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a b s t r a c t 

We show that the asymptotic properties of the link-wise artificial compressibility method are not compat- 

ible with a correct approximation of fluid properties. We propose to adapt the previous method through 

a framework suggested by the Taylor expansion method and to replace first order terms in the expansion 

by appropriate three or five points finite differences and to add non linear terms. The “FD-LBM” scheme 

obtained by this method is tested in two dimensions for shear wave, Stokes modes and Poiseuille flow. 

The results are compared with the usual lattice Boltzmann method in the framework of multiple relax- 

ation times. 
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. Introduction 

Lattice Boltzmann models (LBM) make it possible to simu-

ate various types of fluid flows with simple algorithms (see e.g.

4,5,14,18,19] ). Usually one can observe (and in simple cases, prove)

econd order accuracy (see e.g. [13] ). These features make LBM

pproaches increasingly popular for engineering applications be-

ides others. However, unlike standard simulation methods such

s finite differences, lattice Boltzmann models are required to

rocess more information than the primitive hydrodynamic vari-

bles, which leads to higher memory consumption and larger data

hroughput per collocation point. 

On modern computers, especially when using massively parallel

rocessors such as graphics processing units (GPUs), the computa-

ional performance of the LBM is memory-bound, and therefore is

irectly linked to the size of the stencil associated to each collo-
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ation point. Asinari et al. [1,15–17] proposed the link-wise artifi-

ial compressibility method (LW-ACM) in which parts of the LBM

lgorithm are replaced by expressions deduced from finite differ-

ncing the primitive variables and gave some results that looked

uite encouraging. Compared to standard three-dimensional LBM,

he LW-ACM reduces memory consumption by a factor of 4.75 and

ncreases performance of GPU implementations by approximately

y a factor of 1.8 [15] . 

We present an analysis of some features of the link-wise artifi-

ial compressibility method of Asinari et al., showing possible flaws

nd then propose alternative finite difference expressions that al-

ow a significant improvement of the resulting simulations. 

. Definition of the models 

For the sake of simplicity, we start from the usual D2Q9 lattice

oltzmann model [14] that allows us to simulate weakly compress-

ble Navier–Stokes flows. Using a planar square grid with colloca-

ion points located at x i j = i δx, y i j = j δx, a fluid is represented

y nine real quantities f n 
i j 

at each of these grid points. The LBM

imulations involve two steps (collision and propagation) that we

escribe following d’Humières [11,12] . For the collision at each grid

oint, one makes a linear transformation of the quantities f to mo-

ents m using an orthogonal matrix M which is shown below to-

ether with a physical interpretation: 
approximated with finite difference expressions, Computers and 
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W  

b  
ρ 1 1 1 1 1 1 1 1 1 density 

J x 0 1 0 1 0 1 −1 −1 1 mass flux 

J y 0 0 1 0 1 1 1 −1 −1 mass flux 

E −4 −1 −1 −1 −1 2 2 2 2 energy 

XX 0 1 −1 1 −1 0 0 0 0 diagonal stress 

XY 0 0 0 0 0 1 −1 1 −1 off-diagonal stress

q x 0 −2 0 2 0 1 −1 −1 1 energy flux 

q y 0 0 −2 0 2 1 1 −1 −1 energy flux 

ε 4 −2 −2 −2 −2 1 1 1 1 square of energy 

Depending on the simulations to be done, we can conserve only

the first moment to solve thermal-like problems or we can con-

serve the three first moments to solve fluid problems for two-

dimensional space. The others (non conserved) are assumed to

evolve as 

m 

∗
k = m k + s k (m 

eq 

k 
− m k ) , (1)

where m 

eq 

k 
is an equilibrium value that is a function of the con-

served moments and s k a relaxation rate. Note that symmetry con-

siderations are useful to propose expressions for these equilibrium

values. 

