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Abstract: In previous work, the authors have found that blockage-wave interaction relates to Bragg resonance effect, which is governed by
the ratio of the wavelength to the length of the blockage. A direct extension of this work for the case of wave-leak interaction has led to a total
failure. This is because, unlike blockages, a leak has a vanishingly small length (generally modeled as a point), and according to the blockage
results, this would require an infinitesimal wavelength (i.e., infinite frequency). Yet, leak-imposed patterns are known to occur for finite
wavelengths. Therefore, the motive of this work was to seek a novel mechanism that is responsible for leak-induced Bragg resonance.
It was discovered that what matters in this case is the position of the leak point in relation to the node and antinode of the modes. It is
shown that a leak located at an antinode of a given mode will induce Bragg-type resonance of maximum reflection, and the corresponding
peak amplitude in the frequency response function (FRF) is a minimum. On the other hand, if a leak is located at a node of a given mode,
it experiences Bragg-type resonance of maximum transmission, and the peak amplitude in the FRF is a maximum. The pattern induced by a
leak on the FRF, used in many leak detection schemes, is attributable to the leak interaction with different modes. In fact, the closer the leak to a
node is, the higher is the amplitude of the corresponding resonant peak, and vice versa for leaks closer to antinodes. A number of leak detection
methods are discussed in light of the Bragg resonance mechanism. These insights are exploited for several distinguished leak detection
methods showing how a leak-induced pattern is explained from a new point of view. DOI: 10.1061/(ASCE)HY.1943-7900.0001714.
© 2020 American Society of Civil Engineers.
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Introduction

In the last two decades, various transient-based leak detection
methods have been developed and discussed showing promising
results. The principle of these techniques is to generate a transient
(acoustic) wave in a pipe system [e.g., by rapid maneuver of a valve
or a pump, or by using a piezoelectric actuator (Lee et al. 2017)]
and analyze the response of the system by measuring the pressure at
given location(s). It is important to note that, although some meth-
ods use the system response in time domain (e.g., Brunone 1999;
Ferrante and Brunone 2003b) and others use the frequency re-
sponse function (FRF) (e.g., Ferrante and Brunone 2003a; Lee et al.
2005b), the key feature of all of these methods is their reliance on
the physics of wave-leak interaction (e.g., Covas et al. 2005; Sattar
and Chaudhry 2010). Whether the data are processed in time
domain or frequency domain does not change the basic physics,

but has an implication on the type and nature of the signal process-
ing applied (Vítkovský and Lee 2008; Covas et al. 2008).

The research focus of transient-based leak detection methods has
been on the development of inversion techniques. This led to suc-
cessful results for simple pipe systems [e.g., reservoir–pipe–valve
(RPV) system] (e.g., Wang et al. 2002; Ferrante and Brunone 2003a;
Lee et al. 2005a, b; Covas et al. 2005; Ferrante et al. 2007; Sattar and
Chaudhry 2010; Gong et al. 2013) and few complex systems (Covas
et al. 2005).

Most developed methods make use of the leak-induced resonant
peak pattern in the FRF, but an in-depth investigation as to why a
leak induces a pattern on the normal modes has not been under-
taken. This is a study of the forward problem, in which the physical
mechanism of wave-leak interaction in a simple pipe system is in-
vestigated to understand the causes of such pattern and its key fea-
tures. Moreover, an advantage of studying the forward problem is to
gather information that could, in return, simplify the inverse prob-
lem. In fact, the authors have previously investigated the forward
problem of blockage-wave interaction, and showed that it leads to
simpler and more accurate detection techniques (Louati et al. 2017).

Previously, the authors have studied the forward problem for the
case of blockage-wave interaction (Louati et al. 2018), and showed
that it provides insights to simplify the inverse problem (Louati
et al. 2017). The mechanism of blockage-wave interaction was re-
lated to Bragg resonance effect (Bragg and Bragg 1913; Mei 1985),
which is governed by the ratio of the wavelength to the length of the
blockage. Many attempts to make a direct extension of this work
for the case of wave-leak interaction have led to nonsense results.
In fact, a leak has a vanishingly small length (generally modeled as
a point), and according to the blockage results, this would require
an infinitesimal wavelength (i.e., infinite frequency). Yet, leak-
imposed patterns are known to occur for finite wavelengths. There-
fore, the motive of this work was to seek a novel mechanism that is
responsible for leak-induced Bragg resonance.
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To further clarify the objective of this paper, Fig. 1 shows the FRF
for a RPV system with a leak located at xl ¼ 1.5=5L from
the reservoir, where L is the pipe length. The wave is injected at
the valve location where the output pressure data are collected. Data
in Fig. 1 were obtained using the transfer matrix method (Chaudhry
2014). Therefore, the transient is assumed to be created by an ideal
(instantaneous) flow impulse. In Fig. 1, the FRF is the ratio of the out-
put pressure head at the valve to the input flow discharge (generating
the transient). The FRF is plotted versus the frequency w normalized
by the fundamental resonant frequency of the intact RPV system
(w0). The dashed curve in Fig. 1 represents the FRF for the case
of intact (no leak) pipe system. Fig. 1 shows that the leak induces
a variation of the resonant peaks with respect to frequency. Such
variation was used by various researchers (e.g., Wang and Ghidaoui
2018; Gong et al. 2013; Sattar and Chaudhry 2010; Lee et al. 2005a,
b; Covas et al. 2005; Wang et al. 2002), either explicitly or implicitly,
to develop inverse problem algorithms for leak detection.

Lee et al. (2005b) used the leak-induced pattern on the FRF, its
periodicity, and its amplitude to develop an elegant method to deter-
mine the leak size and location. Moreover, Covas et al. (2005) used
what they called leak resonance to determine leak locations in pipe
systems. Their method is based on observing resonance that is
caused by the leak that manifests as high resonant peak in the
FRF (see fourth and fifth resonant peaks in Fig. 1). The method de-
veloped by Covas et al. (2005) and its equations are obtained by
analogy with the electrical cable fault detection method (Maloney
1973). The method shows that the frequency difference between the
two high resonant peaks provides the leak location. But why are
these resonant peaks of higher magnitudes? Why does the difference
in frequency provide information on the leak location? What is caus-
ing these variations and what are their features? Moreover, why are
different modes damped by the leak differently? Why is the pattern
periodic? The objective of this paper was to answer the aforemen-
tioned questions and reinterpret leak-induced pattern on the FRF
studied in the literature with a new and more explicit point of view.

