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Abstract
We consider the D1Q3 lattice Boltzmann scheme with an acoustic scale for the simulation of
diffusive processes. When the mesh is refined while holding the diffusivity constant, we first
obtain asymptotic convergence. When the mesh size tends to zero, however, this convergence
breaks down in a curious fashion, and we observe qualitative discrepancies from analytical
solutions of the heat equation. In this work, a new asymptotic analysis is derived to explain
this phenomenon using the Taylor expansion method, and a partial differential equation
of acoustic type is obtained in the asymptotic limit. We show that the error between the
D1Q3 numerical solution and a finite-difference approximation of this acoustic-type partial
differential equation tends to zero in the asymptotic limit. In addition, a wave vector analysis
of this asymptotic regime demonstrates that the dispersion equation has nontrivial complex
eigenvalues, a sign of underlying propagation phenomena, and a portent of the unusual
convergence properties mentioned above.
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1) Introduction
Lattice Boltzmann models are simplifications of the continuum Boltzmann equation obtained
by discretizing in both physical space and velocity space. The discrete velocities vi retained
typically correspond to lattice vectors of the discrete spatial lattice. That is, each lattice
vertex x is linked to a finite number of neighboring vertices by lattice vectors vi ∆t. A particle
distribution f is therefore parametrized by its components in each of the discrete velocities,
the vertex x of the spatial lattice, and the discrete time t. A time step of a classical lattice
Boltzmann scheme [11] then contains two steps:
(i) a relaxation step where distribution f at each vertex x is locally modified into a new
distribution f ∗, and
(ii) an advection step based on the method of characteristics as an exact time-integration
operator. We employ the multiple-relaxation-time approach introduced by d’Humières [10],
wherein the local mapping f 7−→ f ∗ is described by a nonlinear diagonal operator in a space
of moments, as detailed in Section 2.
In [5], we have studied the asymptotic expansion of various lattice Boltzmann schemes with
multiple-relaxation times for different applications. We used the so-called acoustic scaling,
in which the ratio λ ≡ ∆x/∆t is kept fixed. In this manner, we demonstrated the possibility
of approximating diffusion processes described by the heat equation.
In his very complete work, Dellacherie [3] has described unexpected results in simulations for
advection-diffusion processes. In this contribution, we endeavor to explain those results by
studying the convergence of the D1Q3 lattice Boltzmann scheme when we try to approximate
a pure diffusion process.
We begin this paper by recalling some fundamental algorithmic aspects of the D1Q3 lattice
Boltzmann scheme in Section 2. Then, in Section 3 we describe a first illustrative numer-
ical experiment. In Section 4 we present a new convergence analysis, followed by another
numerical experiment in Section 5, in which the D1Q3 lattice Boltzmann scheme is studied
far from the usual values of its parameters. Finally, a wave vector analysis is proposed in
Section 6.

2) Diffusive D1Q3 lattice Boltzmann scheme
In this work, we consider the so-called D1Q3 lattice Boltzmann scheme in one spatial di-
mension. The spatial step ∆x > 0 is given, and each node x is an integer multiple of this
spatial step : x ∈ Z∆x. The time step ∆t > 0 is likewise given, and each discrete time
t is an integer multiple of ∆t. We adopt so-called acoustic scaling (see e. g., [12]), so the
numerical velocity associated with the mesh,

(1) λ ≡ ∆x

∆t
,

is a constant independent of the spatial step ∆x. A particle distribution

f ≡
(
f+(x, t) , f0(x, t) , f−(x, t)

)
is given at the initial step t = 0. Its value at subsequent times is determined by the multiple-
relaxation-time version [10] of the lattice Boltzmann equation.
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• Moments are introduced at each step of space and time according to the relations

(2) ρ = f+ + f0 + f− , J = λ (f+ − f−) , e = λ2 (f+ − 2 f0 + f−) .

