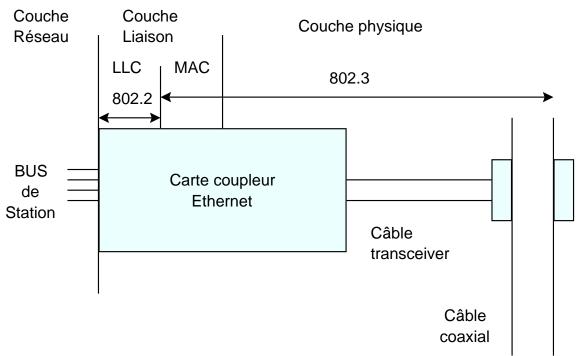
MAP / TOP

MAP TOP

FTAM	DS	MHS	
Protocole de Présentation OSI (IS 8823)			
Protocole de Séssion OSI (IS 8327)			
Protocole de transport classe 4 orienté connection (IS 8073)			
Mode sans connexion (IS 8473)			
Contrôle de liaison de données (IS 8802/2)			
Contrôle d'accés par jeton sur bus (IS 8802/4)			

FTAM	DS	VTP	MHS	
Protocole de Présentation OSI (IS 8823)				
Protocole de Séssion OSI (IS 8327)				
Protocole de transport classe 4 orienté connection (IS 8073)				
Mode sans connexion (IS 8473)				
Contrôle de liaison de données (IS 8802/2)				
Ethernet (IS 8802/3)			en Ring 3802/3)	

OSI / Internet OSI Couche Internet Application Présentation Applications Session Transmission Control User Datagram Transport Protocol (TCP) Protocol (UDP) INTERNET PROTOCOL (IP) Réseau **INTERFACES** Liaison de Données **MEDIAS** Physique


OSI / Internet

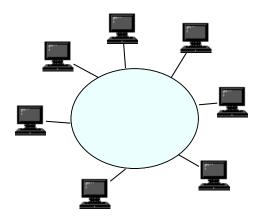
- OSI est complexe et lent,
- OSI est imposé par des organismes et TCP/IP disponible dans le monde académique par Unix,

– ...

Modèle OSI

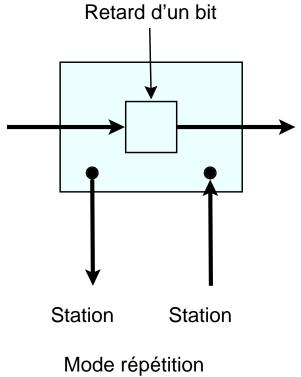
Cas Ethernet,

- LLC: Logical Link Control,
- MAC: Media Access Control.

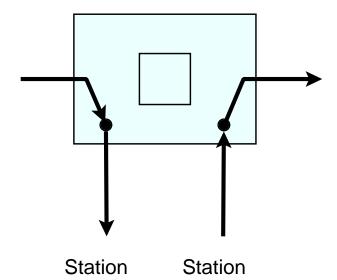

Token Bus

Protocole complexe:

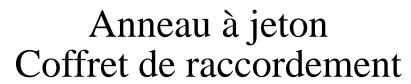
- 10 compteurs de temps,
- 20 variables d'états interne,
- + 200 pages de documentations.
- 4 niveaux de priorité :
- 0, 2, 4, 6,
- 4 files d'attentes.

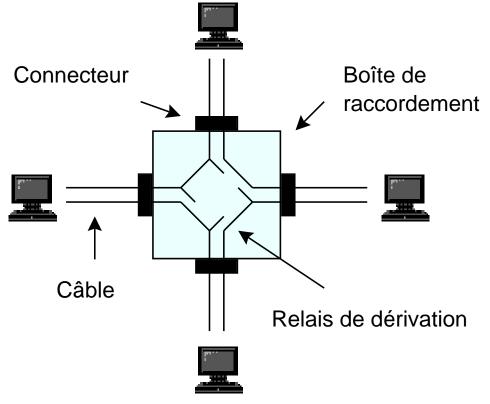

Anneau à jeton Token Ring (802.5)