Bragg-Type Resonance and Governing Equations

The continuity and momentum equation for inviscid and unsteady
pipe flow (classical water-hammer equations) are (Ghidaoui 2004)

∂H
∂t − a2

gA
∂Q
∂x ¼ 0

∂Q
∂t − gA

∂H
∂x ¼ 0 ð1Þ

where H = pressure head; Q = flow rate; g = gravitational constant;
a = wave speed; and A = pipe area. The convective terms are ne-
glected because the Mach number is of the order of 10−3 for most
water-hammer applications with typical flow velocities in water
supply systems of the order of 1 ms−1, whereas the wave speed is
of the order of 1,000 ms−1 (Ghidaoui 2004). Inviscid fluid is con-
sidered to simplify the theoretical investigation. In fact, steady fric-
tion damps all modes equally. Therefore, the steady friction would
not affect the pattern of FRF peaks. However, unsteady friction
damps different modes differently. Fortunately, it was found that
the unsteady friction interacts minimally with a leak. As a result,
the effect of unsteady friction could be subtracted out without any
influence on the results (Wang et al. 2002; Nixon et al. 2006; Nixon
and Ghidaoui 2007). In addition, the leak-induced signature has
been found in laboratory settings where friction is present (Gong
et al. 2013; Lee et al. 2006; Ferrante and Bruno 2003a). The wave-
leak interaction mechanism studied in this work, without account-
ing for friction, will be applied to experimental examples from the
literature, which shows that the effect of friction is not important as
long as the leak-induced pattern can be observed.

Fig. 2 shows a semibounded pipe system with a leak, in which
the boundary on the right is a reservoir and the boundary on the left

Fig. 2. Semibounded pipe with a leak (the boundary on the left is
extended to infinity).

Fig. 1. Comparison between the FRFs of an intact and a leaking RPV system, where a leak is located at xl ¼ 1.5=5L from the reservoir and
measurement taken at the valve location.
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is extended to infinity. Consider a wave train generated by a hy-
drophone, a hydraulic device, or an acoustic transmitter that
propagates in Pipe 1 toward the leak location in Fig. 2. Suppose
that this incident wave train has a wave number k, an angular
frequency w, and amplitude H0. Its form is H0 expð−ikxþ iwtÞ,
with i ¼ ffiffiffiffiffiffi−1p

. This wave field is governed by the water-hammer
equations [Eq. (1)].

Coupling the continuity and momentum equations, the classical
water-hammer equation in a frictionless pipe has the following
form (Ghidaoui 2004):

∂2H
∂t2 − a2

∂2H
∂x2 ¼ 0 ð2Þ

Using the method of separation of variables, the solution to
Eq. (2) is of the form ~Hðx;wÞ expðiwtÞ, where w and ~Hðx;wÞ are
the radian frequency and the amplitude of the propagating wave in
the pipe, respectively. Assume that the pipe system in Fig. 2 is com-
posed of two pipe segments: (1) upstream the leak, and (2) down-
stream the leak. Therefore, Eq. (2) becomes

d2 ~Hj

dx2
þ k2j ~Hj ¼ 0; j ¼ 1 or 2 ð3Þ

where kj ¼ w=a is the wave number of the jth pipe segment.
The solution of Eq. (3) is

~Hj ¼ Href
j expðikjxÞ þHtr

j expð−ikjxÞ ð4Þ

where Htr
j and Href

j = transmitted and reflected wave amplitudes in
pipe j, respectively.

In this case, j ¼ 1 is the pipe section to the left of the leak, and
j ¼ 2 is the pipe section to the right of the leak. The conditions of
pressure and flow continuity at the leak are

~H1 ¼ ~H2 ¼ HL

~Q1 ¼ ~Q2 þQL ⇔
gA
iw

d ~H1

dx
¼ gA

iw
d ~H2

dx
þ s ~H2 at x ¼ 0 ð5Þ

whereHL andQL = pressure head and flow rate at the leak, respec-
tively; and s = leak size. The boundary condition at the reservoir is

~H2 ¼ 0 at x ¼ xl ð6Þ
Eqs. (4)–(6) can be solved for any number of leaks. For simplic-

ity, only the case of single leak (as shown in Fig. 2) is discussed
in this work. The extension to multileaks is algebraically involved,
but can be performed using software packages, such as MATLAB
version R2016b. The case of multiple leaks will be studied in an-
other paper. Assuming no reflections from the upstream boundary
(left-hand-side boundary in Fig. 2) and an amplitude of the incident
wave H0 (i.e., Htr

1 ¼ H0), Eqs. (4)–(6) give

Href
1 þHtr

1 ¼ Href
2 þHtr

2

Href
1 −Htr

1 ¼ Href
2 ð1þ sZÞ −Htr

2 ð1 − sZÞ
Href

1 expðikxlÞ þHtr
1 expð−ikxlÞ ¼ 0

Htr
1 ¼ H0 ð7Þ

which leads to

Href
1

H0

¼ 2þ sZð1 − expð2ikxlÞÞ
−sZ − ð2 − sZÞ expð2ikxlÞ

ð8Þ

where

Z ¼ a=ðgAÞ ð9Þ

Taking the squared norm of the normalized reflection amplitude
gives

Rc ¼
����H

ref
1

H0

����2 ¼ 1þ 2sZð1þ sZ=2Þsin2ðkxlÞ
1 − 2sZð1 − sZ=2Þsin2ðkxlÞ

ð10Þ

The extrema of the reflected wave amplitude are found if

dRc

dk
¼ 16sZ cosðkxlÞ sinðkxlÞxl

½1 − ð2 − sZÞsZsin2ðkxlÞ�2
¼ 0 ð11Þ

Maximum reflection occurs if

cosðkxlÞ ¼ 0 ⇒ wR
n ðxlÞ ¼ 2π

�
ð2n − 1Þ a

4xl

�
; n ∈ Zþ ð12Þ

which is precisely Bragg’s resonance condition of maximum reflec-
tion (Louati et al. 2018; Mei 1985; Bragg and Bragg 1913), where
wR
n = angular frequency at which maximum reflections occur.
Minimum reflection occurs if

sinðkxlÞ ¼ 0 ⇒ wT
n ðxlÞ ¼ 2π

�
2ðn − 1Þ a

4xl

�
; n ∈ Zþ ð13Þ

which is precisely Bragg’s resonance condition of maximum trans-
mission (Louati et al. 2018; Mei 1985), where wT

n = angular fre-
quency at which maximum transmissions occur. In the preceding
equations, Zþ = space on positive integers. Note that maximum
reflection occurs when the leak location is an odd multiple of quar-
ter of wavelength [i.e., xl ¼ ½ð2n − 1Þ=4�λ, where λ is the wave-
length], and minimum reflection occurs when the leak location
is a multiple of half-wavelength [i.e., xl ¼ ðn=2Þλ]. Details on
Eqs. (3)–(13) are given in Appendix.

Notice that, if the upstream boundary is changed from being a
reservoir (i.e., constant pressure) to a valve (i.e., dead end), then the
Bragg resonance conditions are interchanged, in which Eq. (12)
becomes the condition of maximum transmission and Eq. (13)
becomes the condition of maximum reflection.

The next section shows how the Bragg resonance conditions
[Eqs. (12) and (13)] are used to analyze the mechanism of resonant
peak variation in the FRF for the case of a bounded RPV system.

