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1 Introduction

Physical wave phenomena often take place in unbounded domains. The nu-
merical study of such phenomena requires to create a finite computational
region and thus to introduce artificial boundaries. The aim of these bound-
aries is to absorb all the waves and reduce the reflection of waves within the
computational domain as much as possible.

Among the classical absorbing methodologies |3, 7, 1| we choose to simulate
the perfectly matched layer method using the Lattice Boltzmann method.
The perfectly matched layer (PML) method was introduced by Bérenger [1]
in the context of electromagnetic wave propagation by surrounding the trun-
cated physical domain of interest with a buffer/sponge layer which has the
property of absorbing all incoming waves without reflection for any frequency
and any incident angle (see Fig. 1).
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Figure 1: Left : Domain of interest 2 and buffer/sponge domain (PML), Right : Interface :
Q_ acoustics domain / €, PML domain

Hu [5] applies in (1996) the PML approach to aeroacoustic problem modeled
with the linearized Euler equation for the domain of interest Q_ (see Fig 1) :
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where p is the fluid density and j,, j, are the flux of velocity components.
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In the PML buffer 2, (see Fig 1) we use the non-physical equations [5] :
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where the coefficient ¢ is introduced for the absorption of waves in the PML.
We will refer to it as zero-order damping term in this work and it will be
assumed to be non negative. We note that when o = 0, we are left with the
original acoustics equations with : p = p, + p,.

We notice here that the mass p is assumed to be continuous at the interface
between the domain of interest {2_ and the PML Q.

Our work is structured as follows. We first construct a Bérenger Lattice
Boltzmann (BLB) scheme to model an absorbing medium without damping
terms and we study the properties of this new model. Then we propose
a method to simulate damping terms by changing the advection step. In
section three we show numerical tests of an interface between classical D2Q9
medium and BLB medium. Finally in section five we propose a method
to reduce reflected waves in the simple case of wave incident normal to the
interface.

2 Bérenger Lattice Boltzmann scheme

In this section we construct the BLB scheme which has equations (2) as
equivalent macroscopic equations up to order 1 relatively At (defined below).
First we recall the classical D2Q9 |6] scheme.

2.1 Classical D2Q9 scheme

We consider the classical D2Q9 [8] model. Let £ a regular lattice parametrized
by a space step Az, composed by a set £° = {z; € (A2Z) x (AzZ)} of
nodes or vertices. At is the time step of the evolution of LBE and \ = ﬁ—f
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is the elementary celerity. We choose the velocities v;, ¢ € (1...9) such

that v; = ciﬁ—f = ¢;A, where the family of vectors {¢;} is defined by :

¢ = (0,0), (1,0), (0,1), (—=1,0), (0,—1), (1,1), (=1,1), (—=1,-1), (1,—1).
The LBE is a mesoscopic method and deals with a small number of func-
tions { f;} that can be interpreted as populations of fictitious “particles". The
populations f; evolve according to the LBE scheme which can be written as

follows [2] :

where the superscript * denotes post-collision quantities. Therefore during
each time increment At there are two fundamental steps : advection and
collision.

e The advection step describes the motion of a particle which has collisioned
in node x; — v;At having the velocity v; and goes to the 4t neighbouring
node ;.

e Following d’Humieéres [6], the collision step is defined in the space of mo-
ments. The 9 moments {m,} are obtained by a linear transformation of
vectors fj :

9
my = E Myt
j=1

where the matrix M = (My;)1<s <9 is given by :

[0 A 0 =A 0 A =h —d A

0 0 A 0 =X A A —XA —A

11 1 1 1 1 1 1 1

0 1 -1 1 -1 0 0 0 0

4 M= o o o o 0o 1 -1 1 -1
4 -1 -1 -1 -1 2 2 2 2

4 -2 -2 -2 —2 1 1 1 1

0 -2 0 2 0 1 -1 -1 1

\ 0 0 -2 0 2 1 1 -1 -1}

The moments have an explicit physical significance [8] : m; = j, and mg = j,
are x-momentum, y-momentum, mg = p is the density (density), my and ms
are diagonal stress and off-diagonal stress, mg is the energy, my is related to
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energy square, and mg, mg are x-heat flux and y-heat flux. Note that we
have changed the usual order of moments to simplify the introduction of the
Bérenger Lattice Boltzmann scheme.