The post-collision moments can also be modified by an exter-

nal force (gravity, Coriolis, etc.), preferably following the splitting

of Strang [6] : applying half of the perturbation before collision and

half after. Once the new moments are known, applying M 

−1 leads

to post-collision f n ∗. Propagation is simply obtained through 

f n +1 
i 0 j 0 

= f n ∗i j , (2)

where i 0 and j 0 are indices of the neighboring grid point corre-

sponding to the elementary velocity used to define the moments J x 
and J y . Thus, once a velocity set has been chosen, the “adjustable”

parameters of a LBM model are the expressions of the equilibrium

values of the non-conserved moments and the values of the relax-

ation rates. 

The analysis of a LBM simulation can be done in several

ways. The most popular is a second order analysis based on the

Chapman–Enskog development used in the kinetic theory of clas-

sical gases (see e.g. [11] or [14] ). This allows to compute the kine-

matic transport coefficients (diffusivity for just one conserved mo-

ment, shear and bulk viscosities for 3 conserved moments). It also

gives first order expressions for the non-conserved moments. More

recently it was proposed to obtain equivalent equations through

Taylor’s expansions [2,7,8] , which allow to study the effect of

higher order space derivatives in a much simpler way than does

the Chapman–Enskog development (which makes use of non com-

muting matrix products). Finally using the dispersion equation al-

lows to study the linear stability and gives all the information

needed to evaluate the properties of a simulation model. 

Standard D2Q9. The standard D2Q9 [14] model for Navier–Stokes

uses the following parameters 

Moment Equilibrium Rate 

E = −2 ρ + 3(J 2 x + J 2 y ) /ρ s e 
XX = (J 2 x − J 2 y ) /ρ s xx 

XY = (J x J y ) /ρ s xx 

q x = −J x s q 
q y = −J y s q 
ε = ρ − 3(J 2 x + J 2 y ) /ρ s ε

This leads to the following properties: 

Speed of sound c s = 

√ 

1 
3 
, 

Kinematic shear viscosity ν = 

1 
3 
( 1 

s xx 
− 1 

2 
) , 

Kinematic bulk viscosity ζ = 

1 
3 
( 1 

s e 
− 1 

2 
) . 

The non linear terms lead to the correct advection of shear and

acoustic waves. However, in advective acoustics framework where

a uniform velocity V is given, the LBM method computes the de-

viation from this given advection. A linear analysis show that low
Please cite this article as: F. Dubois et al., Lattice Boltzmann model 
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mplitude shear waves with wave vector parallel to V are damped

ith an effective kinematic shear viscosity 

eff = ν (1 − 3 V 

2 ) . 

he correction is significant as V may be as large as 0.2 that is typ-

cally up to 0.35 times the sound speed c s . In the absence of a large

elocity, one can easily get higher order terms in the equivalent

quations which allows to determine a shear “hyperviscosity” from

he attenuation rate of shear waves at order 4 in space deriva-

ives. Previous work [2,9,10] showed which conditions allowed to

et an isotropic hyperviscosity (no angular dependence in the ex-

ressions) and the possibility to make it equal to zero. 

ink-wise artificial compressibility method. The new proposal of Asi-

ari et al. [1,15–17] uses just the primitive variables: density ρ and

elocity � u . From these quantities it reconstructs a set of f n on all

rid points of the computation domain and then lets them evolve

ith the LBM rules. In its original formulation, the reconstruction

ule is expressed through the equilibrium distribution f eq which

s function of the sole primitive variables. Using the present no-

ations, it can be written as: 

f n ∗i j = f eq (ρn 
i j , � u 

n 
i j ) + �

(
f eo (ρn 

i 0 j 0 
, � u 

n 
i 0 j 0 

) − f eo (ρn 
i j , � u 

n 
i j ) 

)
, (3)

here f eo (ρ, � u ) is defined as: 

f eo (ρ, � u ) = 

1 

2 

( f eq (ρ, � u ) − f eq (ρ, −�
 u ) ) , 

nd � as: 

= 1 − 2 ν

c 2 s 

= 1 − 6 ν . 

he properties of the proposed algorithm lies in the reconstitution.

he work of Asinari et al. use what can be called “zeroth-order”

econstitution as they just involve the expressions shown in the

receding table. 