Bragg Resonance and Its Relation to
Leak-Induced Pattern

This section presents the wave-leak interaction in a bounded pipe
system, and discusses how the variation of resonant peaks (espe-
cially maximum and minimum resonant peaks) relates to Bragg
resonance.

Considering a RPV system with length L and a leak located at
xl < L, as shown in Fig. 3. The eigenfrequencies (i.e., natural res-
onant frequencies) are given by the following dispersion relation
(Chaudhry 2014):

Fig. 3. RPV system with a leak.

© ASCE 04020013-3 J. Hydraul. Eng.

 J. Hydraul. Eng., 2020, 146(4): 04020013 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

G
la

sg
ow

 U
ni

ve
rs

ity
 L

ib
ra

ry
 o

n 
01

/2
7/

20
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



cosðkmLÞ ¼ 0 ⇒ wm ¼ akm ¼ 2π

�
ð2m − 1Þ a

4L

�
; m ∈ Zþ ð14Þ

where km ¼ wm=a is themth wave number; wm ¼ mth eigenfrequency; andZþ = space on positive integers. The FRF of a RPV system with a
leak could be obtained using the transfer matrix method (Chaudhry 2014). The following is the FRF (which is represented asϒ) for the case of
a frictionless pipe measured at a given location xM along the pipe system:

ϒ ¼ Mu−xM
Mu−d

ð15Þ

where 8>>>>>>>>><
>>>>>>>>>:

Mu−xM ¼

8>>>><
>>>>:

−iZ sinðkxMÞ if xM ≤ xl

−Z
2
64
i cosðkxlÞ sinðkðxM − xlÞÞ
þi sinðkxlÞ

�
cosðkðxM − xlÞÞ
þiðZ=ZLÞ sinðkðxM − xlÞÞ

�
3
75 if xM ≥ xl

Mu−d ¼ cosðkxlÞ cosðkðL − xlÞÞ þ i sinðkxlÞ
�
i sinðkðL − xlÞÞ
þðZ=ZLÞ cosðkðL − xlÞÞ

�
ð16Þ

ZL ¼ ð2H̄L=Q̄LÞ is the impedance at the leak; and H̄L and Q̄L = mean pressure head and mean flow rate at the leak, respectively.
The squared magnitude of the FRF is

jϒj2 ¼ ½Z sinðkxMÞ�2
cos2ðkLÞ þ ðZ=ZLÞ2sin2ðkxlÞcos2ðkðL − xlÞÞ

if xM ≤ xl

jϒj2 ¼ ðZ0
cÞ2½sin2ðkxMÞ þ ðZ=ZLÞ2sin2ðkxlÞsin2ðkðxM − xlÞÞ�
cos2ðkLÞ þ ðZ=ZLÞ2sin2ðkxlÞcos2ðkðL − xlÞÞ

if xM ≥ xl ð17Þ

It is highly instructive to impose Bragg resonance conditions
[Eqs. (12) and (13)], derived in the previous section on the FRF
[Eq. (17)]. This allows studying the relation between Bragg reso-
nance conditions and the variation of the mode amplitudes at the
eigenfrequencies observed in a FRF of a pipe system with a leak.
To relate the Bragg resonance frequencies to the eigenfrequencies
of the system, Eq. (14) is imposed, such that the Bragg resonance
conditions [Eqs. (12) and (13)] become, respectively

wm ¼ wR
n ðxlÞ ⇒

xl
L
¼ 2n − 1

2m − 1
ð18Þ

and

wm ¼ wT
n ðxlÞ ⇒

xl
L
¼ 2n

2m − 1
ð19Þ

Eqs. (18) and (19) correspond to the leak locations where Bragg
resonance of maximum reflection and minimum reflection occurs at
a given mode m, respectively. Notice that the locations in Eqs. (18)
and (19) also correspond to the locations of stagnation points
(i.e., maximum pressure or zero flow) and pressure nodes (zero pres-
sure or maximum flow) of a given mode m. The physical interpre-
tation of these locations and their implications is discussed next.

In the following sections, only a RPV system is considered, but if
the system has symmetric boundary conditions, such as reservoir–
pipe–reservoir (RPR) or valve–pipe–valve (VPV), the study of the
effect of Bragg resonance on the FRF leads to the same conclusions
with the following changes in the Bragg resonance conditions:
• Bragg resonance condition of maximum reflection

RPR system∶

8>>><
>>>:

wR
n ¼ 2π

�
ð2n − 1Þ a

4xl

�
; n ∈ Zþ

xl
L
¼ 2n − 1

2m

ð20Þ

VPV system∶

8>>><
>>>:

wR
n ¼ 2π

�
2ðn − 1Þ a

4xl

�
; n ∈ Zþ

xl
L
¼ ðn − 1Þ

m

ð21Þ

• Bragg resonance condition of maximum transmission

RPR system∶

8>>><
>>>:

wT
n ¼ 2π½2ðn − 1Þ a

4xl

�
; n ∈ Zþ

xl
L
¼ ðn − 1Þ

m

ð22Þ

VPV system∶

8>>><
>>>:

wT
n ¼ 2π

�
ð2n − 1Þ a

4xl

�
; n ∈ Zþ

xl
L
¼ 2n − 1

2m

ð23Þ

It is important to note that, if the pipe system boundaries are
unknown, then the Bragg resonance conditions cannot be deter-
mined. In addition, if the boundaries of the system consist of par-
tially opened or partially closed valves, then they should be either
known or determined to obtain the Bragg resonance conditions. Ac-
cording to the work of Wylie and Streeter (1993), which was further
discussed by Tijsseling and Vardy (2017), partially opened/closed
valves behave as fully opened or fully closed valves depending
on the degree of opening. For example, if the opening of the down-
stream valve in Fig. 3 is more than 50%, then it behaves as fully
opened, which means the resonant frequency will be even numbered
(similar to the RPR system). If the valve is less than 50% opened,
then the system responds similarly to the RPV system (which means
the resonant frequencies will be odd numbered). Other boundary
conditions can be analyzed by changing Eq. (6) and the third line
in Eq. (7).

