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AbstratThe Lattie Boltzmann Equation is brie�y introdued using moments tolearly separate the propagation and ollision steps in the dynamis. Inorder to identify unknown parameters we introdue a ost funtion and adaptontrol theory to the Lattie Boltzmann Equation to get expressions for thederivatives of the ost funtion vs. parameters. This leads to an equivalentof the adjoint method with the de�nition of an adjoint Lattie Boltzmannequation. To verify the general expressions for the derivatives, we onsidertwo elementary situations : a linearized Poiseuille �ow and show that themethod an be used to optimize parameters, and a nonlinear situation inwhih a transverse shear wave is adveted by a mean uniform �ow. Weindiate in the onlusion how the method an be used for more realistisituations.1 Introdution
• In many situations involving �uid �ows, one uses a ombination of ex-perimental measurements and of numerial simulations in order to obtain agood knowledge of the �ow. Experiments an provide aurate data for someobservable quantities (e.g. pressure or loal veloity) but may not provide
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2 Mahdi Tekitek, Mah'med Bouzidi, François Dubois, Pierre Lallemandother information. Numerial tehniques may be used to ompute the miss-ing information but only upon detailed knowledge of parameters that maynot be readily available (like the visosity or the boundary onditions). Inorder to inrease the use of a ombination of high quality measurements andre�ned models, the notion of optimal model has been developped. The pa-rameters of the numerial model are hosen by minimizing the value of a ostfuntion that ompares the preditions of the model to known experimentalresults.
• This minimization an be simply obtained by a desent method. There-fore it requires the determination of the derivatives of the ost funtion withrespet to the unknown parameters. A general method to ompute thosederivatives is provided by ontrol theory and is used in many irumstanes.Here we adapt this general method to the modeling of �uid �ows by theLattie Boltzmann Equation (LBE).
• We shall brie�y reall the framework of moments that allows a very leardistintion of the two steps of LBE : propagation and ollisions. Then weadapt the derivation of ontrol theory to the ase of a disrete model in orderto get the Adjoint Lattie Boltzmann Model. We apply the adjoint modelto two simple situations (a steady state and a time dependent ase). In the�rst plae we onsider the linear LBE and apply it to Poiseuille �ow in a2-dimensional periodi hannel with a uniform body-fore. We then inludethe nonlinear terms in LBE and show how this modi�es the adjoint equation.As a simple appliation, we onsider a transverse shear wave adveted by auniform �ow.2 Diret model for Lattie Boltzmann Equation
• The lattie Boltzmann equation is a numerial method based on kinetitheory to simulate various hydrodynami systems. It uses elements omingfrom several origins: the lassial Boltzmann equation, the Broadwell mod-els [1, 2℄ with small number of veloities and more reently the lattie gasautomata [4℄.
• In ontrast to the ontinuous Boltzmann equation that deals with dis-tribution funtions φ(t, r, ξ), the LBE method deals with a small numberof funtions that an be interpreted as populations of �titious �partiles�.The dynamis of those �partiles� is suh that time, spae and momen-tum are disretized. They move at suessive disrete times from nodesto nodes of a regular lattie T = {rl, 1 ≤ l ≤ K}, omposed by K nodes sothat momentum spae ξ is disretized into a small set of disrete veloities
{eα|α = 0, 1, . . . , b}. The unknown is the distribution fα = fα(rl, t) whihis funtion of veloity eα at loation rl and at time t. The lattie Boltzmann



Adjoint Lattie Boltzmann Equation for Parameter Identi�ation 3equations are written as:(1) fα(rl + eα, t + 1) = fα(rl, t) + Ωα(f),The term Ωα(f) models the ollisions. Marosopi quantities are obtainedby taking veloity moments of f as follows:
ρ(rl, t) =

α=b∑

α=0

fα(rl, t),(2)
ρu(rl, t) =

α=b∑

α=0

eαfα(rl, t),(3)
e(rl, t) =

α=b∑

α=0

e2
αfα(rl, t),(4)

where ρ is the density (mass), u is the veloity and e is the energy. Theywill be used later.
• From here, for simpliity we onsider the partiular two-dimensional LBEmodel: the nine veloity model without thermal e�ets [7℄. In this model,
K = NxNy and T = {rl ≡ xi,j ; i = 1, 2, . . . , Nx ; j = 1, 2, . . . , Ny} is asquare lattie, and there are nine disrete veloities (i.e., b = 8) desribedin �gure 1 and algebraially given by:

eα =





(0, 0), α = 0,

(cos((α − 1)
π

2
), sin((α − 1)

π

2
)), α = 1, . . . , 4,

(cos((2α − 9)
π

4
), sin((2α − 9)

π

4
)), α = 5, . . . , 8.

