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Abstract

The Lattice Boltzmann Equation is briefly introduced using moments to
clearly separate the propagation and collision steps in the dynamics. In
order to identify unknown parameters we introduce a cost function and adapt
control theory to the Lattice Boltzmann Equation to get expressions for the
derivatives of the cost function ws. parameters. This leads to an equivalent
of the adjoint method with the definition of an adjoint Lattice Boltzmann
equation. To verify the general expressions for the derivatives, we consider
two elementary situations : a linearized Poiseuille low and show that the
method can be used to optimize parameters, and a nonlinear situation in
which a transverse shear wave is advected by a mean uniform flow. We

indicate in the conclusion how the method can be used for more realistic
situations.

1 Introduction

e In many situations involving fluid flows, one uses a combination of ex-

perimental measurements and of numerical simulations in order to obtain a
good knowledge of the flow. Experiments can provide accurate data for some
observable quantities (e.g. pressure or local velocity) but may not provide
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other information. Numerical techniques may be used to compute the miss-
ing information but only upon detailed knowledge of parameters that may
not be readily available (like the viscosity or the boundary conditions). In
order to increase the use of a combination of high quality measurements and
refined models, the notion of optimal model has been developped. The pa-
rameters of the numerical model are chosen by minimizing the value of a cost
function that compares the predictions of the model to known experimental
results.

e This minimization can be simply obtained by a descent method. There-
fore it requires the determination of the derivatives of the cost function with
respect to the unknown parameters. A general method to compute those
derivatives is provided by control theory and is used in many circumstances.
Here we adapt this general method to the modeling of fluid flows by the
Lattice Boltzmann Equation (LBE).

e  We shall briefly recall the framework of moments that allows a very clear
distinction of the two steps of LBE : propagation and collisions. Then we
adapt the derivation of control theory to the case of a discrete model in order
to get the Adjoint Lattice Boltzmann Model. We apply the adjoint model
to two simple situations (a steady state and a time dependent case). In the
first place we consider the linear LBE and apply it to Poiseuille flow in a
2-dimensional periodic channel with a uniform body-force. We then include
the nonlinear terms in LBE and show how this modifies the adjoint equation.
As a simple application, we consider a transverse shear wave advected by a
uniform flow.

2 Direct model for Lattice Boltzmann Equation

e The lattice Boltzmann equation is a numerical method based on kinetic

theory to simulate various hydrodynamic systems. It uses elements coming
from several origins: the classical Boltzmann equation, the Broadwell mod-
els |1, 2] with small number of velocities and more recently the lattice gas
automata [4].

e In contrast to the continuous Boltzmann equation that deals with dis-
tribution functions ¢(t,r, &), the LBE method deals with a small number
of functions that can be interpreted as populations of fictitious “particles”.
The dynamics of those “particles” is such that time, space and momen-
tum are discretized. They move at successive discrete times from nodes
to nodes of a regular lattice 7 = {r;, 1 <1 < K}, composed by K nodes so
that momentum space & is discretized into a small set of discrete velocities
{ea]a =0,1,...,b}. The unknown is the distribution f, = f,(r;,t) which
is function of velocity e, at location r; and at time ¢. The lattice Boltzmann



Adjoint Lattice Boltzmann Equation for Parameter Identification

equations are written as:
(1) fa(ri+eq, t+ 1) = folr, t) + Qa(f),

The term 2, (f) models the collisions. Macroscopic quantities are obtained
by taking velocity moments of f as follows:

a=b

(2) p(ri,t) = falri,t),
a=0
a=b

(3) pU(I'l,t) - Zeafoz(rbt)a
a=0

a=b
(4) e(ri,t) =) e fulr,t),

where p is the density (mass), u is the velocity and e is the energy. They
will be used later.

e From here, for simplicity we consider the particular two-dimensional LBE
model: the nine velocity model without thermal effects [7]. In this model,
K=NNy,and7 ={r;=x;,; i=1,2,....,N,; j=1,2,...,N,} is a
square lattice, and there are nine discrete velocities (i.e., b = 8) described
in figure 1 and algebraically given by:

((070)7 Oé:O,
(5)  en—d (os((@=13)sin((@—1)7),  a=1,...4

), a=5,...,8.

