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Abstra
tThe Latti
e Boltzmann Equation is brie�y introdu
ed using moments to
learly separate the propagation and 
ollision steps in the dynami
s. Inorder to identify unknown parameters we introdu
e a 
ost fun
tion and adapt
ontrol theory to the Latti
e Boltzmann Equation to get expressions for thederivatives of the 
ost fun
tion vs. parameters. This leads to an equivalentof the adjoint method with the de�nition of an adjoint Latti
e Boltzmannequation. To verify the general expressions for the derivatives, we 
onsidertwo elementary situations : a linearized Poiseuille �ow and show that themethod 
an be used to optimize parameters, and a nonlinear situation inwhi
h a transverse shear wave is adve
ted by a mean uniform �ow. Weindi
ate in the 
on
lusion how the method 
an be used for more realisti
situations.1 Introdu
tion
• In many situations involving �uid �ows, one uses a 
ombination of ex-perimental measurements and of numeri
al simulations in order to obtain agood knowledge of the �ow. Experiments 
an provide a

urate data for someobservable quantities (e.g. pressure or lo
al velo
ity) but may not provide
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2 Mahdi Tekitek, Mah'med Bouzidi, François Dubois, Pierre Lallemandother information. Numeri
al te
hniques may be used to 
ompute the miss-ing information but only upon detailed knowledge of parameters that maynot be readily available (like the vis
osity or the boundary 
onditions). Inorder to in
rease the use of a 
ombination of high quality measurements andre�ned models, the notion of optimal model has been developped. The pa-rameters of the numeri
al model are 
hosen by minimizing the value of a 
ostfun
tion that 
ompares the predi
tions of the model to known experimentalresults.
• This minimization 
an be simply obtained by a des
ent method. There-fore it requires the determination of the derivatives of the 
ost fun
tion withrespe
t to the unknown parameters. A general method to 
ompute thosederivatives is provided by 
ontrol theory and is used in many 
ir
umstan
es.Here we adapt this general method to the modeling of �uid �ows by theLatti
e Boltzmann Equation (LBE).
• We shall brie�y re
all the framework of moments that allows a very 
leardistin
tion of the two steps of LBE : propagation and 
ollisions. Then weadapt the derivation of 
ontrol theory to the 
ase of a dis
rete model in orderto get the Adjoint Latti
e Boltzmann Model. We apply the adjoint modelto two simple situations (a steady state and a time dependent 
ase). In the�rst pla
e we 
onsider the linear LBE and apply it to Poiseuille �ow in a2-dimensional periodi
 
hannel with a uniform body-for
e. We then in
ludethe nonlinear terms in LBE and show how this modi�es the adjoint equation.As a simple appli
ation, we 
onsider a transverse shear wave adve
ted by auniform �ow.2 Dire
t model for Latti
e Boltzmann Equation
• The latti
e Boltzmann equation is a numeri
al method based on kineti
theory to simulate various hydrodynami
 systems. It uses elements 
omingfrom several origins: the 
lassi
al Boltzmann equation, the Broadwell mod-els [1, 2℄ with small number of velo
ities and more re
ently the latti
e gasautomata [4℄.
• In 
ontrast to the 
ontinuous Boltzmann equation that deals with dis-tribution fun
tions φ(t, r, ξ), the LBE method deals with a small numberof fun
tions that 
an be interpreted as populations of �
titious �parti
les�.The dynami
s of those �parti
les� is su
h that time, spa
e and momen-tum are dis
retized. They move at su

essive dis
rete times from nodesto nodes of a regular latti
e T = {rl, 1 ≤ l ≤ K}, 
omposed by K nodes sothat momentum spa
e ξ is dis
retized into a small set of dis
rete velo
ities
{eα|α = 0, 1, . . . , b}. The unknown is the distribution fα = fα(rl, t) whi
his fun
tion of velo
ity eα at lo
ation rl and at time t. The latti
e Boltzmann



Adjoint Latti
e Boltzmann Equation for Parameter Identi�
ation 3equations are written as:(1) fα(rl + eα, t + 1) = fα(rl, t) + Ωα(f),The term Ωα(f) models the 
ollisions. Ma
ros
opi
 quantities are obtainedby taking velo
ity moments of f as follows:
ρ(rl, t) =