These may be thought of as the densities of mass, momentum, and an energy-like quantity,
respectively. Eq. (2) can be recast in matrix form as follows:

m ≡

ρJ
e

 = M f ≡ M

f+

f0

f−

 ,

where M is the invertible matrix,

(3) M =

 1 1 1

λ 0 −λ
λ2 −2λ2 λ2

 .

• The equilibrium values of the moments are defined by the relations:

(4) ρeq = ρ , Jeq = 0 , eeq = α
λ2

2
ρ

where α a non-dimensional constant. Then the relaxation step transforms the pre-collision
moments m into new post-collision moments m∗ as follows:

(5) ρ∗ = ρ , J∗ = J + sJ (Jeq − J) , e∗ = e+ se (eeq − e) ,
where sJ and se are relaxation parameters. There is no analogous parameter for ρ because
the collisions are constrained to conserve mass. In our numerical experiments, we have
chosen se = 1.5, and below we shall explain in some detail how we tuned the relaxation
parameter sJ for the momentum J .
• The time iteration of the scheme is defined in terms of the particle distribution. We first
transform the post-collision moments m∗ into a post-collision particle distribution:

f ∗ = M−1m∗ .

Second, we iterate the algorithm forward in time. The particle distribution is conserved
along the characteristic directions of velocities v+ = λ, v0 = 0 and v− = −λ respectively:

(6)


f+(x, t+ ∆t) = f ∗

+(x−∆x, t)

f0(x, t+ ∆t) = f ∗
0 (x, t)

f−(x, t+ ∆t) = f ∗
−(x+ ∆x, t) .

• In [5], we have analyzed several lattice Boltzmann models with the Taylor expansion
method, including the present one defined by Eqs. (2,3,4,5,6). The hypothesis used was that
the numerical velocity λ defined in Eq. (1), and the relaxation coefficients sJ and se remain
constant as the spatial step ∆x tends to zero. Then the conserved variable ρ satisfies (at
least formally!) a diffusion partial differential equation:

(7)
∂ρ

∂t
− µ

∂2ρ

∂x2
= O(∆x2) ,

where the diffusion coefficient µ is given by the relation

(8) µ ≡ 4 + α

6
σ λ∆x , σ ≡

( 1

sJ
− 1

2

)
.
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The coefficient σ is known as the “Hénon parameter” in reference to the pioneering work of
Hénon [9]. This lattice Boltzmann scheme is demonstrably stable under the condition:

−4 < α < 2 .

3) A first numerical experiment
In this section, we consider an elementary analytic test case, namely the diffusion of a sine
wave. We suppose that the initial condition for Eq. (7) satisfies

(9) ρ0(x) = sin(π x) , −1 ≤ x ≤ 1 .

The other moments J and e are taken at equilibrium at t = 0. With periodic boundary
conditions, the exact solution of Eqs. (7,9) is

ρ(x, t) = sin(π x) exp(−µπ2 t) .

We performed several numerical computations with the following choice of parameters: λ =

1, α = 1 and µ = 0.01. The spatial step varied from ∆x = 1
4
up to ∆x = 1

32
. The results

for a final time T = 5 are presented in Figs. 1 through 3.

Figure 1: Sine wave at time T = 5 computed with 64 mesh cells.





Curious convergence of lattice Boltzmann schemes for diffusion...

Figure 2: Sine wave computed with 64 mesh cells at time T = 5 ; detail.

Figure 3: Numerical convergence to the diffusion equation (7).
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It should be noted that the results are remarkably converged even for these relatively coarse
meshes. For the most refined mesh used (64 mesh points, ∆x = 1

32
), the numerical re-

sults are almost indistinguishable from the exact solution, as presented in two successive
magnifications in Fig. 2.

4) An alternative convergence analysis
We now imagine that we wish to approximate the diffusion equation, Eq. (7), using the D1Q3
lattice Boltzmann model described previously. We suppose that the diffusion coefficient µ is
fixed and that the mesh size ∆x tends to zero. Then from Eq. (8), the relaxation parameter
sJ can no longer be fixed and tends to zero according to the asymptotic prescription

(10) sJ =
4 + α

6µ
λ∆x + O(∆x2) .