(md@a—%%)ﬁﬂ@a—9)

SN

\

The equation (1) describes the evolution of the particle in one time incre-
ment. So in each increment there are two fundamental steps: advection and
collision. Now we will describe these two steps.
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Figure 1. The velocities for the 9-bit lattice LBE model on a square lattice.

2.1 Advection step

e In this step the “particles” move from a lattice node x; ; to either itself
(with the velocity eg = 0), one of the four nearest neighbours (with the

’

velocity ey, a = 1,...,4), or one of the four next-nearest neighbours (with
the velocity e,, a« = 5,...,8). This step is exact and global in space, since
it’s the solution of the transport equation given by:

of

—+&-Vf=0.

o 76 VI
We will represent this step by the operator A defined by:

.A . Vf — Vf

(6)
F — A(F),

where V; = R and F = (fa(Xij:t))(0<a<s1<i<N,.1<j<N,) 1S & vector in
V. Boundary conditions are taken into account through modification of the
operator A. Here we shall take either periodic boundary conditions on the
outer edges of the fluid domain or the simple “bounce-back” condition on
fluid-solid boundaries.

2.2 Collision step

e This step consists in the redistribution of the distribution {f,} at each
node x; ;, and it is modeled by the operator €, (f) in (1). The lattice Boltz-
mann equation (1) can be rewritten in vector form:

(7) f(XZ"j + €q, t+ ].) = f(Xiyj, t) + Q(f),

where £ = (fo, f1,..., f3)T and Q(f) = (Qo(f), Q(F), ..., Q%(f))T. We re-
mark that F = ((Ximt))(lgigNm,lgjgNy) c Vr.
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Remark 1 If we take the discrete velocities, {eq|a = 0,1,...,8}, with cor-
responding distribution functions, {f,la = 0,1,...,8}, then we can con-
struct a vector space V.= R based upon the discrete velocity set. So
f = (fo, f1,..., fs)! is a vector in V. The collision operator acts locally
in space V. It will be expressed with the help of the moments.

e To describe this operator for each lattice node, we can construct [5] a
9-dimensional vector space M = R? based upon the different moments of

{fa}. Such that
MV — M
(8)

o M(f) = M.f = m,

where the orthogonal matrix M is explicitly given by:

( 11 1 1 1 1 1 1 1 \

o 1 0 -1 0 1 -1 -1 1
o o0 1 0 -1 1 1 -1 -1
-4 -1 -1 -1 -1 2 2 2 2

(9) M=| 4 =2 -2 -2 21 1 1 1
0 -2 0 2 0 1 —1 —1 1
0 0 —2 0 2 1 1 —1 —1
0 1 -1 1 =10 0 0 0
\0 0 0 0 0 1 -1 1 —1)

and m = (p, Ju, Jy, €, €, Gz, qy,pm,pxy)T, where the physical interpretation of
the 9 moments are respectively: density, x-momentum, y-momentum, energy,
energy square, x-heat flux, y-heat flux, diagonal stress and off-diagonal stress.
Thus, with the help of the linear transformation M, we can describe the
collision operator in moment space M.

e In the athermal model the only conserved quantities are density p and
linear momentum j = (j,,j,). For the other quantities (non-conserved mo-
ments) [3], we assume that they relax towards equilibrium values that are
nonlinear function of the conserved quantities. Due to symmetry arguments,
the relaxation equations are given by:

e = e—sye— (ap+1Gi+i2)],
"= e—ssle— (asp+nu(i+i))].
Qx — S5 ¢z — (c172)]

4y = Gy — S5 [qy — (c1y)]

Pie = Pux— S8 [Pow — (M2 —3D)],
Dy = Day — 58 [Pay — (V3J2Jy)]

= —_
Lo =
o)
|

Y N N NI e N U o N
—_ —_
H~ (\)
— — — ~— ~— ~—
X
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where the quantities with and without superscript * are post-collision and
pre-collision values, respectively.