To simulate fluid problems, we conserve the flux momentum j,, j, and the
density moment p in the collision step and obtain three macroscopic scalar
equation. The other quantities (non-conserved moments) are assumed to
relax towards equilibrium values m;? following :

(5) my=(1—s)mg+sm,?, 4<0<9,

where s; (sp > 0, for £ > 4) are relaxation rates, not necessarily equal to
a single value as in the so called BGK case |9]. The equilibrium values m;?
of the non conserved moments in equation (5) determine the macroscopic
behavior of the scheme (i. e. equation (3)). Indeed with the following choice
of equilibrium values (neglecting non-linear contributions) : my’ =0, m:? =

0, mgl = —2p, m7? = p, mg' = —j, and mg’ = —j, and using Taylor
expansion [2| we find the acoustics equations up to order two in Az :
0ja A Op 2, 06 O(divy) 2 A4 94 2
—— 4+ ——— = NAt———+ NAt—Aj+0(A
6) %, 20w 3 om, ) 3 A0
a—f +divjy = O(A%z),

where o, = (é — %), 4 < ¢ <9, and in the case of s; = s4. Values

of the sound speed cg, bulk viscosity ¢ and shear viscosity v are ¢y, = %,

2
¢ = 2Atog and v = )‘?)Atml.

2.2 Bérenger Lattice Boltzmann scheme (BLB)

To have a perfectly matched layer for lattice Boltzmann method, we construct
a Lattice Boltzmann scheme which models the buffer of Bérenger (BLB).
At first we propose a scheme which has the acoustic PML equations (2)
as macroscopic behavior without zero-order damping term (i. e. o = 0).
Later, we change the advection step of the BLB scheme to add the terms
proportional to o.

As there are four macroscopic equations (2) in the Bérenger scheme, we need
to use four conserved quantities in the collision step. For simplicity, we keep
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the classical D2Q9 velocity set (hopefully this will allow simple boundaries
between the LBE and BLB domains), and we replace the list of moments

)

generated with matrix M, by those generated with a new matrix Mp given

below.
( 0 X 0 =X 0 X =X =X A
0 0 A 0 =X X A =X =X
1 1 1 1 1 1 1 1 1

ME MPE ME MP ME ME ME ME M
M) Mg=[ 0 o o o o 1 -1 1 -1]|
4 -1 -1 -1 -1 2 2 2 2
4 -2 -2 —2 -2 1 1 1 1
0O -2 0 2 0 1 -1 -1 1
\0 0 -2 0 2 1 1 -1 -1}

Note that M and Mpg differ only in the definition of the fourth moment, that
we call m, and which will be conserved in collision (i. e. s, = 0) to get a
fourth macroscopic equation. Later we shall identify mg to p = p, + p, and
mil to pe — py.

To simplify later formula, we introduce coefficients ~;..9 such that
MP, =3 —4(v — %),
M= Xy + 34+ 7— % — 297 — 2%,
Mgy = Mo + 73— 7 — Y6 — 277 — 27,
MPy = =dm + 73+ 71— %6 — 271 + 238,
MP5 = =Xya 43— 74— 76 — 271 + 290,
M5 = My +72) +734 75 + 2% + 77 + 15 + %0,
M = M= +72) + 73— + 2% + 77 — 8+ Yo
M = =X+ %) + 73+ + 2% + 77 — 78 — Y0,
MEy =X —72) + 75 — 75+ 2% + 77 + 75 — Yo-
We note that this corresponds to ME = M.(y1,792,...,7)"

For the non conserved moments, we take new equilibrium values, m:’ = 0,
mg' = azpr + aypy, my' = copr + cypy, mg' = SJo and my' = Ly

We now determine the equivalent set of equations of the model defined
above at first order in At and we try and identify these equations with the
set of equations 2 with no linear damping (¢ = 0). In addition we impose
that the matrix Mp is invertible.
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Using a first order Taylor expansion in At of the BLB scheme [2], we
obtain