α=b∑

α=0

fα(rl, t),(2)
ρu(rl, t) =

α=b∑

α=0

eαfα(rl, t),(3)
e(rl, t) =

α=b∑

α=0

e2
αfα(rl, t),(4)

where ρ is the density (mass), u is the velo
ity and e is the energy. Theywill be used later.
• From here, for simpli
ity we 
onsider the parti
ular two-dimensional LBEmodel: the nine velo
ity model without thermal e�e
ts [7℄. In this model,
K = NxNy and T = {rl ≡ xi,j ; i = 1, 2, . . . , Nx ; j = 1, 2, . . . , Ny} is asquare latti
e, and there are nine dis
rete velo
ities (i.e., b = 8) des
ribedin �gure 1 and algebrai
ally given by:

eα =





(0, 0), α = 0,

(cos((α − 1)
π

2
), sin((α − 1)

π

2
)), α = 1, . . . , 4,

(cos((2α − 9)
π

4
), sin((2α − 9)

π

4
)), α = 5, . . . , 8.

(5)
The equation (1) des
ribes the evolution of the parti
le in one time in
re-ment. So in ea
h in
rement there are two fundamental steps: adve
tion and
ollision. Now we will des
ribe these two steps.
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4 87Figure 1. The velo
ities for the 9-bit latti
e LBE model on a square latti
e.2.1 Adve
tion step
• In this step the �parti
les� move from a latti
e node xi,j to either itself(with the velo
ity e0 = 0), one of the four nearest neighbours (with thevelo
ity eα, α = 1, . . . , 4), or one of the four next-nearest neighbours (withthe velo
ity eα, α = 5, . . . , 8). This step is exa
t and global in spa
e, sin
eit's the solution of the transport equation given by:

∂f

∂t
+ ξ · ∇f = 0.We will represent this step by the operator A de�ned by:(6) A : Vf → Vf

F 7→ A(F),where Vf ≡ R
9×K and F = (fα(xi,j, t))(0≤α≤8,1≤i≤Nx,1≤j≤Ny) is a ve
tor in

Vf . Boundary 
onditions are taken into a

ount through modi�
ation of theoperator A. Here we shall take either periodi
 boundary 
onditions on theouter edges of the �uid domain or the simple �boun
e-ba
k� 
ondition on�uid-solid boundaries.2.2 Collision step
• This step 
onsists in the redistribution of the distribution {fα} at ea
hnode xi,j, and it is modeled by the operator Ωα(f) in (1). The latti
e Boltz-mann equation (1) 
an be rewritten in ve
tor form:(7) f(xi,j + eα, t + 1) = f(xi,j, t) + Ω(f),where f = (f0, f1, . . . , f8)

T and Ω(f) = (Ω0(f), Ω1(f), . . . , Ω8(f))
T . We re-mark that F = ((xi,j, t))(1≤i≤Nx,1≤j≤Ny)

∈ Vf .
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e Boltzmann Equation for Parameter Identi�
ation 5Remark 1 If we take the dis
rete velo
ities, {eα|α = 0, 1, . . . , 8}, with 
or-responding distribution fun
tions, {fα|α = 0, 1, . . . , 8}, then we 
an 
on-stru
t a ve
tor spa
e V = R
9 based upon the dis
rete velo
ity set. So

f = (f0, f1, . . . , f8)
T is a ve
tor in V. The 
ollision operator a
ts lo
allyin spa
e V. It will be expressed with the help of the moments.

• To des
ribe this operator for ea
h latti
e node, we 
an 
onstru
t [5℄ a
9-dimensional ve
tor spa
e M = R

9 based upon the di�erent moments of
{fα}. Su
h that(8) M : V → M

f 7→ M(f) = M.f = m,where the orthogonal matrix M is expli
itly given by:
(9) M =




1 1 1 1 1 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
−4 −1 −1 −1 −1 2 2 2 2
4 −2 −2 −2 −2 1 1 1 1
0 −2 0 2 0 1 −1 −1 1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1


and m = (ρ, jx, jy, e, ǫ, qx, qy, pxx, pxy)

