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Week 36 Introduction

Week 37 Process discovery (α-Algorithm)

Week 38 Metrics and quality of discovered models

Week 39 Raw traces/ modelled traces (case study)

Week 40 Advanced process mining algorithms

Week 41 Advanced process mining algorithms

Week 42 Conformance checking

Week 46 Decision mining in processes

Week 47 Trace clustering

Week 48 Trace profile

Week 49 Case study

Week 50 Case study defense
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Evaluation

▶ Two Quizes (practical and theoretical)

▶ Case study project
▶ defense: presentation (20 min) + questions (10 min)
▶ report: 15 pages max

▶ Grades :
(Quiz1+Quiz2+2×defense)

4
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Business processes are everywhere

▶ As clients, we trigger business processes
▶ Applying for a permit to build a house
▶ Applying for a credit to finance property
▶ Submitting an insurance claim

▶ As professionals, we participate in business processes
▶ Check if the requirements for building a house are met
▶ Assess the risk of granting the credit
▶ Check whether a claim is covered by the insurance contract
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Process Mining: A 360 Degree Overview
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R. Champagnat, M. Trabelsi, A. Hamdi et al. Intro. to PM 11/43



Course organization
Context

Process mining
Business processes

Summary
Resources

Overall picture
Information systems

Therory VS reality

R. Champagnat, M. Trabelsi, A. Hamdi et al. Intro. to PM 12/43



Course organization
Context

Process mining
Business processes

Summary
Resources

Overall picture
Information systems

What about information systems?

Information systems

▶ Set of resources and tools allowing users to search for information in a given domain.
▶ Business processes (i.e. a succession of activities that allow them to achieve an objective).
▶ Information systems are established by explicit process models that are not all clearly defined.

Unstructured processes

▶ Diversity of tasks, stakeholders (designers, users, managers, etc.) and other unpredictable parameters
(user needs, unexpected failures or execution exceptions, etc.).

▶ Users can define their own processes (redundant and incomplete actions).
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User model: theory vs reality

"... if we build it, they will come ..." (Wilson, 2003)

Image from www.logpickr.com
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Process mining as the missing link

Process Mining: A 360 Degree Overview
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A bit of history
What is Process mining?
Process mining, why?

Brief history of Process Mining

▶ Wil van der Aalst pioneered the process mining field at Eindhoven
University of Technology in the late 1990s.

▶ 2000, 1st Process Mining Algorithm (Alpha Miner)
▶ COOK, J. E. ANDWOLF, A. L. 1995. Automating process discovery through

event-data analysis. In Proceedings of the 17th International Conference on
Software Engineering (Seattle, WA, April 23–30). ACM Press, New York, NY,
73–82.

Motivation
Many software process approaches and tools assume the existence of a formal
process model. Unfortunately, creating a formal model for an ongoing complex
process may be time-consuming, expensive, and error-prone. This is a
practical impediment to the adoption of process technologies.
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Timeline of Process Mining

2019, First International Conference on Process Mining
https://icpmconference.org
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Process mining is ...

▶ data analysis techniques based on the process.
▶ event logs processing task.

Events logs are recorded data in various systems used for work (ERP, CRM,
MES etc.). Analyzing event logs allows understanding

▶ how a certain product is manufactured?
▶ which itinerary, a customer goes through within a service, is identified and

visualized?

.
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Towmain artifacts : Event logs & business processes (2)

Events are user actions in information systems that occur at a defined time.
This event data is recorded in the Logs

▶ We all generate event data
▶ Phones capture data
▶ Internet
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Goals & Uses cases

▶ What happened?
▶ Why did it happen?
▶ What will happen?
▶ What is the best that can happen?

▶ What is the process that people
really follow?

▶ Where are the bottlenecks in my
process?

▶ Where do people (or machines)
deviate from the expected or
idealized process?

▶ What about delays?
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Goals & Uses cases (4)

For more uses cases please take a look at this web site
https://www.tf-pm.org/resources/casestudy
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Tools

▶ Academic
▶ ProM (http://www.promtools.org/doku.php)
▶ PM4Py (https://pm4py.fit.fraunhofer.de)

▶ Commercial (https://www.processmining-software.com)
▶ Disco
▶ Logpickr
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Methodology

▶ ETL
▶ Data transformation
▶ Cleaning data
▶ Model discovery
▶ Quality measures
▶ Analysis
▶ Maintain analysis over time
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BPMN I

▶ BPMN (Business Process Model and Notation) is the global standard for
process modelling

▶ BPMN is a graphical notation easily readable to represent business
processes and their internal procedure

▶ BPMN diagram but not only (Choreography, WSBPEL, etc.)
▶ BPMN Elements

▶ Activity
▶ Event
▶ Gateway
▶ Flow

▶ References
▶ https://www.bpmn.org
▶ https://camunda.com/bpmn/

R. Champagnat, M. Trabelsi, A. Hamdi et al. Intro. to PM 33/43

https://www.bpmn.org
https://camunda.com/bpmn/


Course organization
Context

Process mining
Business processes

Summary
Resources

BPMN
Petri nets

BPMN II

R. Champagnat, M. Trabelsi, A. Hamdi et al. Intro. to PM 34/43



Course organization
Context

Process mining
Business processes

Summary
Resources

BPMN
Petri nets

BPMN III

R. Champagnat, M. Trabelsi, A. Hamdi et al. Intro. to PM 35/43



Course organization
Context

Process mining
Business processes

Summary
Resources

BPMN
Petri nets

BPMN IV

R. Champagnat, M. Trabelsi, A. Hamdi et al. Intro. to PM 36/43



Course organization
Context

Process mining
Business processes

Summary
Resources

BPMN
Petri nets

Petri net
▶ Mathematical and graphical model
▶ Model synchronisation and resource sharing

P1 A P2 B

P3

P1 P2

P3

A B
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Pipeline

Why Process Mining matters ?
-> click here https://www.youtube.com/@PAFnow
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What will you learn?

▶ Extract and analyse business processes from logs
▶ Transform raw data into modelled