(?ty + B, %J; — BQ%y + ngz + B4—a( xa; o) _o(an),
0%
3(%@; Py 018('0“8; Py 0P xa; Py) | Cg% N 042_5
—I—C5gjx + Cﬁgjyx + 07?911/ + 08?9]; O(At).

where A; = — (v + ), A 2_71 (72 + c279)

3 2 4 3 M dyg
4 — 1 Ay — Gy <1 ’yﬁ) y7(cs — ¢y)
4 — 5 - )
274 4 3 M 47y

2 a, +a, (1 Cy +cC
By = -4+ 4 y<—+ﬁ)+u

3 27 4 3 M dyg
-1 a,—a, (1 Cy — C
B, = + Y <_ + E) + M’
2")/4 4 3 74 4/74
(az —ay) m | B % Cx = Cy V8 | 7
_ Ba— % 16 (9 Oy T (9me —

Cy y 9 V7
I8y — 2 —9
6 + = 3 + 2%(72 Y9)) + 5 (3 + 5 2, (72 — 279)),
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21 73 az+a, (v M %27 — )
Co =~ + L2 (2 — vylLL2 4y =
R T R G S
Cx T Cy (8 7
RRNTANND AR
+ 92 (3 +2/_)/4( 8 71))7
279 3 az+a, (Yo Y2 Y6(—27 +2)
o, =2 By Qe ¥+ 0y (79 | 72
1= %—QWA( Yo +2) + > stet 2
CxtCy (Yo . V7
By
+ 5 (3+2’Y4( 79+72)>,
V4 8N 2c17% — i
Cs=n+vw+alw+y)+51—c)+—2—c)+——,
3 2’}/4 2’}/4
V5(2 + ¢ 1
Ce = o ) + — (198 + 1) (72 — 27),
3 274
v5(2 + ¢2) 1
Cr = - —2
7 3 2%(6279 +72) (1 Vs),
Cs = 3+ + ca(v6 +77) — E(1 —Cg) — —7972(2 —c) — 2007 7
3 274 274

The identification between a suitable linear combination of equations (8),
(9), (10), (11) and the PML system (2) where 0 = 0 leads to the following
requirements :

M=% == =0,

a; = —4+6c%, a, = —4 + 62,

(4 — 6y6¢; — 3+ 1) (46— 6y6¢3 — 3 — 1)
T — ) Yy ’
Y7 Y7
o= Butytdn—3) (=3t 3% —3)
(va =37 —3y7) (V4 + 376 + 377)

For 73 4567 we find two possible sets of solutions for v34567 :

i) 3=+ 2y, 4= 1,

i1) v5 = 0.
Note that there are some free parameters left (5 6 7 for the first case or 3 467
for the second one). To have a stable scheme, we have found that only the
second is acceptable.
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2.3 Dissipation properties of BLB scheme without damping terms

To study the dissipation properties of the BLB scheme without absorbing
terms (i. e. 0 = 0), we determine the macroscopic equations up to order 2
relatively to At.

Proposition 1
In the case where s4 = s7, sg = Sg, ¢ = % and 5 = 0, the BLB scheme
models the following system of macroscopic equations up to order two on

At :

0ju N 0(ps + py) 0%j 0%j 0%j
z N x A, T A T A, Y — O(A#?
ot * 3 Ox * Ox? Ty oy? * Y Oy (AF),
4y N 0(ps + py) 0%j 0%j 0%j
2 2R T g g 2 B (AL
ot * 3 oy * Ox? By oy? * Y Oxy (AF),
0p: 0j 0%p 0%p 0?p 0%p
. Lt Crpao + Cpyrts + Dyyp—2 + Dy 2 = O(AF?
Ot + ox + Ox? +Cuy Oy? * Ox? Py Oy? (AF),
dpy  jy &*p 0*p 0*p &*p
ot By oar Wy g2 W oy (B5),
where Ay, = —2 8N g g — XA B0 ) L) g
A — XAt 3069+ (6(r—s)+du=1) oy (e 2y -1 ]
vy 31 271(7a+3(v6+77)) 96 Ya+3(v6+7) ’
2At (3(=y3+76+377+74)—1 N AH(274+1
Bao = _)\3 : (_( EJ?’)(%Y:%; o, Byy = = :E"YZ o
_ XA 30600 %uBs )+ 27=2) o 30— —2yrtya) -1
| 14 (a=3(6+77)) 6 71=3(%6+77)