T , where the physi
al interpretation ofthe 9 moments are respe
tively: density, x-momentum, y-momentum, energy,energy square, x-heat �ux, y-heat �ux, diagonal stress and o�-diagonal stress.Thus, with the help of the linear transformation M, we 
an des
ribe the
ollision operator in moment spa
e M.
• In the athermal model the only 
onserved quantities are density ρ andlinear momentum j = (jx, jy). For the other quantities (non-
onserved mo-ments) [3℄, we assume that they relax towards equilibrium values that arenonlinear fun
tion of the 
onserved quantities. Due to symmetry arguments,the relaxation equations are given by:

e∗ = e − s2

[
e −

(
α2ρ + γ2(j

2
x + j2

y)
)]

,(10)
ǫ∗ = ǫ − s3

[
ǫ −

(
α3ρ + γ4(j

2
x + j2

y)
)]

,(11)
q∗x = qx − s5 [qx − (c1jx)] ,(12)
q∗y = qy − s5 [qy − (c1jy)] ,(13)

p∗xx = pxx − s8

[
pxx −

(
γ1(j

2
x − j2

y)
)]

,(14)
p∗xy = pxy − s8 [pxy − (γ3jxjy)] ,(15)



6 Mahdi Tekitek, Mah'med Bouzidi, François Dubois, Pierre Lallemandwhere the quantities with and without supers
ript ∗ are post-
ollision andpre-
ollision values, respe
tively.Remark 2 The relaxation parameters si, i = 2, 3, 8 are dire
tly linked tothe transport 
oe�
ients. For the seven other adjustable parameters α2, α3,
c1, γ1, γ2, γ3, γ4, we will �x them as follows:(16) γ1 = γ3 = 1, γ2 = 3, c1 = −1, α2 = −2, α3 = 1 and γ4 = −3.This 
hoi
e of the parameters γ1, γ2, γ3, c1 yields Galilean invarian
e andisotropy. The parameter α2 is linked to the speed of sound. Two otherparameters α3 and γ4 are �xed to improve stability. See [7℄ for the 
ompletederivation of these properties. The relaxation rates s3 and s5 play no rolefor the hydrodynami
 behaviour of the model, however they are relevant forstability [7℄ and for the a

ura
y of the boundary 
onditions [11, 12℄.
• Now we 
an 
ontra
t the 
ollision operator in moment spa
e, with thehelp of (1.10) to (15), as follows:(17) C : M → M

m 7→ m∗ = C(m).Thus, we have the 
ollision operator in V, for an initial distribution f , givenby:
Ω̃(f) = f + Ω(f) = M−1.C (M.f) .So, now we de�ne the global 
ollision operator C like the adve
tion operatorby:(18) C : Vf → Vf

F 7→ C(F),where C(F) =
(
Ω̃(f)(x1,1, t), Ω̃(f)(x1,2, t), . . . , Ω̃(f)(xi,j, t), . . . , Ω̃(f)(xNx,Ny

, t)
)T .2.3 Dire
t model

• The net result of the adve
tion and the 
ollision steps is that if Fini isthe initial state of the system, it evolves a

ording to(19) 



F0 = Fini,

Fk+1 = A ◦ C
(
Fk
)
≡ Φ

(
Fk
)
, k ∈ 0, 1, . . .N − 1.
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e Boltzmann Equation for Parameter Identi�
ation 7where Fk is the dis
rete state for parti
le distribution in spa
e at time k.So Fk = (fα(xi,j, k))(0≤α≤8,1≤i≤Nx,1≤j≤Ny). We shall 
all equation (19) thedire
t model whi
h has been shown [6℄ to behave like the solutions of those ofthe Navier-Stokes equations in situations where the �ow evolves su�
ientlyslowly in spa
e and time.3 Adjoint method for identifying parameters
• In this se
tion we are interested in identifying some parameters of thelatti
e Boltzmann s
heme, for instan
e the relaxation parameters s5 and
s8 by 
omparing the predi
tions of the dire
t model to those derived fromsome other te
hnique (analyti
 or numeri
al solution of the Navier-Stokesequations or from experiments). So, we will use inverse modeling to estimatethese parameters. This will be done using the adjoint method, whi
h isdire
tly derived from the optimal 
ontrol theory [8℄.3.1 General dis
rete theory for adjoint method
• To introdu
e the method, let's 
onsider a steady state laminar Poiseuille�ow, with kinemati
 velo
ity ν, between two plates parallel to Ox, separatedby height h, with periodi
 boundary 
ondition along the �ow and a uniformbody for
e (δp) to drive the �ow. We know an analyti
 solution at dis
retetime k