Topologie:

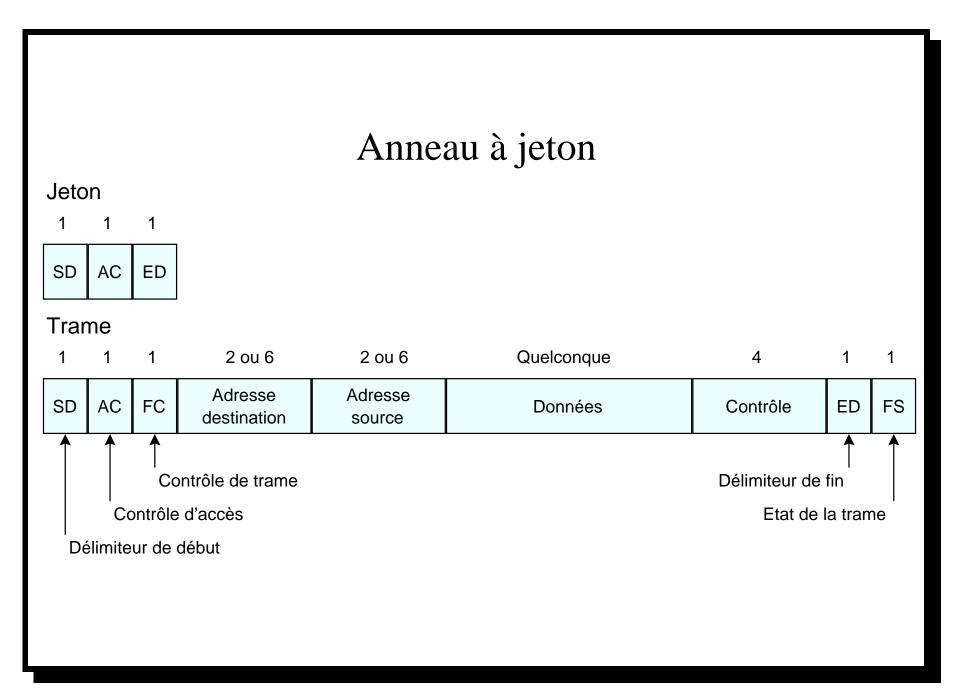


Anneau, Débit 1, 4, 16 Mbit/s.


Anneau à jeton Interface d'accès



Mode transmission


Anneau à jeton

Un jeton parcours le réseau,

Pour émettre une station capture le jeton et le transforme en trame, ensuite la station :

- elle reconnaît sa trame,
- elle constate que le destinataire a bien reçu le message,
- elle détruit sa trame,
- elle réémet un jeton libre.

(cas à 4 Mbit/s)