(5)
The equation (1) desribes the evolution of the partile in one time inre-ment. So in eah inrement there are two fundamental steps: advetion andollision. Now we will desribe these two steps.
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4 87Figure 1. The veloities for the 9-bit lattie LBE model on a square lattie.2.1 Advetion step
• In this step the �partiles� move from a lattie node xi,j to either itself(with the veloity e0 = 0), one of the four nearest neighbours (with theveloity eα, α = 1, . . . , 4), or one of the four next-nearest neighbours (withthe veloity eα, α = 5, . . . , 8). This step is exat and global in spae, sineit's the solution of the transport equation given by:

∂f

∂t
+ ξ · ∇f = 0.We will represent this step by the operator A de�ned by:(6) A : Vf → Vf

F 7→ A(F),where Vf ≡ R
9×K and F = (fα(xi,j, t))(0≤α≤8,1≤i≤Nx,1≤j≤Ny) is a vetor in

Vf . Boundary onditions are taken into aount through modi�ation of theoperator A. Here we shall take either periodi boundary onditions on theouter edges of the �uid domain or the simple �boune-bak� ondition on�uid-solid boundaries.2.2 Collision step
• This step onsists in the redistribution of the distribution {fα} at eahnode xi,j, and it is modeled by the operator Ωα(f) in (1). The lattie Boltz-mann equation (1) an be rewritten in vetor form:(7) f(xi,j + eα, t + 1) = f(xi,j, t) + Ω(f),where f = (f0, f1, . . . , f8)

T and Ω(f) = (Ω0(f), Ω1(f), . . . , Ω8(f))
T . We re-mark that F = ((xi,j, t))(1≤i≤Nx,1≤j≤Ny)

∈ Vf .



Adjoint Lattie Boltzmann Equation for Parameter Identi�ation 5Remark 1 If we take the disrete veloities, {eα|α = 0, 1, . . . , 8}, with or-responding distribution funtions, {fα|α = 0, 1, . . . , 8}, then we an on-strut a vetor spae V = R
9 based upon the disrete veloity set. So

f = (f0, f1, . . . , f8)
T is a vetor in V. The ollision operator ats loallyin spae V. It will be expressed with the help of the moments.

• To desribe this operator for eah lattie node, we an onstrut [5℄ a
9-dimensional vetor spae M = R

9 based upon the di�erent moments of
{fα}. Suh that(8) M : V → M

f 7→ M(f) = M.f = m,where the orthogonal matrix M is expliitly given by:
(9) M =




1 1 1 1 1 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
−4 −1 −1 −1 −1 2 2 2 2
4 −2 −2 −2 −2 1 1 1 1
0 −2 0 2 0 1 −1 −1 1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1


and m = (ρ, jx, jy, e, ǫ, qx, qy, pxx, pxy)

T , where the physial interpretation ofthe 9 moments are respetively: density, x-momentum, y-momentum, energy,energy square, x-heat �ux, y-heat �ux, diagonal stress and o�-diagonal stress.Thus, with the help of the linear transformation M, we an desribe theollision operator in moment spae M.
• In the athermal model the only onserved quantities are density ρ andlinear momentum j = (jx, jy). For the other quantities (non-onserved mo-ments) [3℄, we assume that they relax towards equilibrium values that arenonlinear funtion of the onserved quantities. Due to symmetry arguments,the relaxation equations are given by:

e∗ = e − s2

[
e −

(
α2ρ + γ2(j

2
x + j2

y)
)]

,(10)
ǫ∗ = ǫ − s3

[
ǫ −

(
α3ρ + γ4(j

2
x + j2

y)
)]

,(11)
q∗x = qx − s5 [qx − (c1jx)] ,(12)
q∗y = qy − s5 [qy − (c1jy)] ,(13)

p∗xx = pxx − s8

[
pxx −

(
γ1(j

2
x − j2

y)
)]

,(14)
p∗xy = pxy − s8 [pxy − (γ3jxjy)] ,(15)



