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a b s t r a c t

In this contribution, we recall the derivation of the anti bounce back boundary condition
for the D2Q9 lattice Boltzmann scheme. We recall various elements of the state of the art
for anti bounce back applied to linear heat and acoustics equations and in particular the
possibility to take into account curved boundaries. We present an asymptotic analysis
that allows an expansion of all the fields in the boundary cells. This analysis based
on pure Taylor expansions confirms the well known behaviour of anti bounce back
boundary for the heat equation. The analysis puts also in evidence a hidden differential
boundary condition in the case of linear acoustics. Indeed, we observe discrepancies in
the first layers near the boundary. To reduce these discrepancies, we propose a new
boundary condition mixing bounce back for the oblique links and anti bounce back for
the normal link. This boundary condition is able to enforce both pressure and tangential
velocity on the boundary. Numerical tests for the Poiseuille flow illustrate our theoretical
analysis and show improvements in the quality of the flow.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

From the early days of Lattice Boltzmann scheme studies, boundary conditions have been the object of various
proposals. In fact, two popular methods of boundary conditions are used to impose given macroscopic conditions (velocity,
pressure, thermal fields, . . . ). The first one, called ‘‘half-way’’ was proposed in the context of cellular automata [1]. The
‘‘half-way’’ approach [2], consists in using the distributions that leave the domain to define the unknown distributions by
a simple reflection (called bounce back) or antireflection (called anti bounce back). In this method the physical position of
the wall is located between the last internal domain node and first node beyond boundary. In [3,4] the exact position of
the physical wall is investigated for some simple problems. The second method proposed first by Zou and He [5], called
‘‘boundary on the node’’, uses the projection of the given macroscopic conditions in the distribution and assumes the
bounce back rule for the non-equilibrium part of the particle distribution. In this method the physical wall is located on
the last node of the domain.

Here, we only focus on ‘‘half-way’’ boundary conditions method. In a previous work [6] a novel method of analysis,
based on Taylor developments, is used for the bounce back scheme. This linear analysis gives an expansion of the
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Fig. 1. D2Q9 lattice Boltzmann scheme; discrete velocities vj for 0 ≤ j ≤ 8.

macroscopic quantity, on the physical wall, as powers of the mesh size. Later in [7] a generalized bounce back boundary
condition for the nine velocities two-dimensional (D2Q9) lattice Boltzmann scheme is proposed. This scheme is exact up
to second order by elimination of spurious density terms (first order terms).

In this contribution, the anti bounce back boundary lattice Boltzmann scheme is investigated. This scheme is used to
impose a Dirichlet boundary conditions for the ‘‘thermal problem’’, id est the heat equation where one scalar moment is
conserved, or to impose a given pressure for a linear fluid problem. Many works proposed new boundary conditions [8–12]
intended to yield improved accuracy compared to the anti bounce back boundary scheme.

In this paper, the D2Q9 lattice Boltzmann scheme is first briefly introduced for heat equation and acoustic system
(Section 2). Then in Section 3, the anti bounce back boundary condition is presented to impose a given thermal field for
thermal problem or to impose a given density/pressure for the linearized fluid. In Section 4, the scheme is analyzed using
Taylor expansion for the heat equation. This asymptotic analysis gives an expansion of the conserved scalar moment which
is exact up to order one. In Section 5, we present the extended anti bounce back that allows to handle curved boundaries.
In Section 6, anti bounce back is analyzed for the linear fluid problem. A hidden differential boundary condition is put
in evidence. In Section 7, a mixing of bounce back and anti bounce back boundary scheme [13], is used and analyzed
to impose a given density and a given velocity on the physical wall. Finally in Section 8 a novel boundary scheme is
introduced and analyzed to impose a given pressure and tangential velocity on the boundary. A Poiseuille test case gives
convergent results.

2. D2Q9 lattice Boltzmann scheme for heat and acoustic problems

The D2Q9 lattice Boltzmann scheme uses a set of discrete velocities described in Fig. 1. A density distribution fj is
associated to each basic velocity vj. The two components and the modulus of this vector are denoted by vjx, vjy and |vj|

respectively. The first three moments for the density and momentum are defined according to

ρ =

8∑
j=0

fj = m0 , Jx =

8∑
j=0

vjx fj = m1 , Jy =

8∑
j=0

vjy fj = m2 . (1)

We complete this set of moments and construct a vector m of moments mk using Gram–Schmidt orthogonalization and
an appropriate standardization to have simple expressions of the moment matrix, as proposed in [14]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε = 3
8∑

j=0

|vj|
2 fj − 4 λ2

8∑
j=0

fj ,

ϕx =

8∑
j=0

[
(vjx)2 − (vjy)2

]
fj , ϕy =

8∑
j=0

vjx vjy fj ,

qx = 3
8∑

j=0

|vj|
2 vjx fj − 5 λ2

8∑
j=0

vjx fj , qy = 3
8∑

j=0

|vj|
2 vjy fj − 5 λ2

8∑
j=0

vjy fj ,

D =
9
2

8∑
j=0

|vj|
4 fj −

21
2

λ2
8∑

j=0

|vj|
2 fj + 4 λ4

8∑
j=0

fj .

(2)

The entire vector m ∈ R9 of moments is defined by

m =
(
ρ , Jx , Jy, ε , ϕx , ϕy , qx , qy , D

)t (3)
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Table 1
D2Q9 linear equilibrium of nonconserved moments and associated relaxation coefficients for a
thermal type problem.
Moment Jx Jy ε ϕx ϕy qx qy D
Equilibrium 0 0 α λ2 ρ 0 0 0 0 β λ4 ρ

Relaxation coefficient sj sj se sx sx sq sq sd

and the previous relations can be written in a synthetic way :

m = M f . (4)

The invertible fixed matrix M is usually [14] given by

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1
0 λ 0 −λ 0 λ −λ −λ λ

0 0 λ 0 −λ λ λ −λ −λ

−4 λ2
−λ2

−λ2
−λ2

−λ2 2 λ2 2 λ2 2 λ2 2 λ2

0 λ2
−λ2 λ2

−λ2 0 0 0 0
0 0 0 0 0 λ2

−λ2 λ2
−λ2

0 −2 λ3 0 2 λ3 0 λ3
−λ3

−λ3 λ3

0 0 −2 λ3 0 2 λ3 λ3 λ3
−λ3

−λ3

4 λ4
−2 λ4

−2 λ4
−2 λ4

−2 λ4 λ4 λ4 λ4 λ4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (5)

where λ ≡
∆x
∆t is the fixed numerical lattice velocity. For scalar lattice Boltzmann applications to thermal problems, the

density ρ is the ‘‘conserved variable’’.
• We suppose the following linear equilibrium of nonconserved moments and associated relaxation coefficients. Due

to (5) and Table 1, we can explicit the vector f eq of equilibrium values of the particle distribution :⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

f eq0 =
ρ

9
[1 − α + β] , f eq1 =

ρ

36
[4 − α − 2β] , f eq2 =

ρ

36
[4 − α − 2β] ,

f eq3 =
ρ

36
[4 − α − 2β] , f eq4 =

ρ

36
[4 − α − 2β] , f eq5 =

ρ

36
[4 + 2α + β] ,

f eq6 =
ρ

36
[4 + 2α + β] , f eq7 =

ρ

36
[4 + 2α + β] , f eq8 =

ρ

36
[4 + 2α + β] .