© ASCE 04020013-4 J. Hydraul. Eng.
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Effect of Bragg Resonance Condition of Maximum
Transmission on the FRF

Inserting Eqs. (14) and (19) into Eq. (17) gives

jϒj2 ¼
�
Z sin

	
nπ xM

xl


�
2

cos2ðð2m − 1Þ π
2


 if xM ≤ xl

jϒj2 ¼
½Z sinðnπ xM

xl
Þ�2

cos2
	ð2m − 1Þ π

2
Þ if xM ≥ xl ð24Þ

Eq. (24) shows that the FRF tends to infinity unless the numer-
ator is zero. Note that the FRF approaches infinity only for the case
of inviscid flow. Of course, in reality, the amplitude would not
become infinite because of the presence of friction. For example,
if measurement is taken at the valve (xM ¼ L), Eq. (24) becomes
jϒj ¼ Z= cos½ð2m − 1Þðπ=2Þ� → ∞. The reason for the amplitude
to tend to infinity is because, at this specific mode m, in which
Bragg resonance of minimum reflection is satisfied, the leak is
located at a pressure node (zero pressure) of the mth harmonic.
(This is discussed further in the next section.) Therefore, the pipe
system with a leak behaves similarly to an intact pipe system at
mode m that satisfies Bragg resonance of maximum transmission.
At this mode, Eq. (19) is satisfied, implying minimum reflection.
Moreover, the FRF form in Eq. (24) is the same as the FRF for an
intact frictionless pipe system. Fig. 4 shows the FRF for the case
of a RPV system with a leak located at xl ¼ 2=5L, which satisfies
Eq. (19) withm ¼ 3 and n ¼ 1, and measurement taken at xM ¼ L.
Fig. 4 shows that, at the third eigenfrequency, the amplitude is
infinite (i.e., very large) as expected. Such behavior occurred in a
previous literature, and some examples will be discussed later in
this paper. Fig. 4 is a zoomed picture that shows that the FRF at
other eigenfrequencies is not zero, but simply much smaller.

It is interesting to note that, if measurement is taken at a distance
that is a multiple of the leak location (xM ¼ jxl; j ∈ Zþ), the FRF
becomes zero [Eq. (24)]. For example, if xM ¼ 2xl, then jϒj → 0.

The reason for such behavior is that, if the leak is located at a pres-
sure node, then a measurement at a multiple distance of the leak
will also be at a pressure node where the pressure amplitude is
zero. Fig. 5 shows the FRF for the case of a RPV system with a
leak located at xl ¼ 2=5L, which satisfies Eq. (19) with m ¼ 3
and n ¼ 1, and measurement taken at xM ¼ 2xl. Fig. 5 shows that,
at the third eigenfrequency, the amplitude is zero as expected.
Therefore, measurement location is an important parameter.

Effect of Bragg Resonance Condition of Maximum
Reflection on the FRF

In this section, the Bragg resonance condition of maximum reflec-
tion is considered by inserting Eqs. (14) and (18) into Eq. (17),
which gives

jϒj2 ¼
�
ZL sin

�
ð2n − 1Þ π

2

xM
xl

��
2

if xM ≤ xl

jϒj2 ¼
�
ZL sin

�
ð2n − 1Þ π

2

xM
xl

��
2

þ
�
Z cos

�
ð2n − 1Þ π

2

xM
xl

��
2

if xM ≥ xl ð25Þ

Eq. (25) shows that the FRF gives a finite value and has
two particular cases. The first case is when cos½ð2n − 1Þðπ=2Þ
ðxM=xlÞ� ¼ 0, which implies that the measurement location satis-
fies a similar condition as the Bragg resonance of maximum re-
flection in Eq. (18) [i.e., xl=xM ¼ ð2n − 1Þ=ð2n 0 − 1Þ, with n 0 a
positive integer]. This means that the measurement location is at a
maximum pressure point. In this case, the magnitude of FRF at that
particular mode m is equal to the leak impedance. For example,
if xM ¼ L, which satisfies Bragg’s condition in Eq. (18), the
FRF gives jϒj ¼ ZL at mode m. In fact, at Bragg resonance con-
dition of maximum reflection [Eq. (18)], the leak is located at a
maximum pressure point of the mth harmonic. (This is discussed
further in the next section.) Under such condition, the flow across

Fig. 4. FRF for a RPV system with a leak located at 2=5L and
measurement taken at xM ¼ L (at the valve) using the transfer matrix
method.

Fig. 5. FRF for a RPV system with a leak located at xl ¼ 2=5L and
measurement taken at xM ¼ 2xl ¼ 4=5L.

© ASCE 04020013-5 J. Hydraul. Eng.
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the leak is maximum, and therefore, the effect of the leak is also
maximum. (The amplitude of the mth mode is therefore highly
attenuated.) By consequences, the reflection from the leak is maxi-
mum. When the measurement location is also at a maximum pres-
sure of mode m, the measurement records exactly what occurred
at the leak for mode m. Therefore, by measuring at the valve,
the size of a leak can be determined (approximatively) by identi-
fying the minimum amplitude that gives the leak impedance (ZL ¼
2H̄L=Q̄L). Fig. 6 shows the FRF for the case of a RPV system with
a leak located at xl ¼ 3=5L, which satisfies Eq. (18) with m ¼ 3
and n ¼ 2, and measurement taken at xM ¼ L. The characteristics
of the leak used to obtain Fig. 6 are leak size s ¼ 5 × 10−5 m2, the
flow at the leak Q̄L ¼ s

ffiffiffiffiffiffiffiffiffiffiffi
2gH̄L

p
, and H̄L ¼ H0 ¼ 25 m. Fig. 6

shows that, at the third eigenfrequency, the amplitude is minimum
as expected, and the value of the amplitude corresponds to the leak
impedance (ZL ¼ 2H̄L=Q̄L ¼ 4.515 104 sm−2). In fact, this prop-
erty is implicitly used in Wang et al. (2002) and it is discussed in
detail later in this paper.

The second case observed in Eq. (25) is when sin½ð2n − 1Þðπ=2Þ
ðxM=xlÞ� ¼ 0, which implies that the measurement location satis-
fies a similar condition as the Bragg resonance of maximum reflec-
tion for the case of RPR in Eq. (20) [i.e., xl=xM ¼ ð2n − 1Þ=ð2n 0Þ],
where n 0 is a positive integer. This means that the measurement
location is at the pressure nodes of the RPR harmonics. This con-
dition is actually similar to the first case condition, but for the cases
in which the maximum damping occurs at the antiresonant frequen-
cies. In this case, the magnitude of the FRF at that particular mode
m is equal to the pipe impedance. For example, if xM ¼ 2xl, the
FRF gives jϒj ¼ Z at mode m.

Mechanism of Resonant Peak Variations and
Its Properties

Having understood the relation between the FRF peak variation,
the leak-mode interaction, and Bragg resonance effect, one could

describe the following mechanism: when transient waves are gen-
erated into a pipe with a leak located at a given location xl, the
harmonic modes are excited. These harmonic modes (or standing
waves) have pressure nodes (where the transient pressure is zero)
and stagnation points (or antinodes where the transient pressure is
maximum). If the leak is located at or near a pressure node of mode
m, then the mth resonance peak observed in the FRF would have a
maximum (or very large) value. On the other hand, if the leak is
located at or near a stagnation point of mode m, then the mth res-
onance peak observed in the FRF would have a minimum (or very
small) value. The leak location at either stagnation point or pressure
node is related to Bragg resonance of maximum or minimum re-
flection, respectively, as discussed in previous sections. If the leak
is located in neither stagnation point nor pressure node of mode m,
then the mth resonance peak observed in the FRF would have an
intermediate value (between the minimum and maximum values).
Fig. 7 is a sketch of three different leak locations and how the mth
resonant peak varies accordingly (m ¼ 3 in Fig. 7).

