponds to a linear variation from 0 (blak) to 1(white).

Figure 2. Solutions for the oblique �ow on mesh2_i for i=5 (left), i=6 (enter), i=7(right).
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Figure 3. Solutions for the oblique �ow on mesh_4 (32 × 32) at y = 17. (a)Approximate solution vs x on the enter and boundary of the volume ontrol K. (b)Approximate solution vs x using Taylor expansion on the enter of the volume ontrol Kwhere disrete ∇u is given by LBE.We note that we an improve the approximate solution by using the disrete gradient ∇uwithout any additional omputation (as ∇u is given by LBE). Figure 3 (a) shows theinterpolate solution and Figure 3 (b) shows the solution using Taylor expansion of orderone in ∆x, where ∇u is given by LBE.i nunkw nnmat sum�ux umin umax1 9 × 16 - 5.27E-16 1.14E-01 8.86E-012 9 × 64 - 2.44E-15 3.78E-02 9.62E-013 9 × 256 - 1.01E-14 1.11E-02 9.89E-014 9 × 1024 - 3.59E-14 7.14E-03 9.93E-015 9 × 4096 - 1.42E-13 3.53E-03 9.96E-016 9 × 16384 - 5.75E-13 1.76E-03 9.98E-017 9 × 65536 - 7.88E-10 9.36E-04 9.99E-01Table 1. Number of unknowns (nunkw), the disrete �ux balane (sum�ux), value of theminimum (umin) and value of the maximum (umax) vs the mesh size i.Table 1 shows the following quantities:
• nunkw: number of unknowns.
• nnmat: number of nonzero terms in the matrix. As the lattie Boltzmann sheme isan expliit method, designed to simulate time dependent problems, we have no matrixto inverse to �nd solution (like in lassial numerial method �nite elements or �nite



Using lattie Boltzmann sheme for anisotropi di�usion 5volumes) but we have to make many iterations to reah onvergene.
• sum�ux: the disrete �ux balane, that is: �ux0+�ux1+�uy0+�uy1-sumf, where �ux0,�ux1, �uy0, �uy1 are the outward �uxes at the boundaries x = 0, x = 1, y = 0, y = 1,for example �ux0 is an approximation of −

∫

x=0
K∇u.nds, and sumf= ∑

K∈τ |K|f(xj)where xj denotes lattie node and represents the enter of the ontrol volume K. Sine
f = 0 in our test (no soure term in equation (2)), we have sumf= 0 and sum�ux= 0(see Table 1). Here the disrete gradient ∇u on the boundaries is omputed using theDirihlet boundary ondition u and the mass �ux j [DLT08℄ on the boundaries. Note thatwhen re�ning the mesh, the sum�ux variable looses 6 orders of magnitude. This indiatesthe di�ulties to reah the steady state.
• umin: value of the minimum of the approximate solution. Table 1 shows that theminimum umin onverge to 0 and umin > 0. The variable umax is the value of themaximum of the approximate solution. Table 1 shows that the maximum umax onvergeto 1 and umax < 1. Note that the e�etive grid points follow the lassial ell enter�nite volume methodology. Hene the points at whih umin and umax are determinedare loated at ∆x

2
from the atual boundary and thus data in Table 1 have not beenextrapolated to the boundary.i �ux0 �ux1 �uy0 �uy11 1.46E-01 2.57E-01 1.52E-01 -5.57E-012 1.04E-01 -1.04E-01 1.89E-01 -1.89E-013 2.46E-01 -2.46E-01 4.90E-02 -4.90E-024 1.97E-01 -1.97E-01 9.53E-02 -9.53E-025 1.75E-01 -1.75E-01 1.16E-01 -1.16E-016 1.89E-01 -1.89E-01 1.02E-01 -1.02E-017 1.96E-01 -1.96E-01 9.56E-02 -9.56E-02Table 2. Outward �uxes at the boundaries with Taylor expansion. Results obtained usingthe disrete gradient ∇u given by the LBE method.i �ux0 �ux1 �uy0 �uy11 -3.18E-01 3.18E-01 2.02E-02 -2.02E-022 -6.78E-02 6.78E-02 -1.28E-01 1.28E-013 2.51E-01 -2.51E-01 1.61E-01 -1.61E-014 2.50E-01 -2.50E-01 1.60E-01 -1.60E-015 1.76E-01 -1.76E-01 8.30E-02 -8.30E-026 1.76E-01 -1.76E-01 8.31E-02 -8.31E-027 1.96E-01 -1.96E-01 1.02E-01 -1.02E-01Table 3. Outward �uxes at the boundaries with Taylor expansion. Results obtained usingthe disrete gradient ∇u given by �nite di�erene method.