(6)

• During the relaxation step of the heat diffusion problem, the conserved variable ρ is not modified. In the framework
of multiple relaxation times [15], the nonconserved moments m1 to m8 relax towards an equilibrium value meq

k displayed
in Table 1. The relaxation step m −→ m∗ needs also parameters sk presented also in Table 1:

m∗

k = mk + sk
(
meq

k − mk
)
, k ≥ 1 . (7)

Companion parameters σk have been introduced by Hénon [16] in the context of cellular automata:

σk =
1
sk

−
1
2

.

In terms of moments, the linear collision m −→ m∗ can be written as

m∗
= C m , (8)

with a collision matrix C given by

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
0 1−sj 0 0 0 0 0 0 0
0 0 1−sj 0 0 0 0 0 0

α se λ2 0 0 1 − se 0 0 0 0 0
0 0 0 0 1 − sx 0 0 0 0
0 0 0 0 0 1 − sx 0 0 0
0 0 0 0 0 0 1 − sq 0 0
0 0 0 0 0 0 0 1 − sq 0

β sd λ4 0 0 0 0 0 0 0 1 − sd

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (9)

The iteration of the D2Q9 scheme after the relaxation step follows the relation

f ∗

i (x, t) =

∑
ℓ

M−1
i ℓ m∗

ℓ , 0 ≤ i ≤ 8
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Table 2
D2Q9 linear equilibrium of nonconserved moments and associated relaxation coefficients for a
acoustic linear fluid problem.
Moment ε ϕx ϕy qx qy D
Equilibrium α λ2 ρ 0 0 −λ2 Jx −λ2 Jy β λ4 ρ

Relaxation coefficient se sx sx sq sq sd

and the population fj(x, t + ∆t) (0 ≤ j ≤ 8) at the new time step is evaluated according to

fj(x, t + ∆t) = f ∗

j (x − vj∆t, t) , 0 ≤ j ≤ 8 . (10)

• In [17] and [18], we have introduced classical Taylor expansions in order to recover equivalent partial differential
equations of the previous internal scheme. For the thermal model, when ∆x and ∆t tend to zero, with a fixed ratio
λ ≡

∆x
∆t and fixed relaxation coefficients sk, the conserved variable ρ is solution of an asymptotic heat equation

∂ρ

∂t
− µ ∆ρ = O(∆x2) . (11)

The infinitesimal diffusivity µ is evaluated according to

µ =
1
6

σj (α + 4) λ ∆x .

• If we consider a linear fluid problem, the three first moments ρ, Jx ≡ ρ ux and Jy ≡ ρ uy are conserved during the
collision step. The table of equilibria and relaxation coefficients is modified in the way specified in Table 2:

We can also display for the linear fluid case all components of the linear vector f eq:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f eq0 =
ρ

9
[1 − α + β ] ,

f eq1 =
ρ

36
[4 − α − 2β +

12 ux

λ
] , f eq2 =

ρ

36
[4 − α − 2β +

12 uy

λ
] ,

f eq3 =
ρ

36
[4 − α − 2β −

12 ux

λ
] , f eq4 =

ρ

36
[4 − α − 2β −

12 uy

λ
] ,

f eq5 =
ρ

36
[4 + 2α + β +

3
λ
(ux + uy)] , f eq6 =

ρ

36
[4 + 2α + β +

3
λ
(−ux + uy)] ,

f eq7 =
ρ

36
[4 + 2α + β +

3
λ
(−ux − uy)] , f eq8 =

ρ

36
[4 + 2α + β +

3
λ
(ux − uy)] .

(12)

In the space of moments, the linear collision is still described by a collision matrix. In the fluid case, we have

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

α se λ2 0 0 1 − se 0 0 0 0 0
0 0 0 0 1 − sx 0 0 0 0
0 0 0 0 0 1 − sx 0 0 0
0 −sq λ2 0 0 0 0 1 − sq 0 0
0 0 −sq λ2 0 0 0 0 1 − sq 0

β sd λ4 0 0 0 0 0 0 0 1 − sd

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (13)

The sound velocity satisfies

c20 =
α + 4

6
λ2 .

The shear and bulk kinematic viscosities ν and ζ are given [14] according to the relations

ν =
λ

3
∆x

( 1
sx

−
1
2

)
, ζ = −

λα

6
∆x

( 1
se

−
1
2

)
.

Note the usual values of the parameters : α = −2 and β = 1. During the relaxation step, the conserved variables
W ≡ (ρ , Jx , Jy) are not modified. The non-conserved moments follow a relaxation algorithm described in (7).
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Fig. 2. The issue of choosing a boundary algorithm for the D2Q9 lattice Boltzmann scheme.

Fig. 3. Cell center framework for the boundary conditions: given boundary value ρ0 and conserved moment ρ in the flow at vertex x.

Fig. 4. For a boundary node x along an horizontal frontier, the D2Q9 lattice Boltzmann scheme takes into account the three numbers ρ0(x−
∆x
2 , t),

ρ0(x, t) and ρ0(x +
∆x
2 , t).

3. Construction of the anti bounce back boundary condition

Consider to fix the ideas a bottom boundary for the D2Q9 lattice Boltzmann scheme, as illustrated in Fig. 2. For an
internal node x, the evolution of populations fj is given by the internal scheme (10). For a bottom boundary, the values
of f ∗

j (x − vj∆t) for j ∈ {2, 5, 6} ≡ B are a priori unknown.
When the vertex x is near the boundary, and located half a mesh size from the physical boundary, the internal iteration

(10) is still applicable for the discrete velocities with numbers j = 0, 1, 3, 4, 7, 8, id est for j ̸∈ B. For j ∈ B, the
fundamental scheme (10) has to be adapted. Our framework is still to try to apply the internal scheme at the boundary.
In our case, we set⎧⎪⎨⎪⎩

f5(x, t + ∆t) = f ∗

5 (x − (∆x, ∆x), t) ,

f2(x, t + ∆t) = f ∗

2 (x − (0, ∆x), t) ,

f6(x, t + ∆t) = f ∗

6 (x + (∆x, −∆x), t) .

Therefore, the boundary scheme is replaced by an extrapolation problem: how to determine the values f ∗

j (x−vj ∆t, t) for
j ∈ B from the known values f ∗

k (x, t) at the given vertex x and the extra information given by the boundary conditions
imposed by the physics?

• For the thermal case, the construction of the lattice Boltzmann scheme is based on two arguments. First we can
approximate at first order of accuracy (see e.g. [17]) the values f ∗

j (x − vj∆t, t) at the neighboring vertices by the
equilibrium values f eqj (x, t) at the internal vertex. Second, we have from the relations (6) the following three elementary
remarks: f eq2 =

ρ

36 (4 − α − 2β), f eq4 =
ρ

36 (4 − α − 2β) and in consequence f eq2 + f eq4 =
4−α−2β

18 ρ. In a similar way,
f eq5 =

ρ

36 (4 + 2α + β) and f eq7 =
ρ

36 (4 + 2α + β) implies f eq5 + f eq7 =
4+2α+β

18 ρ. Last but not least, the relations
f eq6 =

ρ

36 (4 + 2α + β) and f eq8 =
ρ

36 (4 + 2α + β) show that f eq6 + f eq8 =
4+2α+β

18 ρ. If we suppose a Dirichlet boundary
condition for the heat equation (11) then the conserved ‘‘temperature’’ ρ = ρ0 is given on the boundary. The anti bounce
back boundary condition is obtained by replacing in the previous relations the equilibrium values by the outgoing particle
distribution and the moment ρ(x) by the given value ρ0 on the boundary, as illustrated in Fig. 3.