The hypothesis used for deriving the diffusion model, Eqs. (7,8) is now violated, because the
relaxation parameter sJ is no longer a constant. Rather, it follows the asymptotic form

(11) sJ = s0 + s1 ∆x+ O(∆x2) + · · · ,
as suggested by one of us in earlier work on lattice-gas automata [2]. Moreover, we have

(12) s0 = 0 , s1 =
4 + α

6µ

for the case described in Eq. (10). Then the differential equation obtained in the asymptotic
limit is no longer the diffusion equation Eq. (7), as discussed in the following proposition.

• Proposition 1. An asymptotically acoustic model
We consider the D1Q3 lattice Boltzmann scheme defined by Eqs. (2,3,4,5,6). We make the
hypothesis that the numerical velocity λ , defined in Eq. (1), and the relaxation coefficient
se used in the relaxation step Eq. (5), are constant as the spatial step ∆x tends to zero.
Moreover, we suppose that the relation between the given diffusion coefficient µ and the
relaxation coefficient sJ follows the relation in Eq. (8). In other words, the relaxation
coefficient sJ admits the asymptotic hypotheses in Eqs. (11,12) with s0 = 0 and s1 = 4+α

6µ
.

Then, when ∆x tends to zero, the density ρ and the momentum after relaxation J∗ obey
the following acoustic model:

(13)
∂ρ

∂t
+
∂J∗

∂x
= O(∆x) ,

∂J∗

∂t
+ λ2 4 + α

6

∂ρ

∂x
+ λ2 4 + α

6µ
J∗(x, t) = O(∆x) .

• The proof of this result is given in the Appendix 1. The system Eq. (13) is an acoustic
model with sound velocity c0 = λ

√
4+α

6
. We see that we have dissipation of momentum

with a zero-order operator. We have implemented a staggered finite-difference method named
“HaWAY,” in reference to the authors Harlow and Welch [8], Arakawa [1] and Yee [13] who
invented it in the mid 1960’s, for applications to fluid flow (“marker and cell”), geophysical
sciences (“c-grid”) and electromagnetism (“finite difference time domain”), respectively. The
details of this second-order numerical scheme are given in Appendix 2. This finite-difference
approximation gives a correct second-order accurate solution of the system obtained by
replacing the corrections O(∆x) by 0 on the right-hand side of Eqs. (13).
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5) Additional numerical experiments
We next experiment with the diffusion of a Gaussian density profile with the D1Q3 lattice
Boltzmann model defined in this work. The initial density profile is given by the relation

(14) ρ0(x) = exp
(
− x

2

4µ

)
with x ∈ R .

The other moments J and e are taken to be at equilibrium at t = 0. Then the exact
solution of the diffusion equation, Eq. (7), is obtained without difficulty:

(15) ρ(x, t) =
1√

1 + t
exp

(
− x2

4µ (1 + t)

)
, x ∈ R , t > 0 .

We simulate this problem for µ = 0.01 and 0 ≤ t ≤ T = 5 in a relatively large domain
−16 ≤ x ≤ 16 in order to avoid unwanted interactions of the diffusing Gaussian with the
boundary. This has allowed us to employ an elementary periodic boundary condition at
x = ±16, where all the fields have a value inferior to the smallest number that can be
represented in floating-point arithmetic.
• At the macroscopic scale, we see in Fig. 4 that the numerical solution computed with
the D1Q3 lattice Boltzmann scheme faithfully reproduces the exact solution Eq. (15) of the
diffusion equation. After magnification by a factor of 100 (Fig. 5), the D1Q3 model simulates
the acoustic-like system, Eq. (13), with better accuracy than it does the diffusion equation,
Eq. (7). Fig. 6 shows that when the mesh is refined from 26 = 64 to 216 = 65 536 vertices,
the convergence towards the acoustic model seems reasonable, with an order of accuracy
close to 1. In other terms, the diference between the discrete solution of the D1Q3 model
and the finite-difference simulation of the acoustic model goes to zero proportionally to the
mesh size.