u(xi,j, k) = (u(xi,j, k), v(xi,j, k)) =

(
hδp

2ν
yj

(
1 −

yj

h

)
, 0

)
,(20)

where xi,j = (xi, yj) for 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny.We 
onsider the state of the LBE solution at a long enough time that ithas rea
hed steady state 
omputed for the same geometry as the analyti

ase but with unknown relaxation 
oe�
ient λ = (s5, s8). We note that wenegle
t any spa
e dependen
e of the density ρ. So that we will identify fromhere velo
ity with momentum ρu evaluated by (3). Sin
e we take ρ ≡ 1.
• We wish to estimate an optimal λ in the sense that it will 
orrespond tothe minimum of a 
ost fun
tion. We de�ne the 
ost-fun
tion J(λ) in a �natu-ral� way: it is the mean-square di�eren
e between the velo
ity ũk(λ,xi,j, k),(21) ũ(λ,xi,j, k) = (ũ(λ,xi,j, k), ṽ(λ,xi,j, k)) ,at dis
rete time kδt, 
al
ulated by LBE (21) and the exa
t velo
ity u whi
his the analyti
 solution (20). The notation ũ(λ,xi,j, k) 
orresponds to thefa
t that the dis
rete LBE solution ũ depends also on some parameters λ ofthe model.
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• We 
onsider the following 
ost-fun
tion J(λ), where the �rst term (with
oe�
ient a) deals with a vision of the error at the �nal time and the se
ondterm (with 
oe�
ient b) is a dis
rete time integration of the error.





J(λ) =
a

2

Nx∑

i=1

Ny∑

j=1

|ũ(λ,xi,j, N) − u(xi,j, N)|2+

b

2

N−1∑

k=0

Nx∑

i=1

Ny∑

j=1

|ũ(λ,xi,j, k) − u(xi,j, k)|2.

(22)
Note that k = kδt (δt = 1) is the observation time, N = Nδt is the timewhen the steady state is rea
hed, λ = (s5, s8) ∈ R

2, and a, b are two realadjustable 
onstants. In the 
ost-fun
tion (22), the term asso
iated with ais used when we simulate a steady state problem. So for the �rst 
ase of thePoiseuille �ow, it is obvious that the exa
t solution (20) is stationary (i.e.,
u(xi,j, k) = u(xi,j)). We will take a = 1, b = 0 for the 
ost fun
tion. Theterm with b is used for the unsteady simulation (e.g. see nonlinear 
ase).The dis
rete time N = Nδt(δt = 1) is the �nal time where we evaluate thesolution. So in this 
ase we will take a = 0, b = 1.
• Now the assimilation pro
ess 
onsists in minimizing the 
ost-fun
tion J .We de
ide to use a gradient method:

λn+1 = λn + ω̃∇λJ
n(λ), ω̃ > 0.So we need to estimate the gradient of the 
ost-fun
tion∇λJ(λ). The adjointmethod is used to evaluate the gradient of the 
ost-fun
tion ∇λJ .

• First, we rewrite the 
ost-fun
tion:(23) J(λ) =
a

2
Ψ(FN , N, λ) +

b

2

N−1∑

k=0

Ψ(Fk, k, λ),where Fk ∈ Vf is the solution of LBE and
Ψ(Fk, k, λ) =

Nx∑

i=1

Ny∑

j=1

|ũ(λ,xi,j, k) − u(xi,j, k)|2is the global error at time step k measured with least squares.Proposition 1 With the 
ost-fun
tion given by the relation (22), the gra-dient ∇λJ 
an be evaluated as follows:(24) ∇λJ = −
N−1∑

k=0

Pk+1∂Φ

∂λ
,



Adjoint Latti
e Boltzmann Equation for Parameter Identi�
ation 9where Pk are a set of dual parameters. The parameters Pk belong to thespa
e Vf introdu
ed in paragraph 2.1 and are determined by the followingba
kward latti
e Boltzmann equation 
alled Adjoint Latti
e Boltzmann Equa-tion (ALBE):(25) 