The fluid node x near the boundary has coordinates equal to (x1, ∆x
2 ) as depicted in Fig. 3. In order to be more precise,

we observe (see Fig. 4) that the diagonal particles (numbered by j = 5 and j = 6) cross the boundary at locations x1 −
∆x
2
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and x1 +
∆x
2 respectively. If we have a continuous information for the given field on the boundary, we can introduce in

the boundary scheme the exact values ρ0(x1 −
∆x
2 , t), ρ0(x1, t) and ρ0(x1 +

∆x
2 , t) of the given data. Taking into account

all the previous remarks, the anti bounce back boundary condition is written in this case⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

f5(x, t + ∆t) = −f ∗

7 (x, t) +
4 + 2α + β

18
ρ0

(
x1 −

∆x
2

, t
)

,

f2(x, t + ∆t) = −f ∗

4 (x, t) +
4 − α − 2β

18
ρ0

(
x1, t

)
,

f6(x, t + ∆t) = −f ∗

8 (x, t) +
4 + 2α + β

18
ρ0

(
x1 +

∆x
2

, t
)

.

(14)

The minus sign in the right hand side of the relations (14) characterizes the denomination of ‘‘anti’’ bounce back.
• For the linearized fluid, we have three conserved moments: density ρ and the two components of the momentum

J ≡ ρ u. The equilibrium of the particle distribution is now given by the relation (12). We have as previously three simple
remarks. First, f eq2 =

ρ

36

(
4 − α − 2β +

12 uy
λ

)
and f eq4 =

ρ

36

(
4 − α − 2β −

12 uy
λ

)
. In consequence, f eq2 + f eq4 =

4−α−2β

18 ρ.
Secondly, f eq5 =

ρ

36

(
4 + 2α + β +

3
λ
(ux + uy)

)
and f eq7 =

ρ

36

(
4 + 2α + β +

3
λ
(−ux − uy)

)
. After a simple addition

of these two expressions, f eq5 + f eq7 =
4+2α+β

18 ρ. Finally, the relations f eq6 =
ρ

36

(
4 + 2α + β +

3
λ
(−ux + uy)

)
and

f eq8 =
ρ

36

(
4 + 2α + β +

3
λ
(ux − uy)

)
show that f eq6 + f eq8 =

4+2α+β

18 ρ. Applying the same method as in the case of the
thermal variant of the D2Q9 lattice Boltzmann scheme, we can write the anti bounce back boundary condition again with
the relations (14). The interpretation of the variable ρ is now the density. The anti bounce back is associated to a pressure
datum, thanks to the acoustic hypothesis that p = c20 ρ. Observe that in the fluid case, the bounce back boundary condition
is obtained simply by reversing the signs: f eq2 − f eq4 =

2
3 λ

ρ uy, f eq5 − f eq7 =
ρ

6 λ
(ux + uy) and f eq6 − f eq8 =

ρ

6 λ
(−ux + uy).

4. Linear asymptotic analysis for the heat problem

In order to analyze the anti bounce back boundary condition (14), we can rewrite this condition as

f ∗

j (x, t) = −f ∗

ℓ (x, t) + ξj(x′

j, t) , j ∈ B ,

with B = {2, 5, 6} in our example. As previously the notation ℓ corresponds to the opposite direction of the direction
number j: vj +vℓ = 0. The expression ξj(x′

j, t) denotes the given ‘‘temperature’’ ρ0 on the boundary at the space location
x′

j . In the specific example considered here, we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ2(x′

2, t) =
4 − α − 2β

18
ρ0(x1, t) ,

ξ5(x′

5, t) =
4 + 2α + β

18
ρ0

(
x1 −

∆x
2

, t
)

,

ξ6(x′

6, t) =
4 + 2α + β

18
ρ0

(
x1 +

∆x
2

, t
)

.

(15)

If j /∈ B the above equation is replaced by the internal scheme:

fj(x, t + ∆t) = f ∗

j (x − vj∆t, t) , j = 0, 1, 3, 4, 7, 8 .

We have proposed in [6] a unified expression of the lattice Boltzmann scheme D2Q9 for a vertex x near the boundary.
With the help of matrices Tj,ℓ and Uj,ℓ, we can write

fj(x, t + ∆t) =

∑
ℓ

Tj,ℓ f ∗

ℓ (x, t) +

∑
ℓ

Uj,ℓ f ∗

ℓ (x − vj∆t, t) + ξj(x′

j, t) , 0 ≤ j ≤ 8 . (16)

The matrix element Uj,ℓ is equal to 1 if ℓ = j /∈ B and Uj,ℓ = 0 if not:

U =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (17)
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Fig. 5. Vertex x near a boundary for the D2Q9 lattice Boltzmann scheme.

In an analogous way, the explicitation of the opposite directions (5, 7), (2, 4) and (6, 8) leads to the following matrix
denoted by T in the relation (16):

T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (18)

A complete picture of the boundary scheme is presented in Fig. 5.
• The formal asymptotic analysis for infinitesimal space step ∆x and infinitesimal time step ∆t is conducted as follows.

Multiply the relations (16) by the matrix M of (5) in order to introduce the moments (4). Thus a complete expression of
the D2Q9 lattice Boltzmann scheme for a node x near the boundary takes the form

mk(x, t + ∆t) = (MTM−1C)k,ℓ mℓ(x, t) + (Mk,ℓ Uℓ,j M−1
j,p Cp,q) mq(x − vℓ∆t, t) + Mk,ℓ ξℓ .

Then expand this relation at order 0 and 1. At order zero, we have

mk + O(∆t) = (MTM−1C)k,ℓ mℓ + (MUM−1C)k,ℓ mℓ + O(∆x) + Mk,ℓ ξℓ .

Drop away the indices:

m + O(∆t) = (MTM−1C) m + (MUM−1C)m + M ξ + O(∆x) .

We make a hypothesis of acoustic scaling: the ratio ∆x
∆t is maintained constant as ∆x and ∆t tend to zero. We put also

all the unknowns in the left hand side:(
I − M(T + U)M−1C

)
m = M ξ + O(∆x) .