To analyze it we use a classical Von Neumann stability anal-

sis in Fourier space (see [14] ). So we proceed in the following

ay. Starting either from the equations to be simulated or from

he computer code derived from them we prepare a series of in-

tructions for a computer algebra system. We then consider a grid

ith the following initial conditions: a plane wave of small ampli-

ude and wave vector k x , k y , uniform density plus possibly a uni-

orm velocity V = (V x , V y ) . This means we take the following initial

tate: f = f 0 + δ f, where f 0 = ( f 0 , . . . , f 8 ) represents the uniform

quilibrium state specified by uniform and steady density ρ and

elocity V = (V x , V y ) and δ f = (δ f 0 , . . . , δ f 8 ) is the fluctuation. We

hen apply one time step in the Fourier space and linearize the re-

ults in terms of the parameters of the plane wave (amplitude and

hase factors). 

We define space phase factors p = e i k x and q = e i k y and time

actor z = e −� ( i is unit imaginary number and � being the atten-

ation rate) in units such that δx = 1 and the duration of one time

tep equals to unity. So the initial conditions in moment space are 

ρ( j, l) = A p j q l , δJ x ( j, l) = B p j q l , δJ y ( j, l) = C p j q l . 

n consequence we have classical relation of the type 

ρ( j + 1 , l) = e ik x δρ( j, l) = p δρ( j, l) , 

δρ( j, l + 1) = e ik y δρ( j, l) = q δρ( j, l) , 

nd analogous relations for two others fields δJ x and δJ y . We intro-

uce the state vector 	 = ( A, B, C ) t , after one time step the vector

is multiplied by the amplification matrix H : 

n +1 = H 	n . (4)

e note here that the amplification matrix H is determined

y the collision step and the advection step. In particular the
approximated with finite difference expressions, Computers and 
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oefficients: V, c s , s k , p and q (see for details the original reference

14] ). 	 = 

(
δρ, δJ x , δJ y 

)t 
We search the modes associated to the

teration (4) . In that case the vector 	 is solution of 

 	 = H 	, (5) 

rom which we get the dispersion equation 

 (p, q, z) = det (H − z Id) , (6)

here Id is the unit matrix. Literal expressions of F are then solved

o get z by successive approximations in powers of the wave vec-

or components. In other terms we search the eigenvalues z and

igenvectors R as powers of the wave vector ( k x , k y ). So that the

ttenuation rate (possibly complex for propagating waves) is ob-

ained as an expansion in wave vector components with � = log z.

s the general expressions are quite cumbersome, we only give in-

ormation on the terms up to power 2 in wave vector components.

n addition we assume that the uniform velocity is parallel to the

ave vector with amplitude v ( i.e. V = (V x , V y ) and v = | V | ) and we

pply a rotation of the axis so that the wave vector is parallel to

x (rotated axis) with amplitude k . We replace the spatial phase

actor p and q by their expansion at second order in in k . We then

et the matrix H ( k ): 

(k ) = 

⎛ 

⎜ ⎝ 

1 − 6 i v kν − 1 
6 

k 2 (1 + 3 v 2 ) −6 i νk − v k 2 0 

− 1 
3 

i k (1 + 3 v 2 ) + v (1 − 3 v k 2 ) 1 − 2 i k v − 3 νk 2 0 

0 0 1 − i k v − νk 2 

⎞ 

⎟ ⎠ 

. 

Note that no angle appears, so the model is isotropic at order 2 in

ave vector. The previous matrix shows decoupling of one shear

ode and two longitudinal modes. 

From the roots of the dispersion equation in the case v = 0 , one

btains the kinematic shear viscosity ν , related to the relaxation

ate s xx by 

= 

1 

3 

(
1 

s xx 
− 1 

2 

)
, 

nd the speed of sound and its damping 

 s = 

√ 

2 ν, �s = 

ν

2 

+ 

1 

12 

. 

ote that the result for the damping of sound can be interpreted

ith a kinematic bulk viscosity independent of the parameters of

he model. 