Figure 4: Gaussian a time T = 5.
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Figure 5: Detail of the Gaussian a time T = 5.

Figure 6: D1Q3 lattice Bolztmann scheme for diffusion; Gaussian at time = 5. Non- con-
vergence towards the exact solution of the diffusion model Eq. (7) and convergence towards
the acoustic model Eq. (13).
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• Now we have what seems like a contradiction: Our first experiments for the sine wave
show (see, e.g., Fig. 3) that the diffusion equation is a good reference mathematical model,
whereas the acoustic model Eq. (13) is asymptotically correct for the Gaussian initial condi-
tion (see Fig. 6). We have performed simulations for the sine wave with much more refined
meshes, and lattice sizes up to 4096. At the macroscopic scale, no difference is visible be-
tween the sine wave solution of the diffusion equation and the numerical result proposed
by the lattice Boltzmann method (again, see Fig. 1). After magnification shown in Fig. 7,
the difference between the exact solution of the diffusion equation and the D1Q3 solution is
more important than the small discrepancy between the “HaWAY” numerical solution of the
acoustic model, Eq. (13), and the lattice Boltzmann model.

• In Fig. 8, we have plotted the quadratic and uniform errors between the numerical so-
lution obtained from the lattice Boltzmann model and the exact solution of the diffusion
equation on one hand, and of the approximate solution (with a second-order scheme) of the
acoustic model obtained after a first-order Taylor expansion analysis presented at Proposi-
tion 1 on the other hand. The lattice Boltzmann method gives an excellent approximation
of the heat equation with the coarse meshes, as shown in Fig. 3 in Section 2. This good
convergence quality cannot be explained by an asymptotic analysis. When the spatial step
tends to zero, the lattice Boltzmann scheme gives a correct approximation of the acoustic
model. Fig. 8 demonstrates that the convergence is first-order accurate in both norms.

Figure 7: Sine wave at time = 5. Magnification of the solution around the extremal value.
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Figure 8: D1Q3 lattice Bolztmann scheme for diffusion; Sine wave at time = 5. Non- con-
vergence towards the exact solution of the diffusion model Eq. (7) and convergence towards
the acoustic model Eq. (13).

6) Wave vectors analysis
We may also adopt the point of view of a spectral analysis of the lattice Boltzmann model,
Eqs. (2,3,4,5,6). We search for a solution of the type

(16) f(x, t) = exp
(
i k x

)
exp

(
ζ t
) ϕ+

ϕ0

ϕ−

 .

In one time step, we first transform the vector f into moments. Then we relax the moments
and return to the space of particles. Finally we advect the result according to Eq. (6) to
recover the particle distribution. The collision step m −→ m∗ can be written in matrix
form:

m∗ = R m , R =

 1 0 0

0 1− sJ 0

α λ2

2
se 0 1− se


and the final advection step can be represented by the action of a diagonal matrix:

f(x, t+ ∆t) = Af ∗(x, t) , A =

exp(−i ξ) 0 0

0 1 0

0 0 exp(i ξ)
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with ξ = k∆x . Then the vector ϕ introduced in Eq. (16) must be a nontrivial solution of
the following spectral problem:

exp
(
ζ
)
ϕ = A M−1 R M ϕ ,

with ζ = z∆t > 0. Then, denoting the identity matrix by I , the dispersion relation takes
the form
(17) det

[
A M−1 R M − exp

(
ζ
)

I
]

= 0 .

• We have performed an asymptotic analysis of the relation in Eq. (17) in the limit of
a small relaxation coefficient sJ (as in Eq. (10)), a small wave vector ξ and with a small
amplification factor ζ:
(18) sJ = ε s1 , ξ = ε κ , ζ = ε ω ,

where ε is a small parameter that tends to zero. After some calculation, we obtain without
difficulty

(19) det
[
A M−1 R M − exp

(
ζ
)

I
]

= −se
(
ω2 + s1 ω +

4 + α

6
κ
)
ε2 + O(ε3) .