Another property of the FRF is that the resonant peak variations
observed are periodic, and the reason is because the Bragg reso-
nance effect is also periodic. In fact, if Bragg resonance is observed
at mode m0, the other similar Bragg resonances are observed at
mode m2, where 2m2 − 1 is an odd multiple of 2m0 − 1 for a RPV
system [Eqs. (26) and (27)]

wR
n

w0

¼ ð2n − 1Þ L
xl

¼ ð2n − 1Þ
ð2n0 − 1Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}

odd

ð2m0 − 1Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
odd

¼ ð2m2 − 1Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
odd

; n ∈ Zþ

ð26Þ

wT
n

w0

¼ 2ðn − 1Þ L
xL

¼ ðn − 1Þ
ðn0 − 1Þ|fflfflfflffl{zfflfflfflffl}
must be odd

ð2m2 − 1Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
odd

¼ ð2m2 − 1Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
odd

; n ∈ Zþ

ð27Þ

Therefore, an intermediate resonant peak [Figs. 7(e and f)]
at a given mode mi is observed again at mode mi2, where
mi2 ¼ mi þ 2ðm2 −miÞ.

Revisiting the Literature in Light of the Bragg
Resonance Mechanism

Note that, so far, only a RPV system is considered, but if the sys-
tem has symmetric boundary conditions, such as RPR or VPV, the
previously described mechanism still holds with the following
changes in periodicity property of the FRF and Bragg resonance
effect:
• Bragg resonance condition of maximum reflection

RPR system∶ w
R
n

w0

¼ ð2n − 1Þ L
xl

¼ ð2n − 1Þ
ð2n0 − 1Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}

odd

ð2m0Þ|fflffl{zfflffl}
even

¼ ð2m2Þ|fflffl{zfflffl}
even

; n ∈ Zþ ð28Þ

VPV system∶ w
R
n

w0

¼ 2ðn − 1Þ L
xl

¼ ðn − 1Þ
ðn0 − 1Þ|fflfflfflffl{zfflfflfflffl}
odd or even

ð2m0Þ|fflffl{zfflffl}
even

¼ ð2m2Þ|fflffl{zfflffl}
even

; n ∈ Zþ ð29Þ

Fig. 6. FRF for a RPV system with a leak located at 3=5L and
measurement taken at xM ¼ L (at the valve).
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• Bragg resonance condition of maximum transmission

RPR system∶ w
T
n

w0

¼ 2ðn − 1Þ L
xl

¼ ðn − 1Þ
ðn0 − 1Þ|fflfflfflffl{zfflfflfflffl}
odd or even

ð2m0Þ|fflffl{zfflffl}
even

¼ ð2m2Þ|fflffl{zfflffl}
even

; n ∈ Zþ ð30Þ

VPVsystem∶ w
T
n

w0

¼ ð2n− 1ÞL
xl

¼ ð2n− 1Þ
ð2n0 − 1Þ|fflfflfflfflffl{zfflfflfflfflffl}

odd

ð2m0Þ|fflffl{zfflffl}
even

¼ ð2m2Þ|fflffl{zfflffl}
even

; n ∈Zþ ð31Þ

Relation of Bragg Resonance to the Method by
Wang et al. (2002)

Bragg resonance of maximum reflection shows that, if leaks are
located at stagnation points [Eqs. (18), (20), and (21)], then particu-
lar modes are damped severely. Fig. 9(c) in Wang et al. (2002)
points out that the second mode is extremely damped because of
the leak in comparison with the other modes. This fact can now be
understood by Bragg resonance. In particular, the leak location con-
sidered in Wang et al. (2002) is xl ¼ 1=4L, which satisfies Eq. (20)
with m ¼ 2 and n ¼ 1 for a RPR system. In fact, the following
damping equation is introduced in Wang et al. (2002):

RmL ¼ ALsin2ðmπxl=LÞ ð32Þ
where AL = modified leak size; and sinðmπxl=LÞ = normalized har-
monic function for a RPR system, which clearly shows that the
damping caused by a leak is proportional to the squared normalized

Fig. 7. Mechanism of FRF peak pattern: (a and b) defect at a pressure node of the third harmonic; (c and d) defect at a stagnation point of the third
harmonic; and (e and f) defect is at an intermediate location.
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magnitude of the mth harmonic. As the harmonic function de-
creases, the damping caused by the leak decreases; hence, the effect
of the leak is weaker. Therefore, the resonant peak is higher. As a
result, the variation of the resonant peaks is inversely proportional
to the damping magnitude.

Wang et al. (2002) derived their equation for a RPR and, when
they applied it for RPV, they had to create a fictitious symmetric
RPV system to go back to their original RPR system. However, it
can be shown that the same conclusion holds for a RPV system, in
which the damping function becomes

RmL ¼ ALsin2
�
ð2m − 1Þ π

2

xl
L

�
ð33Þ

If Eq. (33) is used for the RPV system case in Wang et al. (2002)
taking the damping ratio between modesm ¼ 2 andm ¼ 1, it gives
xl ¼ 0.24L, as found by adding the fictitious second RPV system.
In fact, the solution is unique as stated in Wang et al. (2002). This
uniqueness can be shown explicitly from the new point of view of
Bragg resonance. In the case of Wang et al. (2002), the uniqueness
comes from the fact that the ratio of the harmonic magnitudes
between modes m ¼ 2 and m ¼ 1 is unique when xl ¼ 0.25L,
as shown in Fig. 8(a). In other words, there is no other location along
the pipe where the ratio of the harmonic magnitudes between modes
m ¼ 2 and m ¼ 1 is the same as at the location 0.25L [Fig. 8(a)].
However, for the case of the RPR system, Fig. 8(b) shows that the
ratio of the harmonic magnitudes between the first three harmonics
in the RPR system is equal at two locations (xl ¼ 0.25L and xl ¼
0.75L), which makes the solution nonunique as found inWang et al.
(2002). Note that, if the ratio between the third and second harmon-
ics of the RPV system is taken instead of the second and first
harmonics, then the solution will be nonunique similar to the

RPR system [Fig. 8(a)]. This is because the ratio of the harmonic
magnitudes between modes m ¼ 3 and m ¼ 2 is the same at two
locations (xl ¼ 0.25L and xl ¼ 0.75L), as shown in Fig. 8(a).
In addition, it is clear from Fig. 8(a) that, for the case of the RPV
system, the second harmonic leads to much higher damping than
the first harmonic, because its magnitude is higher at xl ¼ 0.25L.
The large damping is shown in Wang et al. (2002).