When v is not zero, since the transport coefficients can be ob-

ained through a perturbation analysis, we shall use the following

eries expansion in k of the roots [14] . One can verify that the roots

ontain a linear dependence in v (term in ikv linked to linear ad-

ection) and the shear viscosity becomes 

(v ) = ν − 1 

2 

v 2 . 

his last result means that if v > 

√ 

2 ν = c s , shear waves grow

xponentially and thus the model is unstable so it is not recom-

ended to use this model for simulations at fairly large Reynolds

umber. Actual simulations allow to verify the previous results (see

ection 4 -a) 

. New proposition 

We propose to use the same basic idea (reconstruction of the f

rom primitive variables: density, components of the velocity), but

ith improved formulae. 

In the Taylor expansion analysis leading to the equivalent equa-

ions [7] , it was shown that the non conserved moments m k can

e expanded in powers of the size of the elementary step of the

lgorithm. Beyond the order 0, presented above, the second order

as been expressed in terms of θ that involve space derivatives
k 

Please cite this article as: F. Dubois et al., Lattice Boltzmann model 
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nd non linear terms. In fact, as described in [7] , we have the fol-

owing development of non-equilibrium moments at second order

n �t : 

 

∗
k = m 

eq 

k 
+ �t 

(
1 

2 

− σk 

)
θk + O(�t 2 ) , k ≥ 2 . (7)

here σk ≡
(

1 
s k 

− 1 
2 

)
and θ k is the defect of conservation defined by:

k ≡ ∂ t m 

eq 

k 
+ �� 

k α∂ αm 

k 
� , k > N, (8)

here N is the number of the conserved moments and �� 
k α

=
 

j v αj v 
β
j 
(M 

−1 ) jk , k = 0 . . . 8 , α = 1 . . . 2 and β = 1 . . . 2 . 

Remark In the case of the N = 3 ( i.e. 3 conserved moment

o model fluid-like problems), we get the following macroscopic

quations: 

 t m k + �� 
k α ∂ αm 

eq 
� − σ� �t �� 

k α ∂ αθ� = O(�t) 2 , k = 0 , 1 , 2 . 

e note here that for k = 1 , 2 at the order one we have a term
1 
3 ∇ρ which gives the sound speed c s = 

1 √ 

3 
. At the order two

terms having �t as coefficient) we obtain the viscous terms func-

ion of σ � . For more details see [7] . 

As many individual terms are found to play no role in the be-

avior of the shear and acoustic modes, we give only the relevant

erms of the defect of conservation θ k (8) for the case where the

ensity is close to 1: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

θ3 ≡ θE = (2 + 6 (v 2 x + v 2 y )) (∂ x v x + ∂ y v y ) − 2 (v x ∂ x ρ + v y ∂ y ρ) ,

θ4 ≡ θXX = 

2 
3 
(∂ x v x − ∂ y v y ) − 2 

3 
(v x ∂ x ρ − v y ∂ y ρ) 

− 2(v x (∂ x v 2 x + ∂ y v x v y ) − v y (∂ x v x v y + ∂ y v 2 y ) , 

θ5 ≡ θXY = 

1 
3 
(∂ x v y − ∂ y v x ) − 1 

3 
(v x ∂ y ρ + v y ∂ x ρ) 

− v x (∂ x v x v y + ∂ y v y 2 ) − v y (∂ x v 2 x + ∂ y v x v y ) . 
The partial derivatives are then estimated by finite difference.

o sum up, the neighboring f are obtained (see Eq. (7) ) using the

on-conserved moments: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E = −2 ρ + 3(v 2 x + v 2 y ) /ρ + (1 − 1 
s e 

) θE , 

X X = (J 2 x − J 2 y ) /ρ + (1 − 1 
s xx 

) θXX , 

X Y = (J x J y ) /ρ + (1 − 1 
s xx 

) θXY , 

q x = −J x , 

q y = −J y , 

ε = ρ − 3(v 2 x + v 2 y ) /ρ. 