B

Coa = flﬁtas(i%(% +97) = 7a) (2(7 — 6) + 73 — 1),
Cyy = Alﬁt(fs(ii(% + 1) +72)(2(y7 — Y6) + 3 — 1),
AR5 (3(v6 +v7) — 1) (2(v7 — ¥6) + 73 + 1)

and Dy, = X8805(3(v6 + v7) +74) (2(37 — 76) + 73 + 1).
We note that this model is not isotropic.

S
||

Proof of Proposition 1

To obtain the macroscopic equations we can use the usual Chapman-FEnskog
analysis [4] or Taylor expansion [2]. The details are given in [10]. In gen-
eral the second order space derivatives in the preceding equations are not
isotropic. To obtain isotropy, the following conditions have to be met :
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Ayr = Byy, Ayy = Buw, Ay = By and Ay — Ay = Ay, where App yy 2y
and B,y .y are the coefficients appearing in the equivalent equations of
the model BLB (see proposition 1). This can be satisfied only for s; = 0.
This fact introduces a new conservation law which is incompatible with the
Bérenger model. Therefore our model is not isotropic.

2.4 Stability analysis

We study numerically the stability of the BLB scheme by using the Von
Neumann analysis. It consists in considering the solution of the scheme for
a plane wave f;(x;,t) = ¢;e/“=#%) and by using the Fourier transform of
the equation (3). We obtain the following equation :

where p = 2% ¢ = ¢thvA2 (k. k) = k and G(p,q) = A(p,q)Mz'CMp.

The advection operator A(p, q) can be written as follows :
A = diag (1,p, q, ]%, é,pq, ]%, piq, g) , the moments matrix Mp is given by (7)

and the collision matrix is given by :

( 1 0 0 0 0 0 0 0 0 \
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
c=| o 0 0 0 1—s5 0 0 0 0
. S6 %%86 0 0 0 1— 56 0 0 0
CyS7 Cg”gcy37 0 0 0 0 1— sy 0 0
0 0 Zs5 0 0 0 0 1—-ss O
\ 0 0 0 %5 0 0 0 0 1l-s)

Let introduce z = €A then equation (12) becomes :

2f (@i t) = G(p, @) f (i, 1).

So the stability relies on the eigenvalue problem for the operator GG. Therefore
we compute numerically the eigenvalues z, and the stability occurs when
Re(Inz,) < 0 (i. e. |z < 1) for all wave vector k.
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Figure 2: Real part of logarithmic eigenvalues of the BLB model versus |k|. The value of
the parameters are 3 =7, 7% =3, 77 =2, 74 = l and ¢, = % The relaxation parameters
are s5 = 1.4, s = 1.6, s; = 1.65, sg = 1.3 and sg = 1.8. (a) For § = 0 angle of wave
vector k (i. e. kis parallel to Ox). (b) for 0 = 17r_2 (c) for 6 = g (d) for 0§ = g

For the case where sound speed ¢; = % we find that the BLB scheme is not,
stable for the first choice : 75 # 0, v3 = 76 + 297 and 74 = 1. So we take
the second choice (i. e. 75 = 0). We find that the BLB algorithm is stable
for the following configuration : vy = 1, 73 = v + 277, 76 € [0.88, 3.22],
v7 € [0.77, 2.22], s5 €]0, 1.6[, s¢7 €]0, 1.66] and sgg €]0, 1.8[. Figures 2(a),
2(b), 2(c) and 2(d) show the real part of logarithm of the eigenvalues as
function of wave vector k. We see that for this choice of the parameters the
BLB algorithm is stable. We note that we have not find situations where the
attenuation is less 1072 typically (i. e. one order of magnitude greater than

the classical D2Q}9).