Anneau à jeton

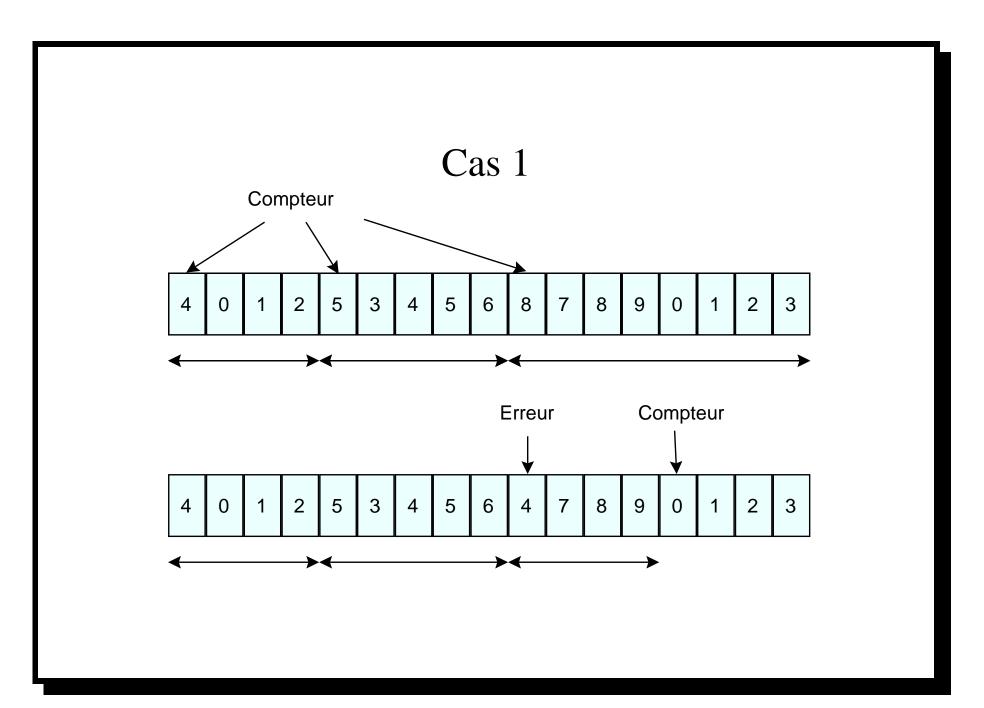
Champ commande	Commande	But	
00000000	Test d'adresse	Test si 2 stations	
		on même adresse	
00000010	Reconfiguration	Localisation d'une	
		station défaillante	
00000011	Recherche jeton	Tentative de devenir moniteur	
00000100	Purge	Initialisation de l'anneau	
00000101	Moniteur présent	Pour signaler la	
		présence du moniteur	
00000110	Moniteur portentiel	Pour signaler le présence	
		d'un moniteur potentiel	

Autres Normes IEEE 802.x

- 802.6 DQDB (Distribued Queue Dual Bus) c'est une norme pour les réseaux métropolitains,
- 802.7 Anneau à trames multiples (Slotted Ring) c'est une norme où des trames de longeurs fixes circule sur l'anneau.

Liaison de données

La couche liaison de données assure à la couche réseau des services qui permettent la transmission de données de la couche réseau d'une machine à la couche réseau d'une autre.

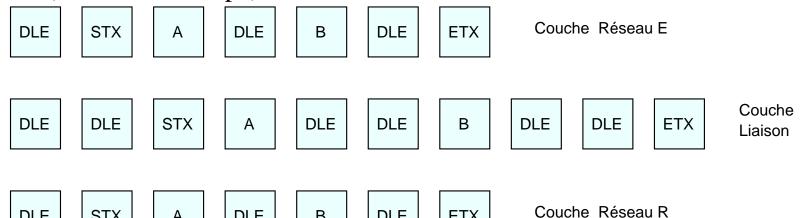

Trois catégories de services :

- le service sans connexion et sans acquittement,
- le service sans connexion et avec acquittement,
- le service orienté connexion.

Liaison de données Notion de trame

Pour pouvoir effectuer un contrôle on découpe le train de bit en trame. Quelques méthodes :

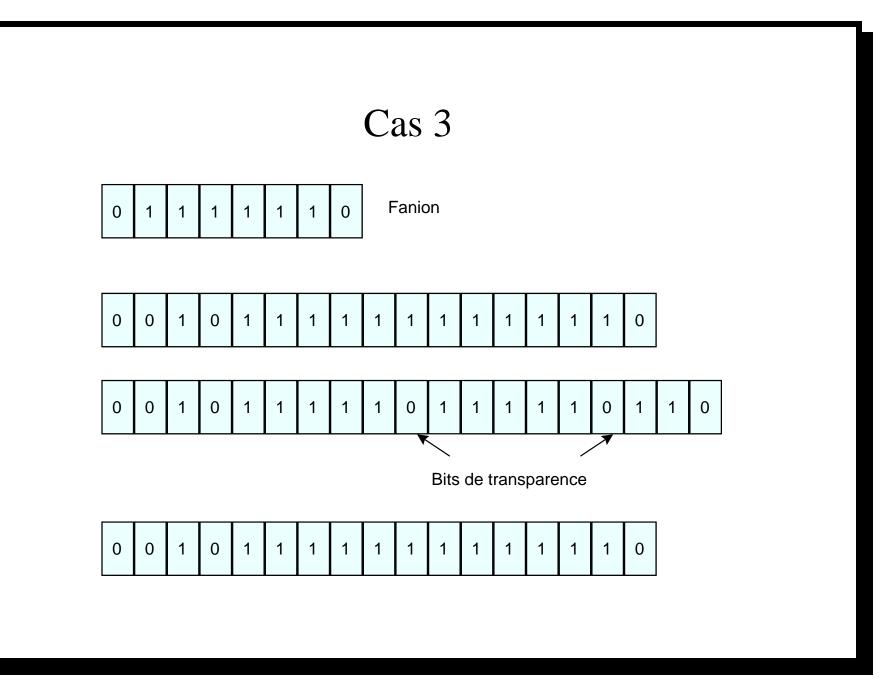
- 1. compter les caractères,
- 2. utiliser des caractères de début et de fin de trame avec des caractères de transparence,
- 3. utiliser des fanions de début et de fin de trame avec des bits de transparence,
- 4. utiliser des codes spéciaux dans la couche physique.