PN = −
a

2

∂Ψ

∂F
,

Pk = (
∂Φ

∂F
)TPk+1 −

b

2

∂Ψ

∂F
for k = N − 1, N − 2, . . . , 1.Remark 3 The Pk for k = N − 1, N − 2, . . . , 1 des
ribe an inverse dy-nami
s. So Pk is a ve
tor de�ned by (pα(xi,j, k))(0≤α≤8,1≤i≤Nx,1≤j≤Ny) where

pα(xi,j, k) is the �dual distribution� fun
tion of velo
ity eα at lo
ation xi,jand at dis
rete time k.Proof of Proposition 1.As Fk is the solution of the dire
t state (19), we 
an see this dynami
s as a
onstraint:(26) 



F0 = 0,

Fk+1 − Φ
(
Fk
)

= 0, k = 0, 1, . . .N − 1.And now we 
an 
onsider the 
onstrained minimization problem of �ndingthe minimum of J given by (23) under the 
onstraint (26).
• A 
lassi
al way to do this is to give a Lagrangian formulation of thisproblem. So we de�ne a Lagrangian as follows:(27) L = J +

N−1∑

k=0

Pk+1.
(
Fk+1 − Φ

(
Fk
))

,where the dot . denotes the s
alar produ
t in Vf , and Pk ∈ Vf is a Lagrangemultiplier related to the 
onstraint (26).The di�erentiation of L, reads:(28) dL = dJ +

N−1∑

k=0

Pk+1

(
dFk+1 −

∂Φ

∂F
dFk −

∂Φ

∂λ
dλ

)
.We note here that the 
ost-fun
tion J doesn't depend dire
tly on λ, so wehave:(29) dJ =

a

2

∂Ψ

∂F
dFN +

b

2

N−1∑

k=0

∂Ψ

∂F
dFk.
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rete part integration we dedu
e that:




N−1∑

k=0

Pk+1

(
dFk+1 −

∂Φ

∂F
dFk

)
=

PNdFN − P1 ∂Φ

∂F
dF0+

N−1∑

k=1

(
Pk −Pk+1 ∂Φ

∂F

)
dFk.

(30)
Now using (28), (29) and (30), we �nd:





dL =
a

2

∂Ψ

∂F
dFN +

b

2

k=N−1∑

k=1

∂Ψ

∂F
dFk + PNdFN −P1 ∂Φ

∂F
dF0

+

N−1∑

k=1

(
Pk − Pk+1 ∂Φ

∂F

)
dFk −

N−1∑

k=0

Pk+1∂Φ

∂λ
dλ.

(31)
Sin
e we don't 
hange the initial 
ondition of the dire
t model (19), we
hoose

dF0 = 0.Due to (27), we noti
e that dL ≡ dJ = ∇λJ.dλ when 
onstraint (26) holds.When we 
hoose the adjoint dynami
s, i.e., Pk be equal to the solution ofthe ba
kward LB equation (25), we 
an
el all the terms in fa
tor of dFk inthe expression (31) of dL, so that the expression (24) of ∇λJ is established.We pro
eed now to 
ompute the adjoint state and the gradient of J .3.2 Adjoint Latti
e Boltzmann Equation for linear 
ase
• Now, we des
ribe the adjoint model (25), whi
h allows us to 
ompute allthe Pk. In a �rst 
ase we 
onsider the steady state laminar Poiseuille �owwhi
h is introdu
ed in paragraph 3.1. This 
ase is a natural way to test thismethod, sin
e laminar Poiseuille �ow is also solution of the Stokes problemwhi
h is linear. So the 
oe�
ients γ1 = γ2 = γ3 = γ4 = 0 and the dire
talgorithm (19) is simpler (i.e., the operator Φ is linear). Sin
e we have asteady problem we 
hoose a = 1 and b = 0. So we have an adjoint dynami
s
Pk = (