We introduce the matrix K according to

K ≡ I − M(T + U)M−1C . (19)

We have established asymptotic equations for the moments m in the first cell of the computational domain for anti
bounce back scheme at order zero:

K m = M ξ + O(∆x) . (20)

with

ξ = ξ0 + ∆t ∂ξ + O(∆x2) .
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• For the anti bounce back for the thermal D2Q9 scheme, we have:

K =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
6 (4 + αse) 0 0 1

6λ2
(1 − se) 1

2λ2
(sx − 1) 0 0 0 0

0 sj 0 0 0 1
λ
(1 − sx) 0 0 0

λ
6 (4 + αse) 0 sj 1

6λ (1 − se) 1
2 λ

(sx − 1) 0 0 0 0
λ2

6 (4 − 3αse + 2βsd) 0 0 1
2 (se + 1) 1

2 (1 − sx) 0 0 0 1
3λ2

(1 − sd)
λ2

18 (−4 + αse + 2βsd) 0 0 1
18 (1 − se) 1

2 (1 + sx) 0 0 0 1
9λ2

(1 − sd)
0 0 0 0 0 1 0 0 0
0 0 0 0 0 λ(1 − sx) sq 0 0

λ3

3 (αse + βsd) 0 0 λ
3 (1 − se) λ(1 − sx) 0 0 sq 1

3λ (1 − sd)
λ4

3 (αse − 2βsd) 0 0 λ2

3 (1 − se) λ2(1 − sx) 0 0 0 1
3 (1 + 2sd)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (21)

The matrix K defined in (21) is regular. The solution of anti bounce back at order zero m0 is the unique solution of the
equation

K m0 = M ξ0 (22)

obtained by neglecting the first order terms in (20), with ξ0 given by the relations (15):

ξ0 =
(
0 , 0 ,

1
18

(−α − 2β + 4) ρ0 , 0 , 0 ,
1
18

(2α + β + 4) ρ0 ,
1
18

(2α + β + 4) ρ0 , 0 , 0
)t

Then m0 = K−1
•M ξ0 since the matrix K is regular. With the given temperature ρ0 given on the boundary, we have:

m0 =
(
ρ0, 0, 0, α ρ0 λ2, 0, 0, 0, 0, β ρ0 λ4)t . (23)

• At order one, the asymptotic analysis of anti bounce back follows the work done in [6] for the usual bounce back
boundary condition. We introduce the matrices

Bα
k,p =

∑
ℓ,j,q

Mk,ℓ Uℓ,j v
α
j M−1

j,q Cq,p , α = 1, 2 .

The equivalent equations for anti bounce back scheme up to order one are solutions of

K m = M ξ0 + ∆t [M ∂ξ − ∂tm − Bα ∂αm] + O(∆x2) .

Recall that with the data (15), we have

∂ξ =

(
0 , 0 , 0 , 0 , 0 ,

λ

36
(−2α − β − 4) ∂xρ0 ,

λ

36
(2α + β + 4) ∂xρ0 , 0 , 0

)t
.

We search a formal expansion of the type

m = m0 + ∆t m1 + O(∆x2) .

We have consequently

m1 = K−1
• (M ∂ξ0 − ∂tm0 − Bα∂αm0) .

After a tedious computation, the conserved variable ρ can finally be expanded as

ρ

(
x1,

∆x
2

)
= ρ0(x1) +

1
2

∆x ∂yρ(x1, 0) + O(∆x2) . (24)

The derivative ∂yρ(x1, 0) is the exact value for the continuous problem at the boundary point. Finally, the relation (24)
is nothing else than the Taylor expansion for the conserved variable between the boundary value ρ0(x) and the value
ρ(x) in the first fluid vertex. This Taylor expansion is correctly recovered at first order. This indicates that the Dirichlet
boundary condition is correctly taken into consideration and does not induce spurious effects [19]. Recall that for general
bounce back velocity condition, the situation shows several discrepancies [6,7].

• In order to illustrate the good quality of the results, we have evaluated numerically the eigenmodes of the heat
equation ∂tρ − µ ∆ρ = 0, id est the solutions of the modal problem

−∆ρ = Γ ρ

in a square domain Ω = ]0, L[2 with periodic and Dirichlet boundary conditions. The exact eigenvalues Γk, ℓ are
proportional to k2 + ℓ2 (the index of the mode). For periodic boundary condition, k and ℓ are even integers, then
k2 + ℓ2 = 4, 8, 16, . . . For homogeneous Dirichlet boundary condition, there is no restriction on the integers k and
ℓ; then k2 +ℓ2 = 2, 5, 8, . . . We use the D2Q9 lattice Boltzmann scheme with homogeneous anti bounce back boundary
condition on a 71 × 71 grid. The boundary is always located exactly between two grid points and the previous scheme
is used without any modification. The eigenmodes of the problem are evaluated in the following way : after one step of
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Fig. 6. Relative error
Γcomputed

Γexact
− 1 (multiplied by 104) as a function of the index k2 + ℓ2 of the modes for the Laplace equation in a square.

Fig. 7. Boundary conditions when the boundary is not in the middle of two mesh vertices.

the algorithm, the field f (x, t +∆t) is supposed to be proportional to f (x, t). The modes are computed numerically with
the ‘‘ARPACK’’ Arnoldi package [20].

On Fig. 6, we have plotted the relative error (multiplied by 104)

εk, ℓ, computed =
Γk, ℓ, computed

Γk, ℓ, exact
− 1 .

First, this error is very small: less than 0.025%. Second, is approximately proportional to the index k2 + ℓ2. This indicates

a second order accuracy with respect to the wave number π

√
k2+ℓ2

L , with L the size of the computational domain. This
second order error can be minimized by a suitable choice (see e.g. our contribution [21]) of the parameters of the scheme{

sj = 1.20, se = 1.30, sx =
1

√
3
6 +

1
2

≃ 1.27, sq =
1

√
3
3 +

1
2

≃ 0.93,

sd = 1.70, α = −2, β = 1 .

5. Extended anti bounce back for general boundaries

The argument summarized in the previous section for bounce back and anti bounce back conditions can be extended
to consider a boundary at an arbitrary distance η ∆x (0 < η < 1) from the last fluid point. It is completely described for
bounce back in Bouzidi et al. [22]. Assume that the boundary is on the left for a given space direction ej directed towards
in interior of the computational domain. The boundary node x is located inside the fluid and the node x+∆x on its right
is also inside the fluid. But the node x − ∆x is not a fluid node. The outgoing particles f ∗

j (x) and f ∗

j (x + ∆x) are known
at time t after the relaxation step. The incoming particle f ∗

ℓ (x − ∆x) for the opposite direction −vj (vj + vℓ = 0) has to
be determined by the boundary condition. This question is summarized in Fig. 7.

Assuming a linear variation of the macroscopic properties of the flow, one gets (see the original derivation in [22])
extended bounce back to impose the velocity in the fluid case:

f ∗

j (x − ∆x) =

⎧⎪⎨⎪⎩
2 η f ∗

ℓ (x) + (1 − 2 η) f ∗

ℓ (x + ∆x) + ξj for η ≤
1
2

1
2 η

f ∗

ℓ (x) +

(
1 −

1
2 η

)
f ∗

j (x) +
ξj

2 η
for η ≥

1
2

(25)
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or extended anti bounce back (to impose the density in the fluid case):

f ∗

j (x − ∆x) =

⎧⎪⎨⎪⎩
−2 η f ∗

ℓ (x) − (1 − 2 η) f ∗

ℓ (x + ∆x) + ξj for η ≤
1
2

−
1
2 η

f ∗

ℓ (x) +

(
1 −

1
2 η

)
f ∗

j (x) +
ξj

2 η
for η ≥

1
2

.
(26)

The interpolation is done before the propagation if η ≤
1
2 and after if η ≥

1
2 .