6 Mahdi Tekitek, Mah'med Bouzidi, François Dubois, Pierre Lallemandwhere the quantities with and without supersript ∗ are post-ollision andpre-ollision values, respetively.Remark 2 The relaxation parameters si, i = 2, 3, 8 are diretly linked tothe transport oe�ients. For the seven other adjustable parameters α2, α3,
c1, γ1, γ2, γ3, γ4, we will �x them as follows:(16) γ1 = γ3 = 1, γ2 = 3, c1 = −1, α2 = −2, α3 = 1 and γ4 = −3.This hoie of the parameters γ1, γ2, γ3, c1 yields Galilean invariane andisotropy. The parameter α2 is linked to the speed of sound. Two otherparameters α3 and γ4 are �xed to improve stability. See [7℄ for the ompletederivation of these properties. The relaxation rates s3 and s5 play no rolefor the hydrodynami behaviour of the model, however they are relevant forstability [7℄ and for the auray of the boundary onditions [11, 12℄.
• Now we an ontrat the ollision operator in moment spae, with thehelp of (1.10) to (15), as follows:(17) C : M → M

m 7→ m∗ = C(m).Thus, we have the ollision operator in V, for an initial distribution f , givenby:
Ω̃(f) = f + Ω(f) = M−1.C (M.f) .So, now we de�ne the global ollision operator C like the advetion operatorby:(18) C : Vf → Vf

F 7→ C(F),where C(F) =
(
Ω̃(f)(x1,1, t), Ω̃(f)(x1,2, t), . . . , Ω̃(f)(xi,j, t), . . . , Ω̃(f)(xNx,Ny

, t)
)T .2.3 Diret model

• The net result of the advetion and the ollision steps is that if Fini isthe initial state of the system, it evolves aording to(19) 



F0 = Fini,

Fk+1 = A ◦ C
(
Fk
)
≡ Φ

(
Fk
)
, k ∈ 0, 1, . . .N − 1.



Adjoint Lattie Boltzmann Equation for Parameter Identi�ation 7where Fk is the disrete state for partile distribution in spae at time k.So Fk = (fα(xi,j, k))(0≤α≤8,1≤i≤Nx,1≤j≤Ny). We shall all equation (19) thediret model whih has been shown [6℄ to behave like the solutions of those ofthe Navier-Stokes equations in situations where the �ow evolves su�ientlyslowly in spae and time.3 Adjoint method for identifying parameters
• In this setion we are interested in identifying some parameters of thelattie Boltzmann sheme, for instane the relaxation parameters s5 and
s8 by omparing the preditions of the diret model to those derived fromsome other tehnique (analyti or numerial solution of the Navier-Stokesequations or from experiments). So, we will use inverse modeling to estimatethese parameters. This will be done using the adjoint method, whih isdiretly derived from the optimal ontrol theory [8℄.3.1 General disrete theory for adjoint method
• To introdue the method, let's onsider a steady state laminar Poiseuille�ow, with kinemati veloity ν, between two plates parallel to Ox, separatedby height h, with periodi boundary ondition along the �ow and a uniformbody fore (δp) to drive the �ow. We know an analyti solution at disretetime k

u(xi,j, k) = (u(xi,j, k), v(xi,j, k)) =

(
hδp

2ν
yj

(
1 −

yj

h

)
, 0

)
,(20)

where xi,j = (xi, yj) for 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny.We onsider the state of the LBE solution at a long enough time that ithas reahed steady state omputed for the same geometry as the analytiase but with unknown relaxation oe�ient λ = (s5, s8). We note that weneglet any spae dependene of the density ρ. So that we will identify fromhere veloity with momentum ρu evaluated by (3). Sine we take ρ ≡ 1.
• We wish to estimate an optimal λ in the sense that it will orrespond tothe minimum of a ost funtion. We de�ne the ost-funtion J(λ) in a �natu-ral� way: it is the mean-square di�erene between the veloity ũk(λ,xi,j, k),(21) ũ(λ,xi,j, k) = (ũ(λ,xi,j, k), ṽ(λ,xi,j, k)) ,at disrete time kδt, alulated by LBE (21) and the exat veloity u whihis the analyti solution (20). The notation ũ(λ,xi,j, k) orresponds to thefat that the disrete LBE solution ũ depends also on some parameters λ ofthe model.
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• We onsider the following ost-funtion J(λ), where the �rst term (withoe�ient a) deals with a vision of the error at the �nal time and the seondterm (with oe�ient b) is a disrete time integration of the error.