When κ = 0, we recover the hydrodynamic mode with ω = 0 and a dissipative mode
according to ω = −s1. When κ 6= 0, we have to solve an equation of degree 2 made explicit
in Eq. (19) at this order of accuracy. The discriminant of this equation becomes negative
when
(20) κ ≥ s1

2
√

4+α
6

.

Figure 9: Gaussian, µ = 0.15. The heat equation is correctly approximated.
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Figure 10: Gaussian, µ = 1.5. The propagation effects are clearly visible.

• We observe that the asymptotics associated with the limit sJ −→ 0 is questionable
from a physical point of view. When establishing macroscopic partial differential equations
it is assumed that internal degrees of freedom of the system under study evolve very “fast”
compared to the macroscopic quantities. It is known (see, e.g., [4]) that sJ is given by a
ratio of the type ∆t

τ
. In the present case, the slow internal degrees of freedom evolve within

times τ ≈ ∆t
s
. So it is to be expected that the pure diffusion partial differential equation

will not be accurate for very small values of s.
• In order to make this qualitative difference explicit, we have done two numerical exper-
iments with the initial Gaussian profile given by Eq. (14). We use 2 048 mesh points and a
final time T = 6 after 384 iterations of the D1Q3 scheme. In the first experiment (Fig. 9),
the diffusion µ is equal to 0.15 so sJ = 0.050761 wich satisfies Eq. (8). For the second ex-
periment, all parameters are unchanged, except that µ = 1.5 and the relaxation coefficient
sJ = 0.005195 is much smaller. With this value of sJ the expression, Eq. (20), is satisfied
and the discriminant of the equation (19) is negative. The propagation effects are evident
in Fig. 10. One may interpret the result: for small values of parameter s, the time between
collisions is longer than the duration of the simulation, so particles move “ballistically”.

7) Conclusion
We have described a curious convergence property of the D1Q3 lattice Boltzmann model,
observed when trying to simulate a diffusion process with an acoustic scale. A new asymp-
totic analysis has been derived for this circumstance, and we have presented evidence of
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an asymptotic partial differential equation of acoustic type. We have observed analogous
difficulties in two spatial dimensions, both for diffusion and Stokes flows. Overall results
and physical interpretations will be given later, with comparison made to the phenomenon
of viscoelasticity [6].
A natural question for future study is the generalization of this acoustic-type model to
two or three spatial dimensions. Another is the application of this methodology to lattice
Boltzmann models of fluid flow, using an acoustic scale while holding fixed the value of the
viscosity.
Finally, it seems plausible that there is a link between the strange “first convergence” property
noted in this work and the well known tendency of certain asymptotic series to converge at
first, followed by divergence (see e.g. [7]). This would raise the question of exactly when the
error is minimized, and what is an acceptable approximation of its value when it is minimal.
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Appendix 1 Proof of Proposition 1
We start from the time iteration, Eq. (6), and transfer it to the moments:

mk(x, t+ ∆t) =
∑
j `

Mkj M
−1
j` m∗

`(x− vj ∆t, t) .

With the help of the tensor of momentum-velocity Λ introduced in [4], defined according to

Λ`
k =

∑
j

Mkj vj M
−1
j`

and made explicit for our model as

(21) Λ =

 0 1 0
2
3
λ2 0 1

3

0 λ2 0

 ,

we have

(22) mk(x, t) + ∆t
∂mk

∂t
+ O(∆t2) = m∗

k(x, t) − ∆x
∑
`

Λ`
k

∂m∗
`

∂x
+ O(∆x2) .