Relation of Bragg Resonance to the Analysis Work by
Ferrante and Brunone (2003a)

While studying the effect of leak impedance on FRF, Ferrante and
Brunone (2003a) analyzed the impedance function. They found
special conditions at which the impedance measured at the down-
stream boundary goes to infinity (for an ideal frictionless pipe).
These conditions [Eqs. (38) and (41) in Ferrante and Brunone
(2003a)] correspond to the Bragg resonance conditions of maxi-
mum transmission. Although Ferrante and Brunone (2003a) stud-
ied the case of RPV, their Eq. (41) corresponds to the condition of
Bragg resonance of maximum transmission for the case of RPR.
The reason is that Eq. (41) provides the condition on FRF at the
antiresonant frequencies, which behaves precisely the same as the
FRF at the resonant frequencies for a RPV case.

In addition, Ferrante and Brunone (2003a) provided a condition
in their Eq. (33), which is not related to Bragg resonance, but
for consistency, Eq. (17) is rewritten as follows (with xM ¼ L)
to show that such condition occurs in addition to Bragg resonance
conditions:

jϒj2 ¼ Z2tan2ðkLÞ1þ
1
4
ðZ=ZLÞ2sin2ð2kxlÞ½1− cotðkLÞ tanðkxlÞ�2

1þ 1
4
ðZ=ZLÞ2sin2ð2kxlÞ½tanðkLÞ− tanðkxlÞ�2

ð34Þ

Fig. 8. Dimensionless harmonic magnitude for the first three modes: (a) RPV system; and (b) RPR system.
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Bragg resonance conditions are governed by sinð2kxlÞ ¼
2 sinðkxlÞ cosðkxlÞ ¼ 0. For example, Bragg resonance of maxi-
mum transmission occurs when sinðkxlÞ ¼ 0 [Eq. (13)], and
Eq. (17) reduces to jϒj2 ¼ Z2tan2ðγLÞ, which is the FRF for the
intact pipe case. If

tanðkLÞ ¼ tanðkxlÞ ð35Þ

Eq. (17) reduces also to jϒj2 ¼ Z2tan2ðγLÞ. The frequencies at
which Eq. (35) is satisfied do not correspond to the fundamental
resonance frequencies. This condition actually corresponds to the
intersection of the asymptotic cases of the RPV system with leak.
At the asymptotic (extreme) case, where the leak is large enough
to behave as a reservoir, the RPV system with leak decouples into
a RPR and RPV system with length xl and 1 − xl, respectively.
The FRFs of different leak cases intersect at the intersection of the
intact case and decoupled case asymptotes. A more detailed analy-
sis on the condition in Eq. (35) will be discussed in another paper.

Relation of Bragg Resonance to the Methods by
(Lee et al. 2005a, b)

Lee et al. (2005b) exploited the periodicity property of FRF dis-
cussed previously (section “Mechanism of Resonant Peak Varia-
tions and Its Properties”) and the proportionality effect between the
wave-leak interaction and the resonant peaks to locate leaks in a
pipe system. Lee et al. (2005b) first inverted the values of the res-
onant peaks, which become proportional to the harmonic function,
and by applying discrete Fourier transform (DFT), the leak location
is determined. Note that the DFT gives the period at which the
harmonic function becomes maximum or minimum. Eq. (33) [or
Eq. (32)] shows that the maximum and minimum damping obey
the Bragg resonance conditions [Eqs. (12) and (13)].

The maximum and minimum damping effects governed by
Bragg resonance appear in the results by Lee et al. (2005b). For
example, Fig. 1 in Lee et al. (2005b) clearly shows that the peak
of the seventh harmonic is very large (about the same as the peak
for the no leak case). This fact can be explained by Bragg reso-
nance. In particular, the leak is located at a pressure node, where
xl ¼ 0.15L, which is approximately 2=13L. This corresponds to
the case, where m ¼ 7 and n ¼ 1 in Eq. (19). At this location,
Bragg resonance of maximum transmission occurs and the effect
of the leak becomes very weak. This is why the leak and no leak
cases coincide at the seventh harmonic shown in Fig. 1 by Lee et al.
(2005b). Similar interpretations can be given for the experimental
results in Lee et al. (2006). For example, Fig. 17 in Lee et al. (2006)
shows that, for a RPV system, the fourth mode experiences large
damping when the leak location is at about xl ¼ 0.75L away from
the reservoir. This is very close to the pressure antinode of the
fourth mode, and thus, it experiences Bragg resonance of maximum
reflection with m ¼ 4 and n ¼ 3 [Eq. (18)]. On the other hand, the
second and sixth modes experience little damping because the leak
is located near the pressure nodes of the second and sixth modes,
and thus, they experience Bragg resonance of maximum transmis-
sion with (m ¼ 2 and n ¼ 1) and (m ¼ 6 and n ¼ 4), respectively.
This experimental example shows that the effect of friction does not
affect the mechanism of wave-leak interaction.

Another interesting leak detection method that also uses the
mechanism of wave-leak interaction described previously is the
peak sequencing method by Lee et al. (2005a). In this method,
Lee et al. (2005a) relaxed their need of using the periodicity prop-
erty of the FRF. However, this method does not determine the leak
location, but gives a range where the leak location could be. The
range becomes narrower (better accuracy) if more resonant peaks

are used. The peak sequencing method recognizes the sequence of
which resonant peak is higher than the other, sorts the sequence
from highest to lowest, and then finds the corresponding range of
leak location where the harmonic amplitudes are sequenced and
sorted from lowest to largest [because they are inversely propor-
tional, as discussed previously throughout the methods by Wang
et al. (2002)]. The work by Lee et al. (2005a) is perhaps the closest
of all leak detection methods to indicate the link between the
harmonics and leak location, because it uses the information that
higher amplitude of a harmonic at the leak location would induce
lower amplitude of the FRF peak. However, in their paper, they
neither explain nor discuss the full physical mechanism of leak-
harmonic interaction. The current work gives full details on the
leak-harmonic interaction and their relation to Bragg-type reso-
nance. In fact, Bragg resonance shows that the variation of the res-
onant peaks of FRF is inversely proportional to the variation of the
harmonic amplitude at the leak location: the lower the resonant
peak is, the higher is the amplitude of the harmonic at the leak lo-
cation, and vice versa for higher resonant peak values. Combining
the knowledge of possible leak locations obtained from the Bragg
resonance effect with the peak sequencing method could lead to a
much narrower leak location range (better accuracy) without using
a larger number of resonant peaks.