J(λ) =
a

2

Nx∑

i=1

Ny∑

j=1

|ũ(λ,xi,j, N) − u(xi,j, N)|2+

b

2

N−1∑

k=0

Nx∑

i=1

Ny∑

j=1

|ũ(λ,xi,j, k) − u(xi,j, k)|2.

(22)
Note that k = kδt (δt = 1) is the observation time, N = Nδt is the timewhen the steady state is reahed, λ = (s5, s8) ∈ R

2, and a, b are two realadjustable onstants. In the ost-funtion (22), the term assoiated with ais used when we simulate a steady state problem. So for the �rst ase of thePoiseuille �ow, it is obvious that the exat solution (20) is stationary (i.e.,
u(xi,j, k) = u(xi,j)). We will take a = 1, b = 0 for the ost funtion. Theterm with b is used for the unsteady simulation (e.g. see nonlinear ase).The disrete time N = Nδt(δt = 1) is the �nal time where we evaluate thesolution. So in this ase we will take a = 0, b = 1.
• Now the assimilation proess onsists in minimizing the ost-funtion J .We deide to use a gradient method:

λn+1 = λn + ω̃∇λJ
n(λ), ω̃ > 0.So we need to estimate the gradient of the ost-funtion∇λJ(λ). The adjointmethod is used to evaluate the gradient of the ost-funtion ∇λJ .

• First, we rewrite the ost-funtion:(23) J(λ) =
a

2
Ψ(FN , N, λ) +

b

2

N−1∑

k=0

Ψ(Fk, k, λ),where Fk ∈ Vf is the solution of LBE and
Ψ(Fk, k, λ) =

Nx∑

i=1

Ny∑

j=1

|ũ(λ,xi,j, k) − u(xi,j, k)|2is the global error at time step k measured with least squares.Proposition 1 With the ost-funtion given by the relation (22), the gra-dient ∇λJ an be evaluated as follows:(24) ∇λJ = −
N−1∑

k=0

Pk+1∂Φ

∂λ
,



Adjoint Lattie Boltzmann Equation for Parameter Identi�ation 9where Pk are a set of dual parameters. The parameters Pk belong to thespae Vf introdued in paragraph 2.1 and are determined by the followingbakward lattie Boltzmann equation alled Adjoint Lattie Boltzmann Equa-tion (ALBE):(25) 



PN = −
a

2

∂Ψ

∂F
,

Pk = (
∂Φ

∂F
)TPk+1 −

b

2

∂Ψ

∂F
for k = N − 1, N − 2, . . . , 1.Remark 3 The Pk for k = N − 1, N − 2, . . . , 1 desribe an inverse dy-namis. So Pk is a vetor de�ned by (pα(xi,j, k))(0≤α≤8,1≤i≤Nx,1≤j≤Ny) where

pα(xi,j, k) is the �dual distribution� funtion of veloity eα at loation xi,jand at disrete time k.Proof of Proposition 1.As Fk is the solution of the diret state (19), we an see this dynamis as aonstraint:(26) 



F0 = 0,

Fk+1 − Φ
(
Fk
)

= 0, k = 0, 1, . . .N − 1.And now we an onsider the onstrained minimization problem of �ndingthe minimum of J given by (23) under the onstraint (26).
• A lassial way to do this is to give a Lagrangian formulation of thisproblem. So we de�ne a Lagrangian as follows:(27) L = J +

N−1∑

k=0

Pk+1.
(
Fk+1 − Φ

(
Fk
))

,where the dot . denotes the salar produt in Vf , and Pk ∈ Vf is a Lagrangemultiplier related to the onstraint (26).The di�erentiation of L, reads:(28) dL = dJ +

N−1∑

k=0

Pk+1

(
dFk+1 −

∂Φ

∂F
dFk −

∂Φ

∂λ
dλ

)
.We note here that the ost-funtion J doesn't depend diretly on λ, so wehave:(29) dJ =

a

2

∂Ψ

∂F
dFN +

b

2

N−1∑

k=0

∂Ψ

∂F
dFk.
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N−1∑

k=0

Pk+1

(
dFk+1 −

∂Φ

∂F
dFk

)
=

PNdFN − P1 ∂Φ

∂F
dF0+

N−1∑

k=1

(
Pk −Pk+1 ∂Φ

∂F

)
dFk.