With these expressions, the acoustic waves propagate with

peed 1 / 
√ 

3 (as for standard D2Q9), advection by a mean velocity

 is correct and the viscosities are now: 

hear = 

1 

3 

(
1 

s xx 
− 1 

2 

)
(1 − 3 V 

2 ) and bulk 

= 

1 

3 

( 
1 

s e 
− 1 

2 

) (1 − 3 V 

2 ) , 

s is known for D2Q9. 

For the particular case with V = 0 , one can determine higher

rder contributions to the damping of the hydrodynamic modes.

e first expand the dispersion equation (6) , then we replace spa-

ial phase factors p and q by their expansions up to the fourth or-

er in k and solve the resulting expression by successive approxi-

ation in k . This leads to eigenvalues z i , i = 1 .. 3 and then we get

he development of the damping coefficient �i = − log (z i ) . We in-

erpret one of these roots as 

i = ν0 k 
2 + ν2 k 

4 . 

hich allows to define a k dependent kinematic shear viscosity: 

(k ) = ν0 + ν2 k 
2 , 
approximated with finite difference expressions, Computers and 
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Fig. 1. Time evolution of the correlation function A ( t )/ A (0) versus discrete time be- 

tween an initial transverse wave (of vector (3 k 0 , 2 k 0 ) where k 0 = 

2 π
191 

) and its later 

state for five different values of the mean velocity V . Square of 191 × 191 nodes 

and periodic boundary conditions. When V grows, the dissipation of the waves is 

reduced. 

Fig. 2. Relative shear viscosity (normalized by ν0 ) for the three point stencil versus 

wave vector modulus k . Solid curves from dispersion equation, thin solid curves 

from hyperviscosity, discrete points from actual simulation. Top curves for wave 

vector along X axis {1,0}, middle curves for wave vector along {2,1} direction and 

lower curves for wave vector along the {1,1} direction. 
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We define the coefficient ν2 as “hyperviscosity”. The expressions

for this hyperviscosity depend on the way space derivatives are es-

timated using finite difference. 

We have considered three cases. 

Three points stencil such that 

∂ x • � 

1 

2 

(
• (i + 1 , j) − •(i − 1 , j) 

)
. 

Then the shear hyperviscosity is 

ν2 = 

1 

72 

(2 σxx − 3)(2 σxx − 1) − 8 σxx − 3 

36 

( cos φ2 − cos φ4 ) , 

where σxx = 1 /s xx − 1 / 2 and φ is the angle between the Ox axis

and the wave vector. This contribution is anisotropic. It becomes

larger than the usual viscous term for k > 0( 
√ 

σxx ) which will pre-

vent from doing significant simulations at small viscosity. 

Five points stencil such that 

∂ x • � 

3 

4 

(
• (i + 1 , j) −•(i − 1 , j) 

)
− 1 

8 

(
• (i + 2 , j) − •(i − 2 , j) 

)
.

This leads to a shear hyperviscosity 

1 

36 

σxx (2 σxx − 1) − σxx 

18 

( cos φ2 − cos φ4 ) . 

This is still anisotropic but removes the small viscosity limitation. 

Nine points stencil based on the D2Q9 geometry, we can

use 

∂ x • � •(i + 1 , j) − •(i − 1 , j) 

− 1 

4 

[
• (i + 1 , j + 1) − •(i − 1 , j + 1) 

− • (i − 1 , j − 1) + •(i + 1 , j − 1) 
]

and similar expression for ∂ y . This leads to the following shear hy-

perviscosity: 

1 

24 σxx 
(3 − 2 σxx )(2 σxx − 1) − 20 σxx − 9 

12 σxx 
( cos φ2 − cos φ4 ) 

which is still anisotropic and does not solve the limitation indi-

cated for the three point stencil. 

For all three stencils, the full dispersion equation (cubic equa-

tion in time factor z ) can be obtained numerically for k up to π in

order to predict the linear stability. 