Relation of Bragg Resonance to the Method by
Covas et al. (2005)

Covas et al. (2005) introduced a leak detection method, in which
they used the properties of Bragg resonance effect and the perio-
dicity property. Unlike Lee et al. (2005b), who performed Fourier
transform on the resonant peaks, Covas et al. (2005) applied
Fourier transform on the whole FRF. In fact, Covas et al. (2005)
appear to be the first to exploit leak resonance modes. Their equa-
tion of leak resonance is obtained from analogy with electrical
system to determine the cable fault location (Maloney 1973). The
current work shows that this resonance is attributable to Bragg res-
onance effect. Covas et al. (2005) used the difference in frequency
between two consecutive Bragg resonances of maximum transmis-
sion to determine the leak location. In Fig. 6 from Covas et al.
(2005), the first resonance occurred at the third harmonic, which
is because the leak is located at xl ¼ 0.8L ¼ 4=5L. [Note that,
in Covas et al. (2005), xl is measured from the valve; here, xl is
measured from the reservoir.] This corresponds to the case, where
m ¼ 3 and n ¼ 2 in Eq. (19). The second resonance occurred at
m ¼ 8 because it also satisfies Eq. (19) when n ¼ 4. It is important
to state that Bragg resonance shows that the leak resonance can
occur at the same mode numbers if the leak is at xl ¼ 0.4L ¼
2=5L instead of xl ¼ 0.8L ¼ 4=5L. Fig. 9 gives the FRFs for the
two leak locations (xl ¼ 2=5L and xl ¼ 4=5L). Fig. 9 shows that,
for both cases, the leak resonance [as called in Covas et al. (2005)]
occurs at the same modes. The FRFs are distinguished by looking
at the lower resonant peaks that occur at different modes. For the
case, in which xl ¼ 2=5L, the first low resonant peak occurs at
Mode 2. The reason for this mode to damp the amplitude largely
is because it is close to a maximum pressure position. In fact, it
nearly satisfies Eq. (18) for Bragg resonance of maximum reflec-
tion with m ¼ 2 and n ¼ 1. However, for the case xl ¼ 4=5L, the
lower resonant peak occurs at Mode 4. The reason for this mode to
damp the amplitude largely is because it is close to a maximum
pressure position. In fact, it nearly satisfies Eq. (18) for Bragg res-
onance of maximum reflection with m ¼ 4 and n ¼ 3.

It is shown in the section “Effect of Bragg Resonance Condition
of Maximum Transmission on the FRF” that the measurement lo-
cations could modify the FRF severely; therefore, it is important to
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take such information into account. In fact, using the FRF in Fig. 5
to obtain the frequency difference between the leak resonant peaks,
as applied in Covas et al. (2005), will lead to an error. For example,
Fig. 5 shows that the resonant peaks at Modes 5 and 6 are large,
and the dimensionless frequency difference is Δw�

R ¼ 2. In this
case, Eq. (16) in Covas et al. (2005) gives xl ¼ 0. [Note that, in
Covas et al. (2005), xl is measured from the valve; here, xl is mea-
sured from the reservoir.] Fig. 5 also shows that it is possible to
take the frequency difference between Modes 6 and 10, which
is Δw�

R ¼ 8. In this case, Eq. (16) in Covas et al. (2005) gives
xl ¼ 0.75. The errors are because the true large resonant peaks
corresponding to the leak resonance (or Bragg resonance of maxi-
mum transmission) become very small because of the change of
measurement location.

Relation of Bragg Resonance to the Method by
Sattar and Chaudhry (2010)

Another interesting aspect of the wave-leak interaction is that the
Bragg resonance does not affect the resonant peaks only, but, in
fact, it affects the antiresonant peaks as well in a very similar way.
Actually, the antiresonant peaks are simply the resonant peaks for a
symmetric RPR system, as shown in Fig. 10. This means that the
same information that could be extracted from the resonant peaks
could also be extracted from the antiresonant peaks. For example,
xl ¼ 3=5L satisfies the Bragg resonance condition of maximum
reflection for a RPV system [Eq. (18)] with m ¼ 3 and n ¼ 2, but
it also satisfies the Bragg resonance condition of maximum trans-
mission for a RPR system [Eq. (22)] withm ¼ 5 and n ¼ 3. This is
precisely the information that is used implicitly for the leak detec-
tion method by Sattar and Chaudhry (2010). Similar to the methods
by Covas et al. (2005) and Lee et al. (2005b), Sattar and Chaudhry
(2010) used the leak-induced pattern on the antiresonant peaks to
develop a leak detection method.

Relation of Bragg Resonance to the Method by
Gong et al. (2013)

A recently developed leak detection method by Gong et al. (2013)
uses only the first three resonant peaks to locate leaks. This means
that this method does not require a large frequency bandwidth for
accurate leak detection, a feature that is usually preferred in prac-
tice. In fact, the lower the number of resonant frequency is required,
the fewer requirements on the sharpness of the generated transient
wave are imposed, which is easier to deliver in practice (e.g., slower
valve maneuver). The interesting part of this method and its relation
to the current work is that Gong et al. (2013) reported that the
method fails when leaks are located near the boundaries, or close
to the pipe middle point. To understand why the method fails, one
needs to briefly review the principle of the leak detection method
by Gong et al. (2013). The method uses a characteristic equation of
the resonant peak amplitude hcðZv;ZL; x�l ;wmÞ, which is valid at
every resonant frequency wm and depends on three unknowns: Zv,
ZL, and x�l as follows (Gong et al. 2013):

hcðZv;ZL; x�l ;wmÞ ¼
Zv

1þ ZLð1 − cosðπx�l wmÞÞ
ð36Þ

If Eq. (36) is applied to the first three resonant peaks, then one
can solve for the three unknowns given the three equations. Note
that the system of three equations–three unknowns provides a
unique solution provided that the equations are independent. The
violation of this condition is what causes the failure of the method
when the leak induces the same effect on the used harmonics.
Fig. 11(a) gives the first three resonant peaks of a FRF of a RPV
with a leak located at the middle of the pipe, and Fig. 11(b) gives
the first three harmonic functions. Notice that the first three reso-
nant peaks have the same values. This is understood because, at the
middle of a RPV system, the harmonic functions have the same
magnitudes. In this case, the system of three equations–three un-
knowns reduces to a system of one equation–three unknowns

Fig. 9. Comparison of the FRFs of the RPV system with measurement
at xM ¼ L and a leak at xl ¼ 4=5L and xl ¼ 2=5L. (Data from Covas
et al. 2005.)

Fig. 10. Comparison of FRFs of RPVand RPR systems with measure-
ment at xM ¼ L and a leak at xl ¼ 3=5L.
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because applying Eq. (36) to the first three resonant frequencies
gives the same value. Fig. 11(b) shows that this is also the case at
the pipe boundaries. Therefore, the method by Gong et al. (2013) is
found to be sensitive when the harmonic amplitudes of the first
three modes are close to each other.

Conclusions

Wave-leak interaction was studied for a simple case of a frictionless
pipe connected to a reservoir at the upstream boundary and to a
valve at the downstream boundary. The theoretical analysis shows
that, depending on the leak location, some of the pipe harmonics
experience special resonance behavior. The conditions of these spe-
cial cases are similar to the Bragg resonance conditions. Unlike
blockages, which were studied previously by the authors, a leak
has a vanishingly small length (generally modeled as a point). If
the previous blockage work is extended for the leak case, it would
require an infinitesimal wavelength (i.e., infinite frequency). Yet,
leak-imposed patterns are known to occur for finite wavelengths.
Therefore, this work proposes a novel mechanism that is respon-
sible for leak-induced Bragg resonance and explains the transient-
based leak-induced patterns that are available in the literature (both
experimentally and numerically) from a new and explicit point
of view.