• Similar expressions have been written in [22] for extended bounce back assuming a parabolic variation of the velocity
field

f ∗

j (x − ∆x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

η (1 + 2 η) f ∗

ℓ (x) + (1 − 4 η2) f ∗

ℓ (x + ∆x)

−η (1 − 2 η) f ∗

ℓ (x + 2∆x) + ξj for η ≤
1
2

1
η (1 + 2 η)

(
f ∗

ℓ (x) + ξj

)
+

(
2 −

1
η

)
f ∗

j (x)

+
1 − 2 η

1 + 2 η
f ∗

j (x + ∆x) for η ≥
1
2

.

(27)

Similar changes in the signs as above define the extended for anti bounce back

f ∗

j (x − ∆x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−η (1 + 2 η) f ∗

ℓ (x) − (1 − 4 η2) f ∗

ℓ (x + ∆x)

+η (1 − 2 η) f ∗

ℓ (x + 2∆x) + ξj for η ≤
1
2

1
η (1 + 2 η)

(
−f ∗

ℓ (x) + ξj

)
+

(
2 −

1
η

)
f ∗

j (x)

+
1 − 2 η

1 + 2 η
f ∗

j (x + ∆x) for η ≥
1
2

.

(28)

• Application with the heat equation
The above anti bounce back boundary condition has been used in our previous contribution [18] in the context of the

heat equation. Numerical experiments are presented in this contribution. Figs. 3 and 4 with D2Q5 scheme for thermics
inside a circle, and Figs. 6–9 for D3Q7 lattice Boltzmann scheme for thermics in a three-dimensional ball. The Dirichlet
boundary condition is simply implemented with an extended anti bounce back scheme.

• Applications with linear acoustics.
For linear acoustics, we have used in [21] the time dependent extended anti bounce back (28) to enforce a given

harmonic pressure on the boundary of a disc (see Figs. 1–3 of this reference). No particular difficulty was reported with
this treatment of the time dependent pressure boundary condition.

In this contribution, we have determined the discrete eigenmodes of the lattice Boltzmann scheme

fj(x, t + ∆t) ≡ exp(Γ ∆t) fj(x, t) (29)

for internal or boundary nodes. For a linear fluid problem, we have determined the eigenmodes (29) with the homoge-
neous (ξj ≡ 0) anti bounce back scheme (28) at the boundary. We have used the following values of relaxation parameters:

se = 1.30 , sx =
1

√
3
6 +

1
2

, sq =
1

√
3
3 +

1
2

, sd = 1.30 . (30)

The first mode is depicted in Figs. 8 and 9. An other mode is presented in Fig. 10. We have no definitive interpretation of the
extended bounce back and anti bounce back boundary condition (25) to (28) in terms of partial differential equations. This
question is still an open problem at our knowledge. Nevertheless, some modes are clearly associated to Bessel functions.
These modes are invariant by rotation as evident from these figures that include data for all points located in the circle.
Recall that this is mainly due to the good choice of the quartic parameters (30) as presented in [21].

6. Analysis of anti bounce back for the linear fluid problem

The anti bounce back boundary condition for the fluid problem is very close to the framework presented in Section 4
for the scalar case. The boundary iteration still follows a scheme of the form (16). The collision matrix C is no longer
given by the relation (9), but by (13). The matrices U and T characterize the locus of the boundary and the anti bounce
back boundary condition. They are still given by the relations (17) and (18) respectively. The matrix K defined in (19)
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Fig. 8. Linear fluid problem in a disc. Density profile as a function of the radius for the first eigenmode (Γ = −0.03983758 + 0.00019317 i in unit
1/∆t) with homogeneous anti bounce back boundary condition for a disc with a radius R = 34.85.

Fig. 9. Linear fluid problem in a disc. Radial velocity profile as a function of the radius for the first eigenmode (Γ = −0.03983758 + 0.00019317 i
in unit 1/∆t) with homogeneous anti bounce back boundary condition for a disc with a radius R = 34.85. A small discrepancy due to treatment
of the boundary condition is visible. The tangential velocity is negligible.

Fig. 10. Eigenmode Γ = −1.590 in unit 1/∆t for a linear fluid problem in a disc with homogeneous anti bounce back boundary condition for a
disc of radius R = 44.2. Tangential velocity profile as a function of the radius. The density and radial velocity are negligible for this mode.
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has a new expression:

K =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
6 (4 + αse) 0 0 1

6λ2
(1 − se) 1

2λ2
(sx − 1) 0 0 0 0

0 0 0 0 0 1
λ
(1 − sx) 0 0 0

λ
6 (4 + αse) 0 0 1

6λ (1 − se) 1
2 λ

(sx − 1) 0 0 0 0
λ2

6 (4 − 3αse + 2βsd) 0 0 1
2 (se + 1) 1

2 (1 − sx) 0 0 0 1
3λ2

(1 − sd)

λ2

18 (−4 + αse + 2βsd) 0 0 1
18 (1 − se) 1

2 (1 + sx) 0 0 0 1
9λ2

(1 − sd)
0 0 0 0 0 1 0 0 0
0 λ2sq 0 0 0 λ(1 − sx) sq 0 0

λ3

3 (αse + βsd) 0 λ2sq λ
3 (1 − se) λ(1 − sx) 0 0 sq 1

3λ (1 − sd)

λ4

3 (αse − 2βsd) 0 0 λ2

3 (1 − se) λ2(1 − sx) 0 0 0 1
3 (1 + 2sd)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (31)

• The matrix K presented in (31) is singular. The associated kernel is of dimension 2. It is generated by the following
two vectors κx and κy in the space of moments:

κx =
(
0, 1, 0, 0, 0, 0, −λ2, 0, 0

)t
, κy =

(
0, 0, 1, 0, 0, 0, 0, −λ2, 0

)t
. (32)

This means first that when solving a generic linear system of the type

K m = g ≡
(
gρ, gjx, gjy, gε, gϕx, gϕy, gqx, gqx, gh

)t
, (33)

two compatibility relations have to be satisfied by the right hand side g:

λ gρ − gjy = 0 , λ gjx + (sx − 1) gϕy = 0 . (34)

Secondly, it is always possible to add to any solution of the model system (33) any combination of the type jx κx + jy κy. In
other terms, two components jx and jy of momentum remain undetermined by the anti bounce back boundary condition.
They have to be evaluated in practice by the interaction with the other vertices through the numerical scheme.

• Following the procedure presented previously for the thermal case, we can try to solve the boundary condition (20)
at various orders. At order zero, no relevant information is given by the compatibility conditions (34). Then the solution
m0 at order zero depends on two parameters identified as the momentum (jx, jy) in the first cell. With a given pressure
p0 or a given density ρ0 ≡

p0
c20

on the boundary, we have

m0 =
(
ρ0, jx, jy, α λ2 ρ0, 0, 0, −λ2 jx, −λ2 jy, β λ4ρ0

)t
. (35)

At order one, the first compatibility relation is a linear combination of the first order equivalent partial differential
equations. The other compatibility relation gives a non trivial differential condition on the boundary :

∂xJy + ∂yJx = 0 . (36)

The anti bounce back induces a hidden additional boundary condition. Observe that the differential condition (36) is not
satisfied for a Poiseuille flow. Nevertheless, if this relation is satisfied, it is possible to expand the resulting density in the
first cell:

ρ

(
x1,

∆x
2

)
= ρ0

(
x1

)
+

1
2

∆x ∂yρ(x1) + ∆t
(
ajx ∂xJx + ajy ∂yJy

)
+ O(∆x2) . (37)

with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ajx =
1

8 (se sx + se sd + sx sd) + 2 (se sx + 2 se sd)α + 2 (se sd − sx sd)β
×

(
6 se sx + 5 se sd + 7 sx sd − 6 se + 2 sx − 8 sd

+2 (se sx + 2 se sd − sx − 2 sd)α + 2 (se sd − sx sd − se + sx)β
)

ajy =
1

8 (se sx + se sd + sx sd) + 2 (se sx + 2 se sd)α + 2 (se sd − sx sd)β
×

(
2 se sx + 5 se sd − sx sd + 2 se + 2 sx + 8 sd

+2 (se sx + 2 se sd − sx − 2 sd)α + 2 (se sd − sx sd − se + sx)β
)

.