2.5 BLB with damping terms

Until now we studied the case of BLB without absorbing terms (i. e. 0 =0
in the system of equations (2)) to represent only the non-reflecting property
of the BLB scheme. To model the zero-order damping terms we propose to
change the advection step of the BLB scheme as follows :
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Proposition 2
If we modify the advection step of the BLLB scheme as follows :

9
fi(zi,t + At) = f7 (v — v; AL T) — Z&fjfj (r; —vAt, 1), 1<j<09.
(=1

where the matrix op = (ij)lggngg, is given by :

o8, =81+ a1,4,0,0,0,as + 3,as — 1,a3 — 1, a2 + 3),

b, = %(1+a1,0 0,4,0,a2 — 1,as + 3, a2 + 3, a3 — 1),

and o agj =0 for £ # (2,4),1 < j <9, where a; = 73 — 4(v — 77) and
as = 3 + 26 + v7. We simulate the terms of damping proportional to ¢ in
the PML system of equations (2). We note here that we give the matrix &
only for the case where the BLB scheme is stable.

Proof of Proposition 2

We use here the Taylor expansion [2] for the above equation to find the
macroscopic equivalent equations (2). So we write the Taylor expansion up
to order 2 on At of the BLB scheme equation (see Proposition 2) :

fi(xi,t) + A0, fi(zi t) = (f;(;ci, )—Atvij;(xi,t))

Z (fi (i t) — Ato,V (i, 1)) + O(AL?),

With the help of the moment matrix Mp, using the fact f; = ffq + O(At)
and neglecting the terms in (At?), we obtain :

my+ AtOym=m) — Atz ¥ jﬁ fit = ZMMZ fo (2, 1)+ O(AE),

j=19

We rewrite the above equation as follows :

9
m; —mg = Atdymy + At Z Mf}vfﬁgffq + Z Wy fif(z,t) + O(At?),

j=1,9 j=1

where the matrix (¥, ;)1</ <9 = Mp.op is the product of matrix Mp and
op. So with the help of the matrix ¥ we calculate the terms :
Z?Zl \If&jf;q(x, t), for £ = 1..9 which is equal to :
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oAtj, for £ = 1, 0 pour ¢ = 2, O'Atm = oAtp, for £ = 3 and

JAtW = oAtp, pour { = 4.
Now we write equation (13) for the four conserved moments (i. e. ¢ =
{1,2,3,4}) and with the help of m; = m, we obtain the PML system (2)

with absorption.

3 Numerical test of interfaces

In this section we present numerical simulations for acoustic waves normally
incident to an interface between a classical D2Q9 medium (on the left) and
various situations on the right : first a BLB without absorption then BLB
with absorption and finally classical D2Q9 with absorption.

3.1 Classical D2Q9/BLB without absorption

So let 2 = [0,1] x [0, h], where [ = 4000 and h = 5 be composed by Q_ =
[0, 4] x [0, ] and Q4 = [L,1] x [0, A].

e In O_, we use the classical D2Q9 scheme with the following relaxation
rates : s4 = s5 = 1.95, s = 1.97, s7 = 1.9 and sg = s9 = 1.7.

e In 2, we use the BLB scheme without absorption and we take the following
configuration for different parameters : v3 = 7, 74 = 1, v = 3, 77 = 2,
Cs = %, s5 = 1.8, s¢ = 1.6, s; = 1.6 and sg = sg = 1.7.

Here we take periodic boundary conditions for the y direction and a simple
bounce back in the outer edges in x; = [. In the inlet edges at x; = 0 we
impose an harmonic wave j, = sin(wAt) where w = 12—55 (implemented by
bounce-back and application of 27, with appropriate weight factors for the
velocities incoming in the computational domain). We take a fluid at rest
for initial conditions and the total duration 7" = nAt of the simulations is
chosen such that waves have not reached the outlet (see Fig. 3(a)). We note
here that the acoustic wave is more absorbed for x; > 2000 Fig. 3(a), and
this is due to the change of viscosity in the BLB medium.