Remark 2 The relazation parameters s;, 1 = 2,3,8 are directly linked to
the transport coefficients. For the seven other adjustable parameters s, as,
C1, Y1, V2, V3, V4, we will fix them as follows:

(16) 1=v=1 1%=3 ¢ =-1, ao=—-2, a3 =1 and 4 = —3.

This choice of the parameters 71,7, 7vs,c1 yields Galilean invariance and
isotropy. The parameter oo s linked to the speed of sound. Two other
parameters ag and 7y are fized to improve stability. See [7] for the complete
deriwation of these properties. The relaxation rates s3 and s5 play no role
for the hydrodynamaic behaviour of the model, however they are relevant for
stability [7] and for the accuracy of the boundary conditions [11, 12].

e Now we can contract the collision operator in moment space, with the

help of (1.10) to (15), as follows:

C: M — M
(17)
m — m* = C(m).

Thus, we have the collision operator in V, for an initial distribution f, given
by:

Q) =f+ Q) = M L.C(MSF).
So, now we define the global collision operator C like the advection operator

by:

(18)

where C(F) = <ﬁ(f)(x171, 1), QUE) (12, ), ., QUE) (X0 1), QUE) (x, v, t))T.

2.3 Direct model

e The net result of the advection and the collision steps is that if F;,; is
the initial state of the system, it evolves according to

FO :Enia
(19)
FHl =AoC(F¥) = (F*), ke€0,1,...N—1.



Adjoint Lattice Boltzmann Equation for Parameter Identification

where F* is the discrete state for particle distribution in space at time k.
So F¥ = (fa(xij, k))(0<azsi<i<n,1<j<n,). We shall call equation (19) the
direct model which has been shown [6| to behave like the solutions of those of
the Navier-Stokes equations in situations where the flow evolves sufficiently
slowly in space and time.

3 Adjoint method for identifying parameters

e In this section we are interested in identifying some parameters of the

lattice Boltzmann scheme, for instance the relaxation parameters s; and
sg by comparing the predictions of the direct model to those derived from
some other technique (analytic or numerical solution of the Navier-Stokes
equations or from experiments). So, we will use inverse modeling to estimate
these parameters. This will be done using the adjoint method, which is
directly derived from the optimal control theory |[8].

3.1 General discrete theory for adjoint method
e To introduce the method, let’s consider a steady state laminar Poiseuille

flow, with kinematic velocity v, between two plates parallel to Ox, separated
by height h, with periodic boundary condition along the flow and a uniform
body force (dp) to drive the flow. We know an analytic solution at discrete
time k

héop Y
(20) u(Xi,ja k) - (U(Xi,j7 k)?”(xi,j} k)) = (gyj (1 - #) 70) )
where x;; = (z;,y;) for 1 <i < N,, 1 <j <N,

We consider the state of the LBE solution at a long enough time that it
has reached steady state computed for the same geometry as the analytic
case but with unknown relaxation coefficient A = (s3, s3). We note that we
neglect any space dependence of the density p. So that we will identify from
here velocity with momentum pu evaluated by (3). Since we take p = 1.

e We wish to estimate an optimal A in the sense that it will correspond to

the minimum of a cost function. We define the cost-function J(A) in a “natu-
ral” way: it is the mean-square difference between the velocity ui(A, x; j, k),

(21) ,lvl()\,XiJ',]C) = (ﬂ()\,Xi,j,/{?),?}/()\,Xi,j,k)) ,

at discrete time kdt, calculated by LBE (21) and the exact velocity u which
is the analytic solution (20). The notation u(\,x;j, k) corresponds to the
fact that the discrete LBE solution u depends also on some parameters A of
the model.
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e  We consider the following cost-function J(\), where the first term (with
coefficient a) deals with a vision of the error at the final time and the second
term (with coefficient b) is a discrete time integration of the error.