This result indicates that the anti bounce back boundary condition gives not satisfactory results for the field near the
boundary. The extra term ajx ∂xJx+ajy ∂yJy in the relation (37) is a discrepancy if we compare this relation with a common
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Fig. 11. Linear vertical Poiseuille flow. The solid boundaries are at the left and at the right. A given pressure of P0 = 0.001 and −P0 are given at
the bottom and the top of the channel. A parabolic profile is generated by the pressure gradient.

Fig. 12. Anti bounce back boundary condition for linear Poiseuille flow. Moment field ϕy in the first layers of the boundary. The hidden boundary
condition ∂xJy + ∂yJx = 0 enforces the constraint XY ≡ ϕy = 0.

Taylor expansion of the density in the normal direction as found in the scalar case (24). The relations (36) and (37) put
in evidence quantitatively various defects of the anti bounce back boundary condition as proposed at the relations (14).

• Numerical experiments for a linear Poiseuille flow.
We have considered a two-dimensional vertical channel with wall boundaries at the left and at the right. At the bottom

of the channel a given +P0 pressure is imposed through anti bounce back and −P0 is imposed at the top (see Fig. 11).
We have emphasized in Figs. 12–15 the results for three meshes with 20× 40, 40× 80 and 80× 160 cells. In Fig. 12,

the field is represented in the first two layers near the inflow boundary. Due to the classical Taylor expansion [14]

ϕy = −
λ ∆x
3 sx

(
∂xJy + ∂yJx

)
+ O(∆x2) ,

this field is an excellent indicator of the treatment of the hidden boundary condition (36). Fig. 12 confirms that for the
first cell, the hidden condition is effectively taken into account, except may be in the corners.

In consequence, the Poiseuille flow cannot be correctly satisfied near the fluid boundary. An important error of 18.2% for
the pressure in the first cell is observed for the three meshes (see Fig. 13). Nevertheless, if we fit these pressure results
by linear curves taking only half the number of points in the middle of the channel, this error is reduced to 6.5% (see
Fig. 13). The tangential velocity is supposed to be identically null in all the channel. In the middle, the maximal tangential
velocity is always less than 0.01% of the maximum normal velocity. But in the first cells (Fig. 14), the discrepancies are
important and can reach 17% of the maximal velocity.

In Fig. 15, the axial velocity is presented for the three meshes. We keep the same value of sx and in consequence the
kinematic viscosity of the fluid [14,17]

ν =
λ

3
∆x

( 1
sx

−
1
2

)
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Fig. 13. Anti bounce back boundary condition for linear Poiseuille flow. Pressure field in the middle of the channel (after a simple interpolation due
to an even number of meshes) for three meshes with 20 × 40, 40 × 80 and 80 × 160 cells. A substantial error does not vanish as the mesh size
tends to zero.

Fig. 14. Anti bounce back boundary condition for linear Poiseuille flow. Horizontal velocity field for three meshes. The maximum value is around
17% of the vertical velocity.

Fig. 15. Anti bounce back boundary condition for linear Poiseuille flow. Vertical velocity field for three meshes. The parabolic profile is not completely
recovered, in particular in the cells near the fluid boundary.
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Table 3
Anti bounce back boundary condition for linear Poiseuille flow. Distance between the numerical
position of the boundary from its theoretical location.
Mesh 20 × 40 40 × 80 80 × 160
Center 5.29 10−3 3.98 10−3 4.61 10−3

Bottom 0.261 0.582 1.26

Fig. 16. Mixed bounce back and anti bounce back boundary condition to enforce density and momentum values on the boundary.

is reduced at each mesh refinement by a factor of 2 and the normal velocity is multiplied in the same proportions. We
have fitted with least squares the vertical velocity by a parabola in the middle of the channel and in the first layer (see
Fig. 15). The null velocity along this fitted parabola defines a numerical boundary that is compared to its true geometric
location. The results are presented in Table 3. In the center of the channel, we obtain a typical error of 10−3 between the
numerical and geometrical boundaries, measured in cell units: the axial velocity is of very good quality in the center of
the channel. In the first cell, the gap between numerical and physical boundaries represents a notable fraction of one unit
cell (see Table 3).

7. Mixing bounce back and anti bounce back boundary conditions

In order to overcome the difficulties with the anti bounce back boundary condition for the fluid problem, we have
adapted a mixing of bounce back and anti bounce back first proposed in [13] for the thermal Navier–Stokes equations.
We suppose that all the fluid information, id est density and momentum, is given on the boundary. We force this relation
by taking bounce back boundary condition for the particles coming from the left and from the right: f eq5 −f eq7 =

1
6 λ

(Jx+Jy)
and f eq6 − f eq8 =

1
6 λ

(−Jx + Jy). We keep the anti bounce back f eq2 + f eq4 =
4−α−2β

18 ρ for the particles coming from the
bottom, as illustrated in Fig. 16.

Finally, if density ρ0 and the two components J0x and J0y of the velocity are supposed given on the boundary, the mixed
bounce back and anti bounce back boundary condition can be written as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

f5(x, t + ∆t) = f ∗

7 (x, t) +
1
6 λ

(
J0x + J0y

)(
x1 −

∆x
2

, t
)

,

f2(x, t + ∆t) = −f ∗

4 (x, t) +
4 − α − 2β

18
ρ0

(
x1, t

)
,

f6(x, t + ∆t) = f ∗

8 (x, t) +
1
6 λ

(
−J0x + J0y

)(
x1 +

∆x
2

, t
)

.

(38)

• The analysis of the discrete mixed condition (38) follows the methodology presented above. The boundary iteration
still follows the general framework (16). The matrices U and T characterize the locus of the boundary and the mixed
bounce back and anti bounce back boundary condition. The matrix U is still given by (17). On the contrary, the interaction
matrix T is no longer given by the expression (18), but by the relation

T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 +1 0
0 0 0 0 0 0 0 0 +1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (39)
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The matrix K introduced in (19) takes the form:

K =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4−αse−2βsd
18 0 2−sq

3λ
se−1
18λ2

sx−1
2λ2

0 0 1−sq
3 λ3

sd−1
9λ4

0 2−sq
3 0 0 0 0 1−sq

3λ2
0 0

λ(4−αse−2βsd)
18 0 2−sq

3
se−1
18λ

sx−1
2λ 0 0 1−sq

3λ2
sd−1
9λ3

λ2(−4−17αse+2βsd)
18 0 λ(4−2sq)

3
1+17se

18
1−sx
2 0 0 2(1−sq)