• The first moment m0 ≡ ρ is conserved (see Eq. (5)) and ρ∗ = ρ. We deduce from
Eq. (22) and the specific values of the first line of the matrix Λ in Eq. (21) that

(23)
∂ρ

∂t
+
∂J∗

∂x
= O(∆x)

and the first equation of Eq. (13) is established.
• The third moment e is not at equilibrium and we have from the third relation of
Eqs. (5,21,22):

se
(
e− eeq

)
≡ e− e∗ = −∆t

∂e

∂t
− ∆xλ2 ∂J

∗

∂x
+ O(∆x2) = O(∆x) .
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The coefficient se remains constant by hypothesis as ∆x tends to zero. Then this moment
is close to the equilibrium:

e =
α

2
λ2 ρ + O(∆x) , e∗ =

α

2
λ2 ρ + O(∆x)

and

(24)
∂e∗

∂x
= λ2 α

2

∂ρ

∂x
+ O(∆x) .

• The analysis for the second equation differs from what has been proposed previously
in [4] because the moment J and the same moment J∗ after relaxation are now not close
to the equilibrium value Jeq = 0. More precisely, we have, due to the second relation of
Eq. (5):

J =
J∗

1− sJ
=
(

1 +
4 + α

6µ
λ∆x + O(∆x2)

)
J∗ .

Then J(x, t+ ∆t) =
(

1 +
4 + α

6µ
λ∆x + O(∆x2)

)
J∗(x, t+ ∆t)

=
(

1 +
4 + α

6µ
λ∆x

)
J∗ + ∆t

∂J∗

∂t
+ O(∆x2)

= J∗(x, t) + ∆t
∂J∗

∂t
+

4 + α

6µ
λ∆x J∗(x, t) + O(∆x2) .

We report this expression in the expansion Eq. (22), we substract J∗(x, t) from both sides
of the equation and we divide by ∆t. Due to the previous result Eq. (24), we obtain:

∂J∗

∂t
+

4 + α

6µ
λ2 J∗ + O(∆x) = −2

3
λ2 ∂ρ

∂x
− λ2 α

2

∂ρ

∂x
+ O(∆x)

and the second equation of Eqs. (13) is established. �

Appendix 2 “HaWAY” staggered finite differences
We consider the acoustic model proposed in Eq. (13). With compact notation, we denote it
here according to :

(25)
∂ρ

∂t
+
∂J

∂x
= 0 ,

∂J

∂t
+ c2

0

∂ρ

∂x
+ Γ J(x, t) = 0 .

Given a spatial step ∆x and a time step ∆t, we consider integer multiples of these parame-
ters for the discretization of space and time. The density ρ is approximated at semi-integer
vertices in space and integer points in time whereas the momentum J is approximated at
integer nodes in space and semi-integer values in time:

(26) ρ ≈ ρnk+1/2 , J ≈ J
n+1/2
k .

The Figure 11 gives an illustration of this classical choice [1, 8, 13].
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Figure 11: HaWAY grid for staggered finite differences.

• We discretize the first equation of Eqs. (25) with a two-point centered finite-difference
schemes around the vertex

(
(k + 1

2
) ∆x , (n+ 1

2
) ∆t

)
:

(27)
1

∆t

(
ρn+1
k+1/2 − ρ

n
k+1/2

)
+

1

∆x

(
J
n+1/2
k+1 − Jn+1/2

k

)
= 0 .

We use the same approach for the discretization of the second equation of Eqs. (25) around
the node

(
k∆x , n∆t

)
:

(28)
1

∆t

(
J
n+1/2
k − Jn−1/2

k

)
+

1

∆x

(
ρnk+1/2 − ρnk−1/2

)
+ Γ Jnk = 0 .

We interpolate the momentum at integer vertices with a simple centered mean value:

Jnk =
1

2

(
J
n+1/2
k + J

n−1/2
k

)
.

We incorporate this expression into the relation Eq. (28) and we obtain

(29)
( 1

∆t
+

Γ

2

)
J
n+1/2
k +

1

∆x

(
ρnk+1/2 − ρnk−1/2

)
=
( 1

∆t
− Γ

2

)
J
n−1/2
k .

The numerical scheme is now entirely defined for internal nodes. We have used periodic
boundary conditions.
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