( Na: NZI
(A, xi 5, N) — (x5, N)[*+
i=1 j=1
(22) < ) N1 N, N,
5 [u(, x5 5, k u(xi,j,k)]?
\ k=0 i=1 j=1

Note that k = kdt (6t = 1) is the observation time, N = Nt is the time
when the steady state is reached, X = (s5,s3) € R?, and a, b are two real
adjustable constants. In the cost-function (22), the term associated with a
is used when we simulate a steady state problem. So for the first case of the
Poiseuille flow, it is obvious that the exact solution (20) is stationary (i.e.,
u(x;j, k) = u(x;;)). We will take @ = 1, b = 0 for the cost function. The
term with b is used for the unsteady simulation (e.g. see nonlinear case).
The discrete time N = Ndt(dt = 1) is the final time where we evaluate the
solution. So in this case we will take a =0, b = 1.

e Now the assimilation process consists in minimizing the cost-function .J.
We decide to use a gradient method:

ML= N L OV, JM(N), @ > 0.
So we need to estimate the gradient of the cost-function V,J(\). The adjoint
method is used to evaluate the gradient of the cost-function VyJ.

e First, we rewrite the cost-function:

(23) TN =5 SP(FN, NN + Z\IJ (F* kN,

where F* € V; is the solution of LBE and

U(FF, ke, \) ZZ]U A i, k) — u(x, k)|

=1 j=1
is the global error at time step k measured with least squares.

Proposition 1 With the cost-function given by the relation (22), the gra-
dient VJ can be evaluated as follows:

N-1
(24) Vi ==Y PHIC
k=0

0P
ON’
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where P* are a set of dual parameters. The parameters P* belong to the
space Vi introduced in paragraph 2.1 and are determined by the following
backward lattice Boltzmann equation called Adjoint Lattice Boltzmann Equa-

tion (ALBE):

( ov
pN:_g_
20F’
%) 0P bov
koo Tpk+l _ 2 _ N _
\77 —(a]__)P S F for k=N-1,N-2,...,1.

Remark 3 The P* for k = N —1,N — 2,...,1 describe an inverse dy-
namics. So P* is a vector defined by (pa(x; j, k))(0<a<s1<i<n,i<j<n,) where
Pa(Xij, k) is the “dual distribution” function of velocity e, at location X; ;
and at discrete time k.

Proof of Proposition 1.
As F* is the solution of the direct state (19), we can see this dynamics as a
constraint:

fo :O7
(26)
fk+1_q)(fk) =0, k=0,1,...N—1.

And now we can consider the constrained minimization problem of finding
the minimum of J given by (23) under the constraint (26).

e A classical way to do this is to give a Lagrangian formulation of this
problem. So we define a Lagrangian as follows:

(27) L=J+ i PEE(FH — @ (FF))

k=0

where the dot . denotes the scalar product in Vy, and Pk ¢ V; is a Lagrange
multiplier related to the constraint (26).
The differentiation of £, reads:

N-1

o o
9 _ k+1 k+1 ko .
(28) dL = dJ + /;:0 P (d}‘ SFIF = oy d)\)

We note here that the cost-function J doesn’t depend directly on A, so we
have:

(29) dJ = - —dFV + -y ——dF~
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With a discrete part integration we deduce that:

(( N-1
Gl
k+1 k+1 k) _
P (.F afdf>
(30§ *° N-1
pYaFy - p122 oy D _ 92 g
\ OF £ OF |
Now using (28), (29) and (30), we find:
( k=N-1
. AL =o-= dF 2/{20?” +PYAFY — Plo—dF
N-1 N—-1
o O
- — Pl — )d}"“— PEH——d.