4. Results of some simulations 

Shear wave. Elementary tests have been performed in a square do-

main (size N 

2 ) with periodic boundary conditions. The initial con-

dition is a shear wave of wave vector k x , k y (of modulus k ) with in

some cases a uniform velocity parallel to the wave vector. In fact

we take the following initial conditions: ⎧ ⎪ ⎨ 

⎪ ⎩ 

ρ(t = 0) = 1 , 

j x (t = 0) = −A (0) 
k y 
k 

cos (k x x + k x y ) + 

k x 
k 

V, 

j y (t = 0) = A (0) k x 
k 

cos (k x x + k x y ) + 

k y 
k 

V, 

The exact solution admits the same algebraic form, except that A

is replaced by a function of time A ( t ) ; then A = A (0) . At each time

step we measure the correlation function A ( t )/ A (0) of the velocity

field with its initial state. For V = 0 , A ( t ) decays exponentially, oth-

erwise it is e (−�t) 
(

cos ωt 
)
. 

We show in Fig. 1 the results for the initial ACM model (no θ
in our proposal) for 5 values of the mean velocity V . Clearly the

velocity square dependence of the damping is unacceptable. 

We then perform a series of measurements at V = 0 for several

values of the wave vector and compare ( Table 1 ) the measured re-

laxation rate � to the development in terms of hyperviscosity and
Please cite this article as: F. Dubois et al., Lattice Boltzmann model 
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he numerical root of the dispersion equation (that which corre-

ponds to the transverse mode). Figs. 2 –4 illustrate the results for

he three, five and nine points stencil respectively. These figures

ave been obtained for a long wave length kinematic shear vis-

osity ν0 = 0 . 01 . In the case of the nine point stencil, the model

s unstable in the {1,1} direction so no simulation could be per-

ormed. In fact in Table 3 we study the equivalent hyperviscosity

or the ACM scheme for different stencils. We show that the hyper-

iscosity is relatively high and negative for an angle equal to 45 o 

or the nine point stencil. This is directly correlated to instability

n the {1,1} direction. 

tokes modes. We give some partial results of simulations of sit-

ations less elementary that simple plane waves. To take solid

oundaries into account we propose to consider the lattice nodes

ust outside the fluid region and to estimate the state of the virtual

uid in those points by linear extrapolation using the fact that the

elocity is 0 on the boundary. As in the scheme of Bouzidi et al.

3] stability is obtained by using different expressions depending

n the location of the intersection of the boundary with the link

hat goes from the last fluid point to the first solid point. 
approximated with finite difference expressions, Computers and 
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Fig. 3. Relative shear viscosity (normalized by ν0 ) for the five point stencil versus 

wave vector modulus k . Solid curves from dispersion equation, thin solid curves 

from hyperviscosity, discrete points from actual simulation. Top curves for wave 

vector along X axis {1,0}, middle curves for wave vector along {2,1} direction and 

lower curves for wave vector along the {1,1} direction. 

Fig. 4. Relative shear viscosity (normalized by ν0 ) for the nine point stencil versus 

wave vector modulus k . Solid curves from dispersion equation, thin solid curves 

from hyperviscosity, squares from actual simulation. Top curves for wave vector 

along X axis, middle curves for wave vector along {2,1} direction and lower curves 

for wave vector along the {1,1} direction. No experimental data due to linear insta- 

bility at least in the {1,1} direction. 

Table 1 

Numerical study of the hyperviscosity for different 

stencils of ACM scheme vs. angle of the wave vector 

k . All simulations are performed with the same value 

s xx = 1 . 85 . 

Angle Three-point Five-point Nine-point 

0 .00 0 .03725 −0 .00103 0 .03725 

26 .60 0 .02534 −0 .0 0 067 0 .0 0 079 

45 .00 0 .01867 −0 .0 0 047 −0 .0196 

 

a  

f

ψ  

w

�

Table 2 

Numerical study of the Stokes modes in a disk. All simulations are per- 

formed with the same value ν0 = 0 . 05 . The second column gives the the- 

oretical values and the other the error between the numerical scheme and 

the theoretical value. The third column uses the present FD-LBM scheme 

with a three-point stencil for the evaluation of the gradients, the fourth 

column the present FD-LBM scheme with a five-point stencil, the fifth col- 

umn the standard diagonal BGK with ν0 = 0 . 05 , the sixth column MRT 

LBM scheme with the quartic condition (11) realized. 