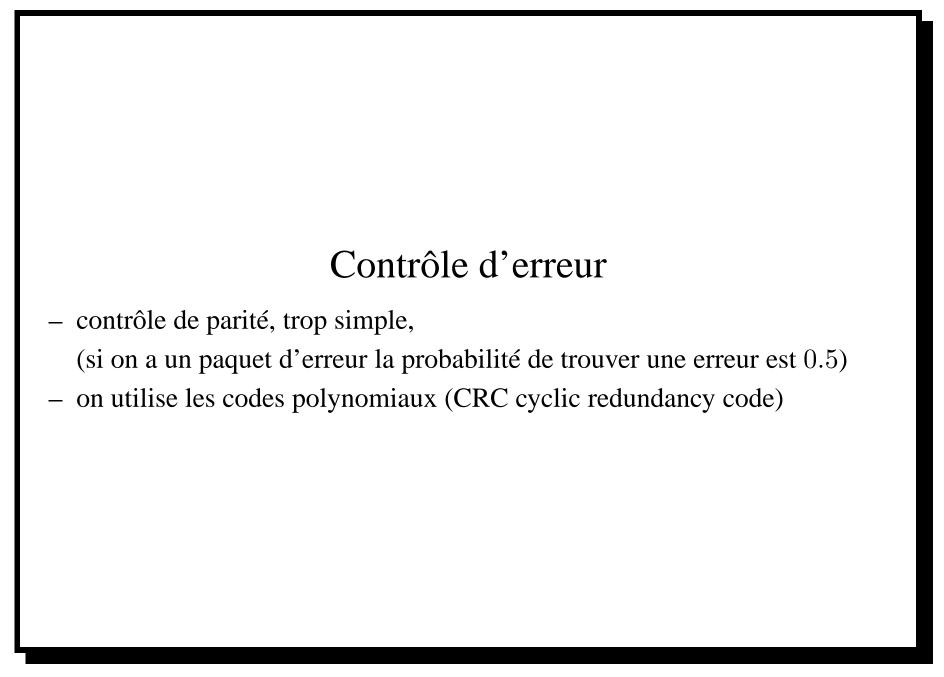


DLE (Data Link Escape)

STX

DLE


DLE


ETX

Α

DLE

В

Codes polynomiaux Principe

Si on a le signal (m):

$$a_{m-1},\ldots,a_4,a_3,a_2,a_1,a_0$$

On considère le polynôme :

$$P(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 \dots, a_{m-1} x^{m-1}$$