3λ
1−sd
3λ2

λ2(−4+αse+2βsd)
18 0 0 1−se

18
1+sx
2 0 0 0 1−sd

9λ2

0 λ(2−sq)
3 0 0 0 sx

1−sq
3λ 0 0

0 2λ2(1+sq)
3 0 0 0 0 1+2sq

3 0 0
λ3(−4+αse+2βsd)

9 0 2λ2(1+sq)
3

λ(1−se)
9 λ(1−sx) 0 0 1+2sq

3
2(1−sd)

9λ
λ4(−4+αse−7βsd)

9 0 λ3(2−sq)
3

λ2(1−se)
3 λ2(1−sx) 0 0 λ(1−sq)

3
2+7sd

9

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (40)

The matrix defined in (40) is singular. Its kernel is of dimension 1. It is generated by the following vector κ:

κ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(3 se sd + 2 se sx + sd sx) sq
λ sd se sx (α + 2β − 4)

0
1

λ (3α se sd + 2α se sx − 2β sd sx + 4 sd sx) sq
sd se sx (α + 2β − 4)

λ sq
3 sx
0
0

−2 λ2

−λ3 (α se sx − 3β se sd − βsd sx − 4se sx) sq
sd se sx (α + 2β − 4)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We did not find any simple physical interpretation of the kernel Rκ of the matrix K defined by (40) in this case. When
solving the generic linear system (33), the right hand side g must satisfy

λ gρ − gjy = 0 .

Moreover, the solution is defined up to a multiple of the vector κ presented above.
• At order zero, the compatibility condition does not give any relevant information. If we suppose that the component

of m0 along the eigenvector κ is reduced to zero, we have for a given density ρ0 and a given momentum (J0x , J0y ) on the
boundary:

m0 =
(
ρ0, J0x , J0y , α λ2 ρ0, 0, 0, −λ2 J0x , −λ2 J0y , β λ4ρ0

)t
.

At order one the compatibility relations is a linear combination of the first order equivalent partial differential equations
and no constraint is added by this relation. The resulting moments in the first cell x ≡

(
x1, ∆x

2

)
at first order can be

expressed after some formal calculus:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ

(
x1,

∆x
2

)
= ρ0

(
x1

)
+

1
2

∆x ∂yρ
(
x1, 0

)
+

∆x
sx se sd (α + 2β − 4)

(
aρ ∂yρ

(
x1, 0

)
+ bρ ∂xJx

(
x1, 0

)
+ cρ ∂yJy

(
x1, 0

))
+ O(∆x2) ,

jx
(
x1,

∆x
2

)
= J0x

(
x1

)
+

1
2

∆x ∂yJx
(
x1, 0

)
+ O(∆x2) ,

(41)
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with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

aρ =
1
6

(
− 4 (2 se sx + 3 se sd + sx sd)

+ (2 se sx sq + 3 se sq sd + sx sq sd − 6 se sx − 9 se sd − 3 sx sd)α

+ (2 se sx sq + 3 se sq sd + sx sq sd − 4 se sx − 6 se sd − 2 sx sd)β
)

,

bρ = 2 se (3 sd − 2 sx sd − sx) + sx sd (se − 1)α + 2 se sx (sd − 1)β ,

cρ =
1
2

(
4 se sx sd − 2 se sx sq − 3 se sq sd − sx sq sd − 4 se sx − 12 se sd

+2 sx sd (se − 1)α + 4 (sd − 1) se sx β

)

(42)

and

jy
(
x1,

∆x
2

)
= J0y

(
x1

)
+ O(∆x2) . (43)

We are puzzled by this result and more work is needed. There is a true discrepancy for the density with the three terms
parametrized by the coefficients aρ , bρ and cρ . Moreover, no first order term 1

2 ∆x ∂yJy of a simple Taylor formula is
present for the expansion (43) of the normal momentum.

8. Giving pressure and tangential velocity on the boundary

A natural mathematical question is to know whether a given set of partial differential equations associated with a
given set of boundary conditions conducts to a well posed problem in the sense of Hadamard. For example, the Poisson
equation with Dirichlet or Neumann boundary conditions conducts to a well posed problem (see e.g. [23]). On the contrary
for the same Laplace equations, the Cauchy problem is defined by the fact to impose the value of the unknown field and
the value of the normal derivative on some part of the boundary. As well known, this Cauchy problem for the Laplace
equation is not correctly posed [24,25]. For the stationary Stokes problem

divu = 0 , −ν ∆u + ∇p = 0 ,

a set of correctly posed boundary conditions is based on the velocity vorticity pressure formulation [26]:

divu = 0 , ω − curl u = 0 , ν curlω + ∇p = 0 . (44)

Considering a variational formulation of the Stokes system (44), natural boundary conditions can be derived and we obtain
the following procedure. Consider the two following decompositions Γm ∪ Γp and Γt ∪ Γθ of the boundary ∂Ω:{

∂Ω = Γm ∪ Γp with meas
(
Γm ∩ Γp

)
= 0 ,

∂Ω = Γt ∪ Γθ with meas
(
Γt ∩ Γθ

)
= 0 .

Suppose now that on one hand, the normal velocity is given on Γm and the pressure is given on Γp and on the other
hand that the tangential velocity is given on Γt and the tangential vorticity is imposed on Γθ :{

u · n = g0 on Γm , p = Π0 on Γp
n × u × n = σ0 on Γt , n × ω × n = θ0 on Γθ .

(45)

Then under some technical hypotheses, the Stokes problem (44) with the boundary conditions (45) admits a unique
variational solution in ad hoc vectorial Sobolev spaces [27]. A first particular case is the Dirichlet problem, where both
components of velocity are given (see e.g. [28]). An interesting case is the fact to give pressure and tangential velocity, as
first remarked in [29]:

p = Π0 and n × u × n = σ0 on Γ . (46)

In the following of this section, we propose to adapt the algorithm proposed in Section 6 to the set of boundary
conditions (46).

• We suppose in this section that the density ρ = ρ0 and the tangential momentum Jx = J0x are given on the boundary.
The momentum nodal values in the first cell are still denoted as jx and jy. From the previous given equilibrium (12), we
can write the bounce back boundary condition for diagonal edges f eq5 − f eq7 =

1
6 λ

(J0x + jy), f
eq
6 − f eq8 =

1
6 λ

(−J0x + jy). The
anti bounce back is unchanged: f eq2 + f eq4 =

4−α−2β

18 ρ0 for the particles coming from the bottom, as illustrated in Fig. 17. If
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Fig. 17. Mixed bounce back and anti bounce back boundary condition to enforce density and tangential velocity on the boundary.

x ≡
(
x1, ∆x

2

)
is the notation for the first fluid node, the boundary condition on pressure and tangential velocity is finally

implemented in the D2Q9 algorithm with the relations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

f5(x, t + ∆t) = f ∗

7 (x, t) +
1
6 λ

[
J0x

(
x1 −

∆x
2

, t
)

+ jy(x, t)
]
,

f2(x, t + ∆t) = −f ∗

4 (x, t) +
4 − α − 2β

18
ρ0

(
x1, t

)
,

f6(x, t + ∆t) = f ∗

8 (x, t) +
1
6 λ

[
−J0x

(
x1 +

∆x
2

, t
)

+ jy(x, t)
]
.