l Bessel FD-LBM-3 FD-LBM-5 BGK LBE-q 

Singlets 

1 14 .68200 0 .00729 0 .0 0 0 03 0 .0 0 053 −0 .0 0 010 

2 49 .21850 0 .02191 −0 .00141 0 .00179 −0 .00114 

3 103 .49950 0 .04663 −0 .00313 0 .00382 −0 .00276 

4 177 .52080 0 .07969 −0 .0 040 0 0 .00672 −0 .00489 

5 271 .28171 0 .12335 −0 .00358 0 .01071 −0 .00752 

6 384 .78189 0 .17778 −0 .0 0 099 0 .01623 −0 .01053 

Doublets 

1 26 .37460 0 .01324 −0 .0 0 090 0 .00106 −0 .0 0 042 

2 40 .70650 0 .02078 −0 .00103 0 .00164 −0 .0 0 087 

3 57 .58290 0 .02959 −0 .00147 0 .00236 −0 .00133 

4 76 .93890 0 .03966 −0 .00186 0 .00323 −0 .00183 

5 98 .72630 0 .05060 −0 .00231 0 .00424 −0 .00236 

6 122 .90760 0 .06241 −0 .00254 0 .00538 −0 .00293 

7 149 .45290 0 .07545 −0 .00275 0 .00667 −0 .00354 

8 178 .33730 0 .08948 −0 .00267 0 .00809 −0 .00419 

9 209 .54010 0 .10418 −0 .00230 0 .00965 −0 .00488 

10 243 .04340 0 .12003 −0 .00175 0 .01138 −0 .00563 

11 278 .83160 0 .13682 −0 .0 0 099 0 .01328 −0 .00643 

Table 3 

Numerical study of the Stokes modes in a disk. All simulations are performed with 

the same value ν0 = 1 / 
√ 

108 . The second column gives the theoretical values and 

the other the error between the numerical scheme and the theoretical value. The 

third column uses the present FD-LBM scheme with a three-point stencil for the 

evaluation of the gradients, the fourth column the present FD-LBM scheme with a 

five-point stencil, the fifth column the standard diagonal BGK with ν0 = 1 / 
√ 

108 , 

the sixth column the MRT-LBM scheme with the quartic condition (11) not real- 

ized and the seventh column the quartic version of the MRT-LBM scheme when the 

condition (11) is realized. 