(30)
Now using (28), (29) and (30), we �nd:





dL =
a

2

∂Ψ

∂F
dFN +

b

2

k=N−1∑

k=1

∂Ψ

∂F
dFk + PNdFN −P1 ∂Φ

∂F
dF0

+

N−1∑

k=1

(
Pk − Pk+1 ∂Φ

∂F

)
dFk −

N−1∑

k=0

Pk+1∂Φ

∂λ
dλ.

(31)
Sine we don't hange the initial ondition of the diret model (19), wehoose

dF0 = 0.Due to (27), we notie that dL ≡ dJ = ∇λJ.dλ when onstraint (26) holds.When we hoose the adjoint dynamis, i.e., Pk be equal to the solution ofthe bakward LB equation (25), we anel all the terms in fator of dFk inthe expression (31) of dL, so that the expression (24) of ∇λJ is established.We proeed now to ompute the adjoint state and the gradient of J .3.2 Adjoint Lattie Boltzmann Equation for linear ase
• Now, we desribe the adjoint model (25), whih allows us to ompute allthe Pk. In a �rst ase we onsider the steady state laminar Poiseuille �owwhih is introdued in paragraph 3.1. This ase is a natural way to test thismethod, sine laminar Poiseuille �ow is also solution of the Stokes problemwhih is linear. So the oe�ients γ1 = γ2 = γ3 = γ4 = 0 and the diretalgorithm (19) is simpler (i.e., the operator Φ is linear). Sine we have asteady problem we hoose a = 1 and b = 0. So we have an adjoint dynamis
Pk = (

∂Φ

∂F
)TPk+1, with initial ondition depending on error, where (

∂Φ

∂F
)Tis a linear operator de�ned by:(32) (

∂Φ

∂F
)T : Vf → Vf

P 7→ CTATP .
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• This operator (like the operator Φ of the diret model) is omposed bytwo fundamental steps:(i) transposed advetionAT : whih models the transport with �bakward�disrete veloity.(i) Transposed ollision CT : as in the diret model, this operator is loalin spae.So we also need to introdue the following nine �dual moments� of p(xi,j, k) =
(pα(xi,j, k))0≤α≤8 with the help of the matrix M (9):

m = (m0, m1, . . . , m8) = (M−1)T .p.Sine there are three onserved moments in the diret model, there are alsothree onserved quantities in the adjoint model given by:
m0 + 2m3 − m4 salar invariant like �mass�ρ(

m1 + m5

m2 + m6

) vetor invariant like veloityThe matrix of transposed ollision CT in the spae of moments is:
CT =




1 0 0 −2s2 s3 0 0 0 0
0 1 0 0 0 −s5 0 0 0
0 0 1 0 0 0 −s5 0 0
0 0 0 1 − s2 0 0 0 0 0
0 0 0 0 1 − s3 0 0 0 0
0 0 0 0 0 1 − s5 0 0 0
0 0 0 0 0 0 1 − s5 0 0
0 0 0 0 0 0 0 1 − s8 0
0 0 0 0 0 0 0 0 1 − s8


The transposed ollision is de�ned by: CTP = P∗ where

P = (p(xi,j, k))(1≤i≤Nx,1≤j≤Ny) ∈ Vf , P∗ = (p∗(xi,j, k))(1≤i≤Nx,1≤j≤Ny) ∈ Vf ,where p∗(xi,j, k) = (M)T .CT .(M−1)T .p(xi,j, k).3.3 ALBE algorithm for the nonlinear ase
• When we model the Navier-Stokes equation, the diret algorithm (19) isnonlinear. So γi 6= 0, i = 1, 2, 3, 4, and the ollision step is nonlinear. In thisase the adjoint algorithm (25) is still linear sine Pk = (

∂Φ

∂F
)TPk+1, where

(
∂Φ

∂F
)T is a linear operator. As in the linear ase (

∂Φ

∂F
)T is de�ned by (32)and it is omposed by two steps: transposed advetion AT and transposedollision CT . Only the transposed ollision CT is di�erent from the linearase. To desribe this step let's use the supersript d for quantities related



12 Mahdi Tekitek, Mah'med Bouzidi, François Dubois, Pierre Lallemandto the diret problem and among them V d(xi,j, t) the veloity �eld. So thetransposed matrix ollision CT is expressed as follows:
CT =