∂Φ

∂F
)TPk+1, with initial 
ondition depending on error, where (

∂Φ

∂F
)Tis a linear operator de�ned by:(32) (

∂Φ

∂F
)T : Vf → Vf

P 7→ CTATP .
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e Boltzmann Equation for Parameter Identi�
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• This operator (like the operator Φ of the dire
t model) is 
omposed bytwo fundamental steps:(i) transposed adve
tionAT : whi
h models the transport with �ba
kward�dis
rete velo
ity.(i) Transposed 
ollision CT : as in the dire
t model, this operator is lo
alin spa
e.So we also need to introdu
e the following nine �dual moments� of p(xi,j, k) =
(pα(xi,j, k))0≤α≤8 with the help of the matrix M (9):

m = (m0, m1, . . . , m8) = (M−1)T .p.Sin
e there are three 
onserved moments in the dire
t model, there are alsothree 
onserved quantities in the adjoint model given by:
m0 + 2m3 − m4 s
alar invariant like �mass�ρ(

m1 + m5

m2 + m6

) ve
tor invariant like velo
ityThe matrix of transposed 
ollision CT in the spa
e of moments is:
CT =




1 0 0 −2s2 s3 0 0 0 0
0 1 0 0 0 −s5 0 0 0
0 0 1 0 0 0 −s5 0 0
0 0 0 1 − s2 0 0 0 0 0
0 0 0 0 1 − s3 0 0 0 0
0 0 0 0 0 1 − s5 0 0 0
0 0 0 0 0 0 1 − s5 0 0
0 0 0 0 0 0 0 1 − s8 0
0 0 0 0 0 0 0 0 1 − s8


The transposed 
ollision is de�ned by: CTP = P∗ where

P = (p(xi,j, k))(1≤i≤Nx,1≤j≤Ny) ∈ Vf , P∗ = (p∗(xi,j, k))(1≤i≤Nx,1≤j≤Ny) ∈ Vf ,where p∗(xi,j, k) = (M)T .CT .(M−1)T .p(xi,j, k).3.3 ALBE algorithm for the nonlinear 
ase
• When we model the Navier-Stokes equation, the dire
t algorithm (19) isnonlinear. So γi 6= 0, i = 1, 2, 3, 4, and the 
ollision step is nonlinear. In this
ase the adjoint algorithm (25) is still linear sin
e Pk = (

∂Φ

∂F
)TPk+1, where

(
∂Φ

∂F
)T is a linear operator. As in the linear 
ase (

∂Φ

∂F
)T is de�ned by (32)and it is 
omposed by two steps: transposed adve
tion AT and transposed
ollision CT . Only the transposed 
ollision CT is di�erent from the linear
ase. To des
ribe this step let's use the supers
ript d for quantities related
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t problem and among them V d(xi,j, t) the velo
ity �eld. So thetransposed matrix 
ollision CT is expressed as follows:
CT =




1 0 0 −2s2 s3 0 0 0 0
0 1 0 2γ1s2V

d
x 2γ3s3V

d
x −s5 0 γ3s8V

d
y 2γ1s8V

d
x

0 0 1 2γ1s2V
d
y 2γ3s3V

d
y 0 −s5 γ3s8V

d
x −2γ1s8V

d
y

0 0 0 1 − s2 0 0 0 0 0
0 0 0 0 1 − s3 0 0 0 0
0 0 0 0 0 1 − s5 0 0 0
0 0 0 0 0 0 1 − s5 0 0
0 0 0 0 0 0 0 1 − s8 0
0 0 0 0 0 0 0 0 1 − s8


Compared to the linear 
ase, there are just a few additional o�-diagonalterms and these terms 
an be 
omputed from the information in the stored

F �eld of the dire
t problem.4 First numeri
al experiments for a Poiseuille �ow4.1 Case of a one s
alar parameter problem
• Our �rst simple 
ase 
onsists in identifying a single parameter s8 (i.e.,the vis
osity ν =

1

3
(
1

s8
−

1

2
)) and the parameter s5 is supposed to be known.So the unknown parameter λ is equal to s8 (i.e., λ = s8 ∈ R). In this 
ase,the dis
rete exa
t gradient is given by the help of (31), (32) and (25) asfollows:(33) ∇λJ = J ′(s8) = dL = −

N−1∑

k=0

Pk+1 ∂Φ

∂s8
.The 
omputation of J ′(s8) requires one integration of the dire
t model andone integration of the adjoint model. Thus, we may try and apply a des
entmethod in order to �nd the solution of the minimization problem.Before making use of the adjoint method, it is ne
essary to 
he
k that we
al
ulate exa
tly the gradient of the 
ost-fun
tion J . For that purpose we
onsider a simple determination of the gradient for �nite di�eren
e quotient.