6 François Dubois, Pierre Lallemand, Mahdi TekitekIn Table 2 and Table 3 we show the values (�ux0,�ux1,�uy0,�uy1) the outward �uxes atthe boundaries vs the i whih represent the mesh size of mesh2 (equal to 2(1+i) × 2(1+i)).The disrete gradient ∇u on the boundaries is obtained in Table 2 by using �uxes at theboundaries [DLT08℄ (Fourier low), Dirihlet boundaries ondition u and Taylor expan-sion [Du08℄. In table 3 the �uxes are obtained by using the disrete gradient ∇u on theboundaries obtained by paraboli interpolation. We note here that the outward �uxesomputed by both above methods onverge to the same value on the �ne grids.i ener1 ener2 eren1 2.42E-01 2.02E-01 1.64E-022 2.53E-01 2.55E-01 9.39E-043 2.58E-01 2.75E-01 6.16E-034 2.55E-01 2.66E-01 4.07E-035 2.44E-01 2.50E-01 2.72E-036 2.42E-01 2.45E-01 8.95E-047 2.42E-01 2.43E-01 3.00E-04Table 4. Two omputations of energy ener1 and ener2. Results obtained using thedisrete gradient ∇u given by the LBE method.i ener1 ener2 eren1 5.83E-01 2.21E-01 6.20E-022 7.71E-01 3.35E-01 5.65E-023 5.67E-01 4.93E-01 1.30E-024 3.56E-01 4.37E-01 1.84E-025 2.59E-01 2.88E-01 1.00E-026 2.47E-01 2.57E-01 3.92E-037 2.43E-01 2.60E-01 6.62E-03Table 5. Two omputations of energy ener1 and ener2. Results obtained using thedisrete gradient ∇u given by �nite di�erene method.Table 4 and able 5 show the following quantities:
• ener1: is energy given by ener1 =

∫

Ω
K∇u.∇u dx. To ompute ener1 we need the disretegradient ∇u on all nodes xi of the mesh. This disrete gradient is given by the methodusing moments (m1, m2) or (m5, m6), for more details see [DLT08℄.

• ener2: is energy given by ener2 =
∫

∂Ω
K∇u.nu dx. We note here that to ompute ener2,



Using lattie Boltzmann sheme for anisotropi di�usion 7we use only the boundary outward normal �uxes. Sine f = 0 (i.e. no soure term inequation (2)), the quantities ener1 and ener2 should onverge to the same value. Table1 shows that these two disrete quantities onverge to the same value and shows thatrelative error between ener1, ener2 given by: eren = |ener1 − ener2|/max(ener1, ener2),onverge to zero on �ne grids.Table 5 shows the value ener1, ener2 and eren omputed using disrete gradient ∇u whihis obtained by �nite di�erenes (using a 9 points stenil). We note here that the resultsobtained by LBE (see Table 4) are more e�ient than those obtained by �nite di�erenesmethod.3 Comments on the resultsThe lattie Boltzmann sheme is a mesosopi method whih have a lot of unknowns pernode of the lattie (9 unknowns in D2Q9 model), however linear ombinations of theseloal unknown allow to ompute the �rst order and the seond order spae derivativesof the solution. We have shown how to adapt the lattie Boltzmann sheme to simulatean anisotropi di�usion problem and present numerial results showing that the shemeonverges to the solution.The lattie Boltzmann sheme has been designed for time dependent situations and isfounded on the fat that the sheme is exat for partiular advetion veloities. We haveused this method for a steady di�usion problem. The sheme onverges slowly towardsthe stationary solution with a time onstant proportional to the number of nodes in themesh. We have not used any aeleration tehniques like embedded grids.Referenes[dH92℄ d'Humières D., �Generalized lattie-Boltzmann equation�, AIAA Rare�ed GasDynamis: Theory and Simulations Progress in Astronautis and Aeronautis,vol. 159, 1992, p. 450�458.[Du08℄ Dubois F., �Equivalent partial di�erential equations of a lattie Boltzmannsheme�, Computers & Mathematis with Appliations, vol 55, 2008, p. 1141�1149.[DLT08℄ Dubois F., Lallemand P., Tekitek M. M., �Using Lattie Boltzmannsheme for anisotropi di�usion problems�, FVCA5 , (submitted), 2008.