Codes polynomiaux Principe

On utilise ensuite un polynôme générateur (n):

$$G(x) = f_n x^{n-1} + \ldots + f_1 x + f_0$$

On effectue ensuite la division (n-1):

$$R(x) = P(x) * x^{n-1}/G(x) = r_0 + r_1 x + \dots + r_{n-2} x^{n-2}$$

On transmet:

$$a_{m-1},\ldots,a_4,a_3,a_2,a_1,a_0,r_{n-2},\ldots,r_1,r_0$$

Codes polynomiaux Polynômes générateurs

$$CRC_{12} G(x) = x^{12} + x^{11} + x^3 + x^2 + x + 1$$

$$CRC_{16} G(x) = x^{16} + x^{15} + x^2 + 1$$

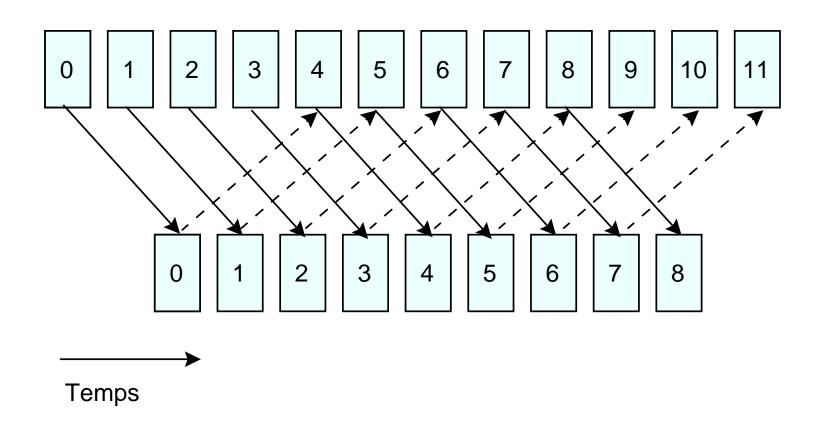
$$CRC_CCITT\ G(x) = x^{16} + x^{12} + x^5 + 1$$

Codes correcteurs

Ce sont des codes qui permettent la détection et la correction d'erreur, Soit une trame de m bits de données, et r bits de contrôle, pour avoir un code correcteur (distance de Hamming 1) on doit avoir la relation :

$$(m+r+1) \le 2^r$$

Protocole de Transmission


On va considérer un cas simple,

Les données sont transmises dans un seul sens,

Le canal n'est pas parfait.

(on va synchroniser l'émetteur et le recepteur par une information dans la trame)

Liaison de données, Service sans connexion

- l_data.request(adresse locale, adresse distante, LSDU, classe de service),
- l_data.indication(adresse locale, adresse distante, LSDU, classe de service).

Liaison de données, Service avec connexion

- l_connect.request(adresse locale, adresse distante, classe de service),
- l_connect.indication(adresse locale, adresse distante, état, classe de service),
- l_connect.response(adresse locale, adresse distante, classe de service),
- l_connect.confirm(adresse locale, adresse distante, état, classe de service),
- l_disconnect.request(adresse locale, adresse distante),
- l_disconnect.indication(adresse locale, adresse distante, raison),
- l_disconnect.response(adresse locale, adresse distante),
- l_disconnect.confirm(adresse locale, adresse distante, état),

- l_data-connect.request(adresse locale, adresse distante, LSDU),
- l_data-connect.indication(adresse locale, adresse distante, LSDU),
- l_data-connect.response(adresse locale, adresse distante),
- l_data-connect.confirm(adresse locale, adresse distante,état),
- 1_reset.request(adresse locale, adresse distante),
- l_reset.indication(adresse locale, adresse distante),
- 1_reset.response(adresse locale, adresse distante),
- 1_reset.confirm(adresse locale, adresse distante),
- l_connection-flowcontrol.request(adresse locale, adresse distante, valeur),
- l_connection-flowcontrol.indication(adresse locale, adresse distante, valeur).

1 1 0u 2 >= 0

Adresse	Adresse	Contrôle	Données
DSAP	SSAP	Controle	Donnees

LLC

La couche LLC se trouve au dessus de la couche MAC. Sa norme est 802.2 Il en existe 3 types :

- LLC1: sans connexion, ni acquittement,
- LLC2: avec connexion et acquittement,
- LLC3 : avec acquittement mais sans connexion. Les services assurées par
 LLC sont le contrôle de flux et le contrôle d'erreur.