Since we don’t change the initial condition of the direct model (19), we
choose

dF’ =0.
Due to (27), we notice that d£ = d.J = VJ.d\ when constraint (26) holds.

When we choose the adjoint dynamics, i.e., P¥ be equal to the solution of
the backward LB equation (25), we cancel all the terms in factor of dF* in
the expression (31) of AL, so that the expression (24) of V,J is established.
O

We proceed now to compute the adjoint state and the gradient of J.

3.2 Adjoint Lattice Boltzmann Equation for linear case
e Now, we describe the adjoint model (25), which allows us to compute all

the P*. In a first case we consider the steady state laminar Poiseuille flow
which is introduced in paragraph 3.1. This case is a natural way to test this
method, since laminar Poiseuille low is also solution of the Stokes problem
which is linear. So the coefficients v = 9 = v3 = 74 = 0 and the direct
algorithm (19) is simpler (i.e., the operator ® is linear). Since we have a
steady problem we choose a = 1 and b = 0. So we have an adjoint dynamics

0o
Pr = (a—)TPkH, with initial condition depending on error, where (ﬁ)T
is a linear operator defined by:
0d .
(32) GF) Vs R

P = CTATP.
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e This operator (like the operator @ of the direct model) is composed by
two fundamental steps:

(i) transposed advection A”: which models the transport with “backward”
discrete velocity.

(i) Transposed collision CT: as in the direct model, this operator is local
in space.
So we also need to introduce the following nine “dual moments” of p(x; ;, k) =
(pa(xi.j, k))o<a<s with the help of the matrix M (9):

—I\T
m = (mg, my,...,mg) = (M")".p.
Since there are three conserved moments in the direct model, there are also
three conserved quantities in the adjoint model given by:

mo + 2mg — my scalar invariant like “mass”p

<m1+m5

vector invariant like velocity
mo + Mg

The matrix of transposed collision C” in the space of moments is:

(1 0 0 —2s9  s3 0 0 0 0 \
010 0 0 — 85 0 0 0
00 1 0 0 0 . 0 0
00 0 1—sy, 0 0 0 0 0
cr=1000 0 1—s3 0 0 0 0
00 0 0 0 1—s5 0 0 0
000 0 0 0 1—s5 0 0
000 0 0 0 0 1—s3 0
\0O0O O 0 0 0 0 0 l-s)

The transposed collision is defined by: CTP = P* where
P = (p(xij; k) a<i<n,i<j<n,) € Vi, P* = (P (x4, k))a<izn,1<j<n,) € Vr,
where p*(x;.;, k) = (M)T.CT. (MY .p(x; 5, k).

3.3 ALBE algorithm for the nonlinear case
e  When we model the Navier-Stokes equation, the direct algorithm (19) is
nonlinear. So v; # 0,7 = 1, 2, 3,4, and the collision step is nonlinear. In this

0P
case the adjoint algorithm (25) is still linear since P* = (ﬁ__)TPkH, where
0P 0P
(ﬁ)T is a linear operator. As in the linear case (ﬁ)T is defined by (32)

and it is composed by two steps: transposed advection A’ and transposed
collision CT. Only the transposed collision CT is different from the linear
case. To describe this step let’s use the superscript d for quantities related

11
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to the direct problem and among them V4(x; ;,t) the velocity field. So the
transposed matrix collision C7 is expressed as follows:

(1 0 0 —2s9 S5 0 0 0 0

0 10 298V 2383V —ss 0 7383V, 29188V

0 0 1 27132‘/; 27333‘/:1/‘1 0 — S5 fygsgvxd —27138‘/:1/‘1

000 1—s 0 0 0 0 0
c'=1000 0 1 — s3 0 0 0 0

000 0 0 1—s5 0 0 0

000 0 0 0 1—s5 0 0

0 00 0 0 0 01— sg 0

\0 00 0 0 0 0 0 1-ss )

Compared to the linear case, there are just a few additional off-diagonal
terms and these terms can be computed from the information in the stored

F field of the direct problem.