To determine the reflected wave, we perform another simulation in the do-
main Qg = [0,{] x [0, h]. In this domain we take the same configuration as
in the domain 2_ with the same boundary conditions for the inlet edges at

x; = 0. This simulation gives us the reference solution. To see the reflected

13
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Figure 3: Interface test in the case of normal incidence between classical D2Q9 acoustic

medium and BLB without absorption medium. Left: j1** vs N,. Acoustic wave transmis-

sion between Q_ (classical D2Q9 medium) and Q, (BLB without absorption medium) at
time T = 6000, interface at x; = 2000. Right: jlest — jref ys N, difference between the
test and reference cases in the classical D2Q9 acoustic medium.

wave and the Knudsen modes that are generated at the interface we draw
the difference between the flux j2' in Q (the test case) and the flux j¢/
in Qp (the reference case) for the same number of time steps = 6000. It
should be noted here that we have a small reflected wave between classical
D2Q9 acoustic medium and BLB without absorption medium. So in Fig.
3(b) (for z; € (1,2,....2000)) we see a reflected acoustic wave which has an
amplitude of the order 3.1073. This reflected acoustic wave is generated by
the change in the viscosity between the two media. As indicated above, the
BLB scheme is anisotropic and is not stable for parameters corresponding to
a viscosity as small as that can be obtained with D2Q9 (for more details see

[11]).

3.2 Classical D2Q9/BLB with absorption

To test this interface we make the same simulation as above, but now we
only change the 2, medium. Indeed in 2, we use the BLB scheme with
absorption (7. e. changing the advection step as described in proposition 2).
We take the following parameters : 3 =7, 4y =1, % =3, 77 =2, ¢s = %,
s5=1.8, 86 =1.6, 57 = 1.6, s3 = 89 = 1.7 and o(z;) = 107" (z; — 2000)2.
Figure 4(a) shows that the transmitted acoustic wave is absorbed (for
x; > 2000) in the BLB with absorption medium. We note also that the
reflected acoustic wave (see Fig. 4(b)) in the D2Q9 medium has the same
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Figure 4: Interface test in the case of normal incidence between classical D2Q9 acoustic
medium and BLB with absorption medium. Left: ji* vs N,. acoustic wave transmission
between Q_ (D2Q9 medium) and Q. (BLB with absorption medium) at time 7" = 6000
and interface at z; = 2000. Right: jtest — j¢f ys N, Reflected wave in the classical D2Q9
acoustic medium: difference between the test and reference cases.

amplitude as in the case D2Q9/BLB without absorption.

3.3 Classical D2Q9/ Classical D2Q9 with absorption

Now to test the classical D2Q9/classical D2Q9 with absorption we only
change the medium €2,. So we take the following D2Q9 scheme where we
have only changed the advection step in 2 :

fj(ﬂ?i, t+ At) = (Id - /O'V)f;< (%Z — UjAt, t) , 1 < ] < 9,

where the matrix 0 = (04 )1</ j<g is given by : 094 = ”Tm(l, 2,1,0,1,2,0,0,2),
Gre = 721(1,0,1,2,1,0,2,2,0), and &, = 0 for £ # (2,4), 1 < j < 9. This

scheme has the following macroscopic equation up to order 1 in At :

O+ op~+ 0yje + 0yjy, = O(AL),
atjx + Uja: + Cgaa:p = O(At)7

Ojy + C2Oyp = O(AD).
at x; = 2000 and T = 6000.]
In Q, we take the following conditions : mj?! = m:? = 0, mg! = —2p,
ms? = p, mg' = —j,, mg' = —j,, 4 = 5 = 1.9, 56 = 1.8, 57 = 1.75,

sg = 89 = 1.7, and o(z;) = 107 "(x; — 2000)%. Figure 5(a) shows that the
transmitted wave is absorbed (for z; > 2000) in the D2Q9 with absorption
medium. We note here that this interface generates a very small reflected
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Figure 5: Interface test in the case of normal incidence between D2Q9 acoustic medium
and D2Q9 with absorption medium. Left: jX* vs N, wave transmission between (2_
(D2Q9 medium) and Q, (D2Q9 with absorption medium) at time 7" = 6000.55" vs N, :
Acoustic wave, interface at z; = 2000 and T' = 6000. Right: jist — jre/ ys N,, difference
between the test and reference cases. ji* — jr¢/ ys N, : Reflected wave in the D2Q9
acoustic medium.

wave (see Fig. 5(b)) in normal incidence which is due to the change of the
speed of sound in the two media (for more details see [10, 11]).