• Di�eren
e quotient of the 
ost fun
tion J :(34) J ′
dq(s8) = lim

ǫ→0

J(s8 + ǫ) − J(s8 − ǫ)

2ǫ
.So we 
an validate the adjoint model if and only if the two quantities (33)and (34) are equal. We have gradient J with adjoint method J ′

inv(s8 =
0.3) = −4.87278648× 10−7.
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ǫ Relative error ǫ Relative error

10−2 4.89×10−3 10−9 3.20 ×10−9

10−3 4.84×10−5 10−10 4.56 ×10−8

10−4 4.83 ×10−7 10−11 1.00 ×10−7

10−5 3.85 ×10−9 10−12 3.63 ×10−6

10−6 9.44×10−10 10−13 1.99×10−5

10−7 9.19×10−10 10−14 2.10×10−4

10−8 1.30×10−9 10−15 2.23×10−3Table 1. Comparison of the proposed determination of gradient with asimple �nite di�eren
e quotient. Relative error |J ′
df (s8)−J ′

inv(s8)|

J ′
inv(s8)

for s8 = 0.3and optimal s8 = 0.8.
• Table 1 shows that the gradient is well 
al
ulated, so for ǫ = 10−6 wehave the same quantity for two gradients with a 10−8 relative a

ura
y.Remark 4 Figure 2 shows that for ǫ ≤ 10−10 we have ma
hine pre
isionerrors and for ǫ ≥ 10−3 we have 
onvergen
e errors.

−14  −10  −7  −4  −1
−4.87299

−4.8729

−4.8728

−4.8727

−4.8726

−4.87256

−4.87299

−4.8729

−4.8728

−4.8727

−4.8726

−4.87256

Figure 2. Di�eren
e quotient of the 
ost fun
tion J vs. ln(
1

ǫ
).
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Figure 3. Pro�les of gradient J ′(s8) vs. s8 
al
ulated by two methods,
J ′(s8) with adjoint method (+) and with di�eren
e quotient of J (×).Optimal s8 = 1.2

• In �gure 3, we show that the adjoint method is able to 
al
ulate exa
tlythe gradient of 
ost-fun
tion. Now, we try to identify the parameter s8 by ades
ent method with a �xed step:
sn+1
8 = sn

8 + ω̃J ′(s8)
n, ω̃ > 0.Figure 4 shows the 
onvergen
e of algorithm to the optimal parameter s∗8.In this 
ase the �rst guess is s8 = 0.2 and optimal one s∗8 = 0.8.

0 10 20 30 40
−5.0

−4.0

−3.0

−2.0

−1.0

0.0

−5.0

−4.0

−3.0

−2.0

−1.0

0.0

Figure 4. Log of the error (|s8 − s∗8|) vs. iteration n.4.2 Case of two parameters
• In the se
ond 
ase, the two parameters s8 and s5 are unknown (i.e.,
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λ = (s5, s8)). So we use the adjoint method to evaluate the dis
rete gradient
∇λJ . So in this 
ase the gradient is given by the help of (31), (32) and (25)as follows:

∇λJ = ∇J(s5, s8) = −
N−1∑

k=0

Pk+1∂Φ

∂λ
=

(
−

N−1∑

k=0

Pk+1 ∂Φ

∂s5
,−

N−1∑

k=0

Pk+1 ∂Φ

∂s8

)
.We use a des
ent method with a variable step

λn+1 = λn + ω̃n∇λJ
n(λ), ω̃n > 0,where ω̃n are 
al
ulated by a standard line sear
h [9]. Figure 5 shows the 
on-vergen
e of algorithm to the optimal parameters λ∗ = (s∗5, s