4 First numerical experiments for a Poiseuille flow

4.1 Case of a one scalar parameter problem

e Our first simple case consists in identifying a single parameter sg (i.e.,

1.1 1
the viscosity v = §(_ — 5)) and the parameter sj is supposed to be known.
s

So the unknown parameter A is equal to sg (i.e., A = sg € R). In this case,

the discrete exact gradient is given by the help of (31), (32) and (25) as
follows:

(33) VaJ =J(ss) =dL =—) PHI—

The computation of J'(sg) requires one integration of the direct model and
one integration of the adjoint model. Thus, we may try and apply a descent,
method in order to find the solution of the minimization problem.

Before making use of the adjoint method, it is necessary to check that we
calculate exactly the gradient of the cost-function J. For that purpose we
consider a simple determination of the gradient for finite difference quotient.

e Difference quotient of the cost function J:
. J(ss+€)— J(ss—¢€)
4 ! =1 :
(34) Jag(ss) = lim 5e

So we can validate the adjoint model if and only if the two quantities (33)
and (34) are equal. We have gradient J with adjoint method J!  (sg =
0.3) = —4.87278648 x 1077,
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€ Relative error € Relative error
1072 | 4.89x1073 | 107 | 3.20 x107?
1073 4.84x107° | 1071 | 4.56 x107®
1074 4.83 x10°7 | 1071 | 1.00 x1077
1075 3.85 x107? | 107'2| 3.63 x10°F
1076 | 9.44x1071Y | 10713 | 1.99%x107°
1077 9.19x1071% 1071 | 2.10x1074
1078 1.30x107° [ 1071 | 2.23x1073

Table 1. Comparison of the proposed determination of gradient with a

simple finite difference quotient. Relative error |de(s:21:{;:)”(88)| for sg = 0.3

and optimal sg = 0.8.

e Table 1 shows that the gradient is well calculated, so for e = 107% we
have the same quantity for two gradients with a 10~% relative accuracy.

Remark 4 Figure 2 shows that for ¢ < 107'° we have machine precision
errors and for € > 1073 we have convergence errors.

B S —————

—-4.8726

-4.8727

-4.8728

-4.8729

-4.8729
-14 -10 -7 -4 -1

1
Figure 2. Difference quotient of the cost function J vs. In(-).
€
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6.7.10°,
6.10%

5.1cr6:
4.1@6:
3.106:
2.106:
1.1cr‘5:

0.0 ]

-1.10%

-1.9.10° ‘
0.1686 1 1.429

Figure 3. Profiles of gradient J'(sg) vs. sg calculated by two methods,

J'(ss) with adjoint method (4) and with difference quotient of J (X).
Optimal sg = 1.2

e In figure 3, we show that the adjoint method is able to calculate exactly
the gradient of cost-function. Now, we try to identify the parameter sg by a
descent method with a fixed step:

sitt = st +wJ (s)", @ >0,
Figure 4 shows the convergence of algorithm to the optimal parameter sg.
In this case the first guess is sg = 0.2 and optimal one s = 0.8.

0.0
—-1.04

—2.04

_5G T T T T T T T
0 10 20 30 40

Figure 4. Log of the error (|ss — s§|) vs. iteration n.

4.2 Case of two parameters
e In the second case, the two parameters sg and s; are unknown (i.e.,
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A = (s5,58)). So we use the adjoint method to evaluate the discrete gradient
VaJ. So in this case the gradient is given by the help of (31), (32) and (25)

as follows:
N-1 N-1 N-1
0P 0P 0d
o L k+1 _ [ _ k+1 B k+1
Vi =V J(ss5 s58) = kgzo P N ( kgzo P o5 ,;:0 P _838> .

