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OCR NER

CER WER ENER Pre Rec F1-score

Clean -- -- -- 89.4 90.8 90.1

Lev-0 1.7 8.5 6.9 83.7 90.7 86.8

Bleed 1.8 8.6 7.1 84.0 84.1 84.1

Phantom-char 1.7 8.8 7.8 75.8 78.6 77.1

Blurring 6.3 20.0 21.5 66.9 69.5 68.8

Char-degradation 3.6 21.8 23.4 64,5 64.8 64.7

• Simulation of many OCR outputs similar to documents stored on digital libraries.
• Evaluation of the evolution of NER accuracy depending on the level of noise in the text.
• NER Accuracy  drops from 90% to 60% with variable CER and WER from 1% to 7% and from 8% to 20% respectively.

Conclusions

• Adding weights to OCR outputs at the character level and the word level.
• NE-focused OCR post-correction => high impact on information access in digital libraries.

Future works
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Three main approaches:
 Rule-based: rules are based on dictionaries, triggers and linguistic descriptors
 Machine-learning: training, hand crafted features
 Deep-learning: jointly training and learning effective features

 Rule-based systems are clearly disoriented to process noisy data: perpetual updates
of rules for noisy NEs and costly manual efforts

 Machine-learning systems can be updated and generalized.
 Deep-learning systems outperform other machine-learning NER systems.

 In digital libraries, named entities are among the most relevant information to
index documents and the main entry point to their retrieval.

 Most digitized documents are indexed through their OCRed version and OCR
errors hinder their accessibility.

 Prior research shows that named entities are the first point of entry of DL users.

Goal: Quantitatively estimate the impact of OCR quality on NER performance.
Problem: No text with (original OCR) and (OCR groundtruth) and (annotated NER).
Methodology:
• Simulating OCR outputs from existing clean NER corpora with various levels and

types of OCR noise.
• Testing state-of-the-art NER systems over clean and noisy data.
• Studying the correlation between NER results and OCR.

« The German racing driver Michael Schumacher won with Mercedes the last 
race in China. »

PER LOC ORG MSIC

 Starting from existing clean texts with NER GT (CoNLL-03
English corpus)

 Converting raw texts into images
 Synthetizing and injecting various types and levels of noise.
 Performing OCR over degraded images.

DocCreator to synthetize noise
• Character degradation: adding ink spots on characters
• Phantom character: adding phantom ink around characters.
• Bleeding effect: simulates the verso ink that seeps through the recto side
• Blurring effect

Phantom character

Character degradation

Blurring

Bleeding effect

RETAS to align OCR outputs and the GT

GT: Pierre Van Hoydonk scored for Glasgow Rangers

gold_annot: PER PER PER O O ORG ORG

OCR lev-0: Dierre Van Hoyoonk scored for Glasgow Rangers

pred_annot: PER PER O O O ORG ORG

OCR blur: Pierre |n Hoyoom scores on Glasgow Rimfen

pred_annot: PER O O O O LOC O

Neural-network based
system: LSTM-CRF
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