l Bessel FD3-108 FD5-108 BGK-108 LB-108 LB-108-q 

Singlets 

1 14 .68200 0 .00165 −0 .0 0 052 0 .0 0 069 0 .0 0 070 0 .0 0 035 

2 49 .21850 0 .00628 −0 .00104 0 .00179 0 .00189 0 .0 0 010 

3 103 .49950 0 .01382 −0 .00175 0 .00355 0 .00377 −0 .0 0 028 

4 177 .52080 0 .02399 −0 .00230 0 .00599 0 .00640 −0 .0 0 078 

5 271 .28171 0 .03665 −0 .00244 0 .00923 0 .00989 −0 .00138 

6 384 .78189 0 .05198 −0 .00202 0 .01341 0 .01442 −0 .00204 

Doublets 

1 26 .37460 0 .00410 −0 .0 0 027 0 .00143 0 .00147 0 .0 0 058 

2 40 .70650 0 .00662 −0 .0 0 029 0 .00189 0 .00197 0 .0 0 044 

3 57 .58290 0 .00943 −0 .0 0 053 0 .00249 0 .00262 0 .0 0 035 

4 76 .93890 0 .01251 −0 .0 0 066 0 .00321 0 .00339 0 .0 0 029 

5 98 .72630 0 .01601 −0 .0 0 086 0 .00404 0 .00428 0 .0 0 025 

6 122 .90760 0 .01979 −0 .00101 0 .00498 0 .00530 0 .0 0 023 

7 149 .45290 0 .02380 −0 .00115 0 .00603 0 .00643 0 .0 0 021 

8 178 .33730 0 .02814 −0 .00121 0 .00720 0 .00768 0 .0 0 022 

9 209 .54010 0 .03281 −0 .00126 0 .00846 0 .00905 0 .0 0 023 

10 243 .04340 0 .03766 −0 .00123 0 .00983 0 .01053 0 .0 0 022 

11 278 .83160 0 .04274 −0 .00118 0 .01133 0 .01215 0 .0 0 022 

w  

i  

f  

t  

m(

r  

D  

c  

D

We then compute the relaxation rate of the Stokes modes inside

 circle of radius R = 29 . 9 lattice units. The flow field is obtained

rom the stream function 

(r, θ, t) = e 
−
(
� t 

)
cos (m θ ) J n (r/R ) , (9)

ith singlets for m = 0 and doublets for m > 0 and 

= 

ν
2 

a 2 l , (10) 

R 
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here a l is a l th zero of the Bessel functions J m 

(a l ) = 0 . We give

n the following Tables 2 and 3 some values of the relative dif-

erence between measured values and the theoretical values for

hree cases: present FD-LBM with the three-point stencil, opti-

ized LBM-D2Q9 ( ν = 1 / 
√ 

108 ) and 

1 

s xx 
− 1 

2 

) (
1 

s q 
− 1 

2 

)
= 

1 

6 

, (11) 

equired to yield an isotropic hyperviscosity), and a non-optimized

2Q9-LBM (same value of ν , but s q = 1 . 3 instead of 0.9282. It is

lear that FD-LBM does not match the accuracy of optimized LBM-

2Q9 (see [9] ). 
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Fig. 5. Relative shear viscosity for the D2Q9 lattice Boltzmann model versus wave 

vector modulus k for three orientations of the wave vector (top {1,0}, middle {2,1}, 

bottom {1,1}). We observe that the maximal error (8 %) is very much reduced com- 

pared to the FD-LBM scheme presented at Figs. 2 –4 . 

Fig. 6. Boundary conditions for a Poiseuille flow. Numerical location of the zero of 

velocity versus the imposed value ξ of the boundary. In the transverse direction, the 

computational domain is composed by the interval [1 − ξ , 15 + ξ ] where ξ is the 

abscissa of the figure. The result is the location of the zero velocity value measured 

from a least square fit of the velocity profile. The result with the five-points differ- 

ence scheme is of good quality, comparable to what is obtained with the classical 

D2Q9 usual LBM scheme with first order extrapolation with the Bouzidi et al. al- 

gorithm. Observe that with a simple “bounce-back” boundary conditions, the result 

would be a horizontal line at y = 0 . 5 . 
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Poiseuille flow. Some simulations of Poiseuille flow have been per-

formed to estimate the efficiency of the boundary conditions. We

consider a channel with solid boundaries parallel to the Ox axis

and periodic boundary conditions at the open ends. We adapt the

boundary conditions to impose v = 0 at y 1 = 1 − ξ and y 2 = N + ξ .

A uniform body force parallel to Ox drives the flow. After enough

time steps the stationary flow is least square fit to a parabolic flow

allowing to define “experimental” boundaries where the parabola
Please cite this article as: F. Dubois et al., Lattice Boltzmann model 
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oes to 0 at y m 1 = 1 − ξm 

and y m 2 = N + ξm 

. We show in Fig. 6 the

easured ξm 

vs. the imposed ξ ( Table 2 ). 

. Conclusion 

We have shown that the ACM proposal can be improved in two

ays: reducing the velocity dependence of the shear viscosity and

iminishing the hyperviscosity with the use of a stencil with more

oints. However when identical values of the long wave length

hear and bulk viscosities are chosen for the D2Q9 lattice Boltz-

ann model, the hyperviscosity is much smaller as can be seen

n Fig. 5 . An analogous analysis has also been performed for the

hree-dimensional model D3Q19. 

The present work needs to be complemented with detailed

esting of situations where nonlinear terms dominate to see the

uality of simulations. This will help decide how many grid points

n FD-LBM are needed to get comparable accuracy to what is given

y a LBE-D2Q9 calculation. 
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