(47)

• The asymptotic analysis of the condition (47) follows the general framework (16). The matrix U is still given by (17).
The interaction matrix T follows now the relation

T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1

6 0 −
1
6

1
6

1
6

5
6 −

1
6

0 0 1
6 0 −

1
6

1
6

1
6 −

1
6

5
6

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (48)

The matrix K of (19) is now equal to

K =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4−αse−2βsd
18 0 1−sq

3λ
se−1
18λ2

sx−1
2λ2

0 0 1−sq
3λ3

sd−1
9λ4

0 2−sq
3 0 0 0 0 1−sq

3λ2
0 0

λ(4−αse−2βsd)
18 0 1−sq

3
se−1
18λ

sx−1
2λ 0 0 1−sq

3λ2
sd−1
9λ3

λ2(−4−17αse+2βsd)
18 0 2λ(1−sq)

3
1+17se

18
1−sx
2 0 0 2(1−sq)

3λ
1−sd
9λ2

λ2(−4+αse+2βsd)
18 0 0 1−se

18
1+sx
2 0 0 0 1−sd

9λ2

0 λ(2−sq)
3 0 0 0 sx

1−sq
3λ 0 0

0 2λ2(1+sq)
3 0 0 0 0 1+2sq

3 0 0
λ3(−4+αse+2βsd)

9 0 λ2(1+2sq)
3

λ(1−se)
9 λ(1−sx) 0 0 1+2sq

3
2(1−sd)

9λ
λ4(−4+αse−7βsd)

9 0 λ3(1−sq)
3

λ2(1−se)
3 λ2(1−sx) 0 0 λ(1−sq)

3
2+7sd

9

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (49)

The matrix K is singular. Its kernel is of dimension 1. The null eigenvector of the matrix K is exactly κy introduced in
(32):

κy =
(
0, 0, 1, 0, 0, 0, 0, −λ2, 0

)t
.

• The associated compatibility relation for solving the linear system (33) is analogous to previous ones:

λ gρ − gjy = 0 . (50)

From the relation (47), the right hand side

ξ = ξ0 + ∆t ∂ξ + O(∆t2)
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Table 4
Anti bounce back boundary condition for linear Poiseuille flow. Numerical gradient of the
longitudinal pressure. The process is convergent with first order accuracy.
Mesh 20 × 40 40 × 80 80 × 160
∇p −1.06687 10−3

−1.03617 10−3
−1.01899 10−3

Relative error 6.69% 3.62% 1.90%

Table 5
Anti bounce back boundary condition for linear Poiseuille flow. Numerical position of the
boundary measured in cell units. The errors are reduced in a significative manner compared
with the one obtained with the pure anti bounce boundary condition (see Table 3).
Mesh 20 × 40 40 × 80 80 × 160
Center 4.56 10−3 2.40 10−3 1.33 10−3

Bottom 0.0165 0.0608 0.108

can be easily described:⎧⎪⎨⎪⎩
ξ0 =

(
0 , 0 ,

1
18

(−α − 2β + 4) ρ0 , 0 , 0 ,
1
6 λ

J0x , −
1
6 λ

J0x , 0 , 0
)t

∂ξ =

(
0 , 0 , 0 , 0 , 0 , −

1
12

∂xJ0x , −
1
12

∂xJ0x , 0 , 0
)t

.

At order zero, the compatibility relation (50) does not give any condition. At first order, the compatibility relation
reduces to a combination of the associated partial differential equations. In consequence, no hidden boundary condition
is introduced with this mixed bounce back and anti bounce back boundary condition. As designed by the boundary
conditions (47), the normal momentum jy is not defined on the boundary. Then all the results are defined up to a multiple
jy κy in the kernel of the matrix K . The moments in the first cell at order zero are specified in the following relation:

m0 =
(
ρ0, J0x , jy, α λ2 ρ0, 0, 0, −λ2 J0x , −λ2 jy, β λ4ρ0

)t
.

The boundary conditions ρ = ρ0 and Jx = J0x are satisfied at order zero for the density and tangential momentum. At
order one, the conserved moments ρ and jx in the first cell have been expanded at order one. Curiously, the relations
(41) obtained with the approach in Section 7 are again valid in this case:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ

(
x1,

∆x
2

)
= ρ0

(
x1

)
+

1
2

∆x ∂yρ
(
x1, 0

)
+

∆x
sx se sd (α + 2β − 4)

(
aρ ∂yρ

(
x1, 0

)
+ bρ ∂xJx

(
x1, 0

)
+ cρ ∂yJy

(
x1, 0

))
+ O(∆x2) ,

jx
(
x1,

∆x
2

)
= J0x

(
x1

)
+

1
2

∆x ∂yJx
(
x1, 0

)
+ O(∆x2) ,

with the coefficients aρ and bρ given by the relations (42).
• Numerical experiments for a linear Poiseuille flow
We have done the same numerical experiments than in Section 6 with a vertical linear Poiseuille flow. The pressure

field is now converging towards the imposed linear profile with a quasi first order accuracy, as described in Fig. 18 and
Table 4. We have observed the horizontal component of the velocity. A small discrepancy is present in the first layer (see
Fig. 19). Nevertheless, the maximum error is reduced by one order of magnitude compared to the previous anti bounce
back boundary scheme. In the center of the channel, the error is very low: typically 1.5 10−4 of relative error, that has to
be compared to a relative error of 10−4 with the previous pure anti bounce back. The profile of vertical velocity (Fig. 20)
is quasi perfect. The position of the numerical boundary, measured with the same technique of least squares, is presented
in Table 5. These results are still not perfect but can be considered of good quality.

9. Conclusion

In this contribution, we have presented the derivation of anti bounce back boundary condition in the fundamental case
of linear heat conduction and linear acoustics. We have recalled that using this type of boundary condition is now classical,
even in the extended version that allows taking into account curved boundaries. The asymptotic analysis confirms the
high quality of the anti bounce back boundary condition for implementing a Dirichlet condition for the heat equation. For
the linear fluid system, the anti bounce back boundary condition is designed for taking into account a pressure boundary
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Fig. 18. Mixed bounce back and anti bounce back boundary condition for linear Poiseuille flow. Pressure field for three meshes: the results are
numerically convergent.

Fig. 19. Mixed bounce back and anti bounce back boundary condition for linear Poiseuille flow. Horizontal velocity field for three meshes. The
maximum error is reduced by one order of magnitude compared to the anti bounce back boundary scheme.

Fig. 20. Mixed bounce back and anti bounce back boundary condition for linear Poiseuille flow. Vertical velocity field for three meshes. The parabolic
profile is recovered in the first cell.
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condition. The asymptotic analysis puts in evidence a differential hidden condition on the boundary. For a Poiseuille flow
this hidden condition induces serious discrepancies in the vicinity of the input and output. A variant mixing bounce back
and anti bounce back has been proposed in order to set in a mathematical rigorous way fluid conditions composed by
the datum of pressure and tangential velocity. A test case for Poiseuille flow is very encouraging.

In future works, the analysis of the pure anti bounce back for thermal problem will be extended up to order two.
The novel mixing boundary condition will be investigated more precisely theoretically and numerically, in particular
for unsteady acoustic problems. Moreover, the Taylor expansion method near the boundary needs to be generalized for
oblique and curved boundaries. Finally a more general boundary condition has to be conceived to reduce the defects at
first order and eliminate as far as possible the hidden boundary conditions.
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