We use a descent method with a variable step

AL = A L GV J(N), @™ >0,
where W™ are calculated by a standard line search [9]. Figure 5 shows the con-
vergence of algorithm to the optimal parameters A* = (s, s§) = (1.0, 0.8).
The first guess is (s5,s5) = (1.2,1.2). We find that |V J| > |V J| as

expected, since it is known that sg is related to the viscosity whereas s; has
only subtle effects on the accuracy of the boundary conditions [11, 12].

,,,,,,,,,,,,,,,,

-15

10 20 30

Figure 5. Log of the error (|ss — s§|) vs. iteration n.

5 ALBE method for a Navier-Stokes flow

e We shall consider a simple case, that of a flow arising from the super-

position of a uniform flow with speed {V,0} and a transverse shear wave in
a domain with periodic boundary conditions, so that if N, is the number
of lattice points along Ox, one expects to find a time dependent solution,
assuming v < V/,

(35) v, =V,
(36) v, = vcos(k(z — Vt) + ¢)exp(—vk’t).

where the wave vector k is of the form k = 2mn /N, (m integer) and ¢ some
phase factor.
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e Now we will suppose that v = 73 = £ = c and 74 = 3d. We have
introduced two unknown parameters ¢ and d (i.e., A = (¢, d)) in the expres-
sion (16) of v;, 1 = 1,2, 3,4, having in mind the use of the adjoint method
to find their values in order to get a model optimally chosen with respect
to a required solution. Once we have solved the adjoint problem, we can
determine the derivatives of the cost function, using expressions (24).

e We have tested the ability of the adjoint method to determine ¢ and d
using the particular cost function with ¢ = 0 and b = 1 in Equ. 22, which is
appropriate for a time dependent problem. We have found that the deriva-
tive of the cost function with respect to the parameter d is very small (and
probably insignificant due to rounding errors in the numerical simulations).
This is expected as the term depending upon d does not show up in the
Chapman-Enskog analysis [5] of the problem. It is taken into considera-
tion for the simple reason that in the ordinary BGK-LBE model [10], the
equilibrium distributions lead to such a term.

e The derivative of the cost function with respect to ¢ obtained by the
adjoint method is close to that determined by finite difference as was the
case above for the parameter sg directly linked to the viscosity. We show
in figure 6 the convergence of the error function with iteration number (no
effort has been made to accelerate convergence).

e Note that for one case the error levels at a significant value (dashed-
dotted line in Figure 6. That case corresponds to using as the expression
given above for the “target function” and using as initial state JF{ the distri-
bution function computed to second order in Chapman-Enskog development.
The case that leads to much better convergence (solid line in Figure 6 uses as
“target function” the velocity of a LBE model in which ¢ = d = 1. This shows
that the initial conditions used in the first case are not satisfactory and that
they do not lead precisely to the simple analytic expressions given above.
This result could be used to try and determine better initial conditions that
lead to a small residual error.

e Note more generally that the identification procedure proposed in this
paper will not give information on other sources of error (quality of the target
or in the numerical model).
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Figure 6. Log of the cost-function J(X) vs iteration.

6 Conclusion

e We have considered the problem of parameter identification for the LBE

model in computational fluid dynamics. We have used a gradient method
associated with the adjoint methodology applied for discrete time. We have
compared this approach with a finite difference methodology and have tested
our scheme for two different configurations: a simple linear Poiseuille low
and a more realistic nonlinear model. We have derived the general adjoint
model (ALBE). We note that this algorithm is as easy to parallelize as the
standard LBE model.

e Work is under way to test the ability of the proposed method to deter-
mine a large number (p) of unknown parameters. In that case for each set of
unknown parameters for which the gradients are required, one needs one di-
rect and one backward computation instead of at least p direct computations
using the simple finite quotient determination.

e The extension for future work could be the following: determination of
the numerical scheme for ALBE model in case of curved boundaries, iden-
tification of unknown flow parameters at the boundary or identification of
local viscosity for turbulent flows. The extension to three dimensional flows
is straightforward concerning the methodology but the difficulty will be in
the larger amount of data to manage.
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