1 0 0 −2s2 s3 0 0 0 0
0 1 0 2γ1s2V

d
x 2γ3s3V

d
x −s5 0 γ3s8V

d
y 2γ1s8V

d
x

0 0 1 2γ1s2V
d
y 2γ3s3V

d
y 0 −s5 γ3s8V

d
x −2γ1s8V

d
y

0 0 0 1 − s2 0 0 0 0 0
0 0 0 0 1 − s3 0 0 0 0
0 0 0 0 0 1 − s5 0 0 0
0 0 0 0 0 0 1 − s5 0 0
0 0 0 0 0 0 0 1 − s8 0
0 0 0 0 0 0 0 0 1 − s8


Compared to the linear ase, there are just a few additional o�-diagonalterms and these terms an be omputed from the information in the stored

F �eld of the diret problem.4 First numerial experiments for a Poiseuille �ow4.1 Case of a one salar parameter problem
• Our �rst simple ase onsists in identifying a single parameter s8 (i.e.,the visosity ν =

1

3
(
1

s8
−

1

2
)) and the parameter s5 is supposed to be known.So the unknown parameter λ is equal to s8 (i.e., λ = s8 ∈ R). In this ase,the disrete exat gradient is given by the help of (31), (32) and (25) asfollows:(33) ∇λJ = J ′(s8) = dL = −

N−1∑

k=0

Pk+1 ∂Φ

∂s8
.The omputation of J ′(s8) requires one integration of the diret model andone integration of the adjoint model. Thus, we may try and apply a desentmethod in order to �nd the solution of the minimization problem.Before making use of the adjoint method, it is neessary to hek that wealulate exatly the gradient of the ost-funtion J . For that purpose weonsider a simple determination of the gradient for �nite di�erene quotient.

• Di�erene quotient of the ost funtion J :(34) J ′
dq(s8) = lim

ǫ→0

J(s8 + ǫ) − J(s8 − ǫ)

2ǫ
.So we an validate the adjoint model if and only if the two quantities (33)and (34) are equal. We have gradient J with adjoint method J ′

inv(s8 =
0.3) = −4.87278648× 10−7.
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ǫ Relative error ǫ Relative error

10−2 4.89×10−3 10−9 3.20 ×10−9

10−3 4.84×10−5 10−10 4.56 ×10−8

10−4 4.83 ×10−7 10−11 1.00 ×10−7

10−5 3.85 ×10−9 10−12 3.63 ×10−6

10−6 9.44×10−10 10−13 1.99×10−5

10−7 9.19×10−10 10−14 2.10×10−4

10−8 1.30×10−9 10−15 2.23×10−3Table 1. Comparison of the proposed determination of gradient with asimple �nite di�erene quotient. Relative error |J ′
df (s8)−J ′

inv(s8)|

J ′
inv(s8)

for s8 = 0.3and optimal s8 = 0.8.
• Table 1 shows that the gradient is well alulated, so for ǫ = 10−6 wehave the same quantity for two gradients with a 10−8 relative auray.Remark 4 Figure 2 shows that for ǫ ≤ 10−10 we have mahine preisionerrors and for ǫ ≥ 10−3 we have onvergene errors.

−14  −10  −7  −4  −1
−4.87299

−4.8729

−4.8728

−4.8727

−4.8726

−4.87256

−4.87299

−4.8729

−4.8728

−4.8727

−4.8726

−4.87256

Figure 2. Di�erene quotient of the ost funtion J vs. ln(
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ǫ
).
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Figure 3. Pro�les of gradient J ′(s8) vs. s8 alulated by two methods,
J ′(s8) with adjoint method (+) and with di�erene quotient of J (×).Optimal s8 = 1.2

• In �gure 3, we show that the adjoint method is able to alulate exatlythe gradient of ost-funtion. Now, we try to identify the parameter s8 by adesent method with a �xed step:
sn+1
8 = sn

8 + ω̃J ′(s8)
n, ω̃ > 0.Figure 4 shows the onvergene of algorithm to the optimal parameter s∗8.In this ase the �rst guess is s8 = 0.2 and optimal one s∗8 = 0.8.
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Figure 4. Log of the error (|s8 − s∗8|) vs. iteration n.4.2 Case of two parameters
• In the seond ase, the two parameters s8 and s5 are unknown (i.e.,
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λ = (s5, s8)). So we use the adjoint method to evaluate the disrete gradient
∇λJ . So in this ase the gradient is given by the help of (31), (32) and (25)as follows:

∇λJ = ∇J(s5, s8) = −
N−1∑

k=0

Pk+1∂Φ

∂λ
=

(
−

N−1∑

k=0

Pk+1 ∂Φ

∂s5
,−

N−1∑

k=0

Pk+1 ∂Φ

∂s8

)
.We use a desent method with a variable step

λn+1 = λn + ω̃n∇λJ
n(λ), ω̃n > 0,where ω̃n are alulated by a standard line searh [9]. Figure 5 shows the on-vergene of algorithm to the optimal parameters λ∗ = (s∗5, s

∗
8) = (1.0, 0.8).The �rst guess is (s5, s8) = (1.2, 1.2). We �nd that |∇s8

J | ≫ |∇s5
J | asexpeted, sine it is known that s8 is related to the visosity whereas s5 hasonly subtle e�ets on the auray of the boundary onditions [11, 12℄.
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Figure 5. Log of the error (|s8 − s∗8|) vs. iteration n.5 ALBE method for a Navier-Stokes �ow
• We shall onsider a simple ase, that of a �ow arising from the super-position of a uniform �ow with speed {V, 0} and a transverse shear wave ina domain with periodi boundary onditions, so that if Nx is the numberof lattie points along Ox, one expets to �nd a time dependent solution,assuming v ≪ V ,

vx = V,(35)
vy = v cos(k(x − V t) + φ) exp(−νk2t).(36)where the wave vetor k is of the form k = 2mπ/Nx (m integer) and φ somephase fator.
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• Now we will suppose that γ1 = γ3 = γ2

3 = c and γ4 = 3d. We haveintrodued two unknown parameters c and d (i.e., λ = (c, d)) in the expres-sion (16) of γi, i = 1, 2, 3, 4, having in mind the use of the adjoint methodto �nd their values in order to get a model optimally hosen with respetto a required solution. One we have solved the adjoint problem, we andetermine the derivatives of the ost funtion, using expressions (24).
• We have tested the ability of the adjoint method to determine c and dusing the partiular ost funtion with a = 0 and b = 1 in Equ. 22, whih isappropriate for a time dependent problem. We have found that the deriva-tive of the ost funtion with respet to the parameter d is very small (andprobably insigni�ant due to rounding errors in the numerial simulations).This is expeted as the term depending upon d does not show up in theChapman-Enskog analysis [5℄ of the problem. It is taken into onsidera-tion for the simple reason that in the ordinary BGK-LBE model [10℄, theequilibrium distributions lead to suh a term.
• The derivative of the ost funtion with respet to c obtained by theadjoint method is lose to that determined by �nite di�erene as was thease above for the parameter s8 diretly linked to the visosity. We showin �gure 6 the onvergene of the error funtion with iteration number (noe�ort has been made to aelerate onvergene).
• Note that for one ase the error levels at a signi�ant value (dashed-dotted line in Figure 6. That ase orresponds to using as the expressiongiven above for the �target funtion� and using as initial state F0 the distri-bution funtion omputed to seond order in Chapman-Enskog development.The ase that leads to muh better onvergene (solid line in Figure 6 uses as�target funtion� the veloity of a LBE model in whih c = d = 1. This showsthat the initial onditions used in the �rst ase are not satisfatory and thatthey do not lead preisely to the simple analyti expressions given above.This result ould be used to try and determine better initial onditions thatlead to a small residual error.
• Note more generally that the identi�ation proedure proposed in thispaper will not give information on other soures of error (quality of the targetor in the numerial model).
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Figure 6. Log of the ost-funtion J(λ) vs iteration.
6 Conlusion
• We have onsidered the problem of parameter identi�ation for the LBEmodel in omputational �uid dynamis. We have used a gradient methodassoiated with the adjoint methodology applied for disrete time. We haveompared this approah with a �nite di�erene methodology and have testedour sheme for two di�erent on�gurations: a simple linear Poiseuille �owand a more realisti nonlinear model. We have derived the general adjointmodel (ALBE). We note that this algorithm is as easy to parallelize as thestandard LBE model.
• Work is under way to test the ability of the proposed method to deter-mine a large number (p) of unknown parameters. In that ase for eah set ofunknown parameters for whih the gradients are required, one needs one di-ret and one bakward omputation instead of at least p diret omputationsusing the simple �nite quotient determination.
• The extension for future work ould be the following: determination ofthe numerial sheme for ALBE model in ase of urved boundaries, iden-ti�ation of unknown �ow parameters at the boundary or identi�ation ofloal visosity for turbulent �ows. The extension to three dimensional �owsis straightforward onerning the methodology but the di�ulty will be inthe larger amount of data to manage.
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