In particular, if the leak is located at a maximum pressure node
of a given harmonic, this latter experiences Bragg-type resonance
of maximum reflection. The reason is that, although the leak is lo-
cated at maximum pressure node, it induces severe damping, and
therefore, waves propagating at a frequency similar or multiple of
that given harmonic experience maximum reflection. By conse-
quences, this emphasizes the leak location and size in the FRF,
where the location of the leak is determined from the possible maxi-
mum pressure nodes and the size of the leak is determined from the
lowest magnitude observed in the FRF.

On the other hand, if a leak is located at a zero pressure node of a
given harmonic, this latter experiences Bragg-type resonance of
maximum transmission. The reason is that, although the leak is lo-
cated at zero pressure, it no longer has any effect on that particular
harmonic, and therefore, wave propagation at a frequency similar or
multiple of that given harmonic does not experience any reflection.

(The impedance at the leak for those waves appears to be the same
as the impedance of the pipe.) In return, this emphasizes the leak
location in the FRF, where the location of the leak is determined
from the possible zero pressure nodes of the mode having the high-
est magnitude in the FRF.

The current work is based on either the boundaries of the sys-
tems are known and controllable, or (if not controllable) the FRF of
the intact case is known. Therefore, in practice, if a real system is
complex, then it is already challenging to any available leak detec-
tion method. However, according to the theory of Bragg resonance,
if the FRF is obtained at different measurement locations, it should
be possible to obtain more insights on the system. This is an on-
going research work, and it is out of the scope of this paper. In fact,
the authors have already started field work in Hong Kong to val-
idate the use of Bragg resonance at field scale.

Appendix. Details on Governing Equations and
Boundary Conditions

Eq. (3) is derived from Eq. (2) as follows:

∂2H
∂t2 − a2

∂2H
∂x2 ¼ 0 ð37Þ

If H ¼ ~Hðx;wÞ expðiwtÞ, then

∂2½ ~Hðx;wÞ expðiwtÞ�
∂t2 − a2

∂2½ ~Hðx;wÞ expðiwtÞ�
∂x2 ¼ 0 ð38Þ

⇒ ~Hðx;wÞ ∂
2½expðiwtÞ�

∂t2 − a2
∂2½ ~Hðx;wÞ�

∂x2 expðiwtÞ ¼ 0 ð39Þ

⇒ ~Hðx;wÞ½−w2 expðiwtÞ� − a2
d2½ ~Hðx;wÞ�

dx2
expðiwtÞ ¼ 0 ð40Þ

⇒ ~Hðx;wÞ½−w2expðiwtÞ� − a2
d2½ ~Hðx;wÞ�

dx2
expðiwtÞ ¼ 0 ð41Þ

Fig. 11. (a) First three resonant peaks of a FRF of a RPV with a leak located at the middle of the pipe and measurement at xM ¼ L; and (b) first three
harmonic functions.
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⇒ − w2 ~Hðx;wÞ − a2
d2 ~Hðx;wÞ

dx2
¼ 0 ð42Þ

⇒
d2 ~Hðx;wÞ

dx2
þ

�
w
a

�
|ffl{zffl}

2

k2

~Hðx;wÞ ¼ 0 ð43Þ

Details on Eq. (5) are as follows:

~H1 ¼ ~H2 ¼ HL

~Q1 ¼ ~Q2 þQL ⇔
gA
iw

d ~H1

dx
¼ gA

iw
d ~H2

dx
þ s ~H2 at x ¼ 0 ð44Þ

The water-hammer momentum equation gives

∂Q
∂t ¼ gA

∂H
∂x ⇒

Z ∂Q
∂t dt ¼ Q ¼

Z
gA

∂H
∂x dt ð45Þ

If H ¼ ~Hðx;wÞ expðiwtÞ, then

Q ¼ ~Qðx; wÞexpðiwtÞ ¼
Z

gA
∂H
∂x dt

¼ gA

�
1

iw
d ~Hðx; wÞ

dx

�
expðiwtÞ ⇒ ~Qðx; wÞ ¼ gA

iw
d ~Hðx; wÞ

dx

ð46Þ
Because the leak is modeled by the linearized orifice equation,

which is given by

Ql ¼ sH ð47Þ
Finally

~Q1 ¼ ~Q2 þQL ⇔
gA
iw

d ~H1

dx
¼ gA

iw
d ~H2

dx
þ s ~H2 at x ¼ 0 ð48Þ

Eq. (7) gives a system with four equations and four unknowns.
When solved for Href

1 , it gives Eq. (8). Eq. (11) is the derivative of
Eq. (12). When the derivative is zero, it gives the extremum. The
conditions in Eqs. (12) and (13) come from the found extremum.
The sign of the second derivative of Eq. (10) will inform which
extremum is maximum or minimum, which in return identifies
the maximum or minimum reflection.

Acknowledgments

This study was supported by the Hong Kong Research Grant
Council (Project Nos. T21-602/15R and 16208618). The authors
thank Dr. D. A. McInnis for the technical and editorial suggestions.

Notation

The following symbols are used in this paper:
A = pipe area (m2);

ĀL =modified leak size (m2);
a = acoustic wave speed in water (m s−1);
g = gravity (m s−2);
H = pressure head (m);

Href
j = reflected pressure amplitude at pipe region j (m);
Htr

j = transmitted pressure amplitude at pipe region j (m);
HL = pressure head at the leak (m);

H̄L = mean pressure head at the leak (m);
~Hðx;wÞ = amplitude of the harmonic pressure head (m);

H0 = initial pressure in the pipe (m);
h̄c = characteristic function;
i =

ffiffiffiffiffiffi−1p
;

j = pipe number;
k = wave number (m−1);
L = pipe length (m);

Mu−d = transfer matrix entrance from upstream location to
downstream location;

Mu−xM = transfer matrix entrance from upstream location to
measurement location (sm−2);

m = resonant mode number;
mi, mi2, m2 = integers/counters;

n, n0 = integers/counters;
Q = flow rate (m3 s−1);

QL = flow at the leak (m3 s−1);
Q̄L = mean flow rate at the leak (m3 s−1);
Rc = squared norm of the normalized reflection

amplitude (s2 m−4);
RmL = damping function of the mth mode (m2);

s = leak size (m2);
t = time (s);
w = angular frequency (rad s−1);

wm =mth resonant frequencies in the blocked pipe
case (rad s−1);

wT
m = Bragg resonance frequency of maximum

reflection (rad s−1);
wR
n = Bragg resonance frequency of maximum

reflection (rad s−1);
x = axial coordinate (m);
xl = leak location (m);
x�l = dimensionless leak location (m);
xM = measurement location (m);
Z = pipe characteristic impedance (sm−2);

ZL = leak impedance (sm−2);
Z̄L = modified leak impedance (sm−2);
Z̄v = modified valve impedance (sm−2);
λ = probing wavelength (m); and
ϒ = frequency response function (sm−2).
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