3.4 Comparison between numerical interfaces

The BLB without absorption scheme generates an undesired reflected acous-
tic wave in the domain of interest. The BLB with absorption scheme is
stable and does not generate any additional reflected wave. Finally the clas-
sical D2Q9 scheme with absorption is more efficient but it generates a small
reflected wave for normal incidence. Thus we propose a new method to cancel
reflected wave.

4 Towards cancellation of reflected waves

Let €2, 2, be two one dimensional acoustic domains simulated by D1Q3
scheme with sound velocity and viscosity (cs,v) and (¢s, V) respectively. So
we have the following reflection coefficient [11] :

P+ —P+ G —C Z(V102 - V2€1)

C1l-ppr atce (o +e)?

(13) 7 +0(w?),
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ik+Ax); Py = e(ﬁ#m); w is the frequency of incident wave and

where py = el
kT, kt are the progressive wave vectors in Q_ and € respectively.
In order to cancel the reflected wave we propose to change the advection step

at the interface. Thus the new f; in node z, = A7 ig g linear combination of

2
f{ in node x; = —% and f; in node x; — Ax (see Fig. 6). Whereas we keep
the same advection step for fo which goes in the opposite direction. Thus we

propose the following scheme at the interface :

A
A+ At x) = 61f/ (G2 — Ax) + 62 fy (6, 2 — 2Az),  in %‘:79:,
A
fg(t‘JrAt,.Iz) = f;(t,xz+A:r:), n .CCZ‘:—TQ:,

where d; and dy are two scalar coefficients which will be fixed in order to
cancel the reflected wave.

X| -AX X|
1

AX AX AX

Figure 6: Connection at interface.

Proposition 3

For D1Q3 monodimensional acoustic interface, we can find coefficients d; and
0o in order to cancel terms of order 0 and 1 in w of the reflection coefficient
given in equation (13).

Proof of Proposition 3

To find coefficients d; and 09 we calculate the theoretical expression of the
reflection coefficient taking into account the new advection step at interface.
Then we resolve the equation r = O(w?). (for more details see [10]).

e Numerical test : Let Q_ = {x;, ¢ = 1..1000} and Q_ = {x;, i = 1001..2000}
with sound velocity and viscosity (cs = 0.577, v = 0.001) and (¢5 = 0.479,7 =
0.2). Figure 7(a) shows that there is a reflected wave which has an amplitude
of the order 107!, By using the new proposed method (see proposition 3)
we have reduced the reflected wave. In figure 7 (b) the reflected wave has an
amplitude about 1074,
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Figure 7: jlest — jre/ ys N, : difference between test and reference cases at T = 1500,
(a) without changing the advection step at interface and (b) with interpolation of the
advection step at the interface.

5 Conclusion

We have proposed a new scheme called BLB to model the perfeclty matched
layer of Bérenger. Unfortunately this scheme generates a reflected wave in the
domain of interest and this is due to the non isotropic property of BLB. The
method used here to obtain a fourth macroscopic equation (as in the Bérenger
scheme) needs to be tested for more complicated schemes than D2Q9 in
order to model first order equations without obtaining unsatisfactory second
order equations (by this we mean anisotropic viscous terms). We have also
proposed a method to model the zero-order damping terms. This method
consists in changing the advection scheme. This method is stable and does
not generate a reflected wave.

We have proposed a new method to cancel the reflected wave for normal
incidence based on a local modification of the propagation rules near the
interface. Future work could be the extension of the this method for two and
three dimensional interface and for any incidence angle.
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