∗
8) = (1.0, 0.8).The �rst guess is (s5, s8) = (1.2, 1.2). We �nd that |∇s8

J | ≫ |∇s5
J | asexpe
ted, sin
e it is known that s8 is related to the vis
osity whereas s5 hasonly subtle e�e
ts on the a

ura
y of the boundary 
onditions [11, 12℄.
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Figure 5. Log of the error (|s8 − s∗8|) vs. iteration n.5 ALBE method for a Navier-Stokes �ow
• We shall 
onsider a simple 
ase, that of a �ow arising from the super-position of a uniform �ow with speed {V, 0} and a transverse shear wave ina domain with periodi
 boundary 
onditions, so that if Nx is the numberof latti
e points along Ox, one expe
ts to �nd a time dependent solution,assuming v ≪ V ,

vx = V,(35)
vy = v cos(k(x − V t) + φ) exp(−νk2t).(36)where the wave ve
tor k is of the form k = 2mπ/Nx (m integer) and φ somephase fa
tor.
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• Now we will suppose that γ1 = γ3 = γ2

3 = c and γ4 = 3d. We haveintrodu
ed two unknown parameters c and d (i.e., λ = (c, d)) in the expres-sion (16) of γi, i = 1, 2, 3, 4, having in mind the use of the adjoint methodto �nd their values in order to get a model optimally 
hosen with respe
tto a required solution. On
e we have solved the adjoint problem, we 
andetermine the derivatives of the 
ost fun
tion, using expressions (24).
• We have tested the ability of the adjoint method to determine c and dusing the parti
ular 
ost fun
tion with a = 0 and b = 1 in Equ. 22, whi
h isappropriate for a time dependent problem. We have found that the deriva-tive of the 
ost fun
tion with respe
t to the parameter d is very small (andprobably insigni�
ant due to rounding errors in the numeri
al simulations).This is expe
ted as the term depending upon d does not show up in theChapman-Enskog analysis [5℄ of the problem. It is taken into 
onsidera-tion for the simple reason that in the ordinary BGK-LBE model [10℄, theequilibrium distributions lead to su
h a term.
• The derivative of the 
ost fun
tion with respe
t to c obtained by theadjoint method is 
lose to that determined by �nite di�eren
e as was the
ase above for the parameter s8 dire
tly linked to the vis
osity. We showin �gure 6 the 
onvergen
e of the error fun
tion with iteration number (noe�ort has been made to a

elerate 
onvergen
e).
• Note that for one 
ase the error levels at a signi�
ant value (dashed-dotted line in Figure 6. That 
ase 
orresponds to using as the expressiongiven above for the �target fun
tion� and using as initial state F0 the distri-bution fun
tion 
omputed to se
ond order in Chapman-Enskog development.The 
ase that leads to mu
h better 
onvergen
e (solid line in Figure 6 uses as�target fun
tion� the velo
ity of a LBE model in whi
h c = d = 1. This showsthat the initial 
onditions used in the �rst 
ase are not satisfa
tory and thatthey do not lead pre
isely to the simple analyti
 expressions given above.This result 
ould be used to try and determine better initial 
onditions thatlead to a small residual error.
• Note more generally that the identi�
ation pro
edure proposed in thispaper will not give information on other sour
es of error (quality of the targetor in the numeri
al model).
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Figure 6. Log of the 
ost-fun
tion J(λ) vs iteration.
6 Con
lusion
• We have 
onsidered the problem of parameter identi�
ation for the LBEmodel in 
omputational �uid dynami
s. We have used a gradient methodasso
iated with the adjoint methodology applied for dis
rete time. We have
ompared this approa
h with a �nite di�eren
e methodology and have testedour s
heme for two di�erent 
on�gurations: a simple linear Poiseuille �owand a more realisti
 nonlinear model. We have derived the general adjointmodel (ALBE). We note that this algorithm is as easy to parallelize as thestandard LBE model.
• Work is under way to test the ability of the proposed method to deter-mine a large number (p) of unknown parameters. In that 
ase for ea
h set ofunknown parameters for whi
h the gradients are required, one needs one di-re
t and one ba
kward 
omputation instead of at least p dire
t 
omputationsusing the simple �nite quotient determination.
• The extension for future work 
ould be the following: determination ofthe numeri
al s
heme for ALBE model in 
ase of 
urved boundaries, iden-ti�
ation of unknown �ow parameters at the boundary or identi�
ation oflo
al vis
osity for turbulent �ows. The extension to three dimensional �owsis straightforward 
on
erning the methodology but the di�
ulty will be inthe larger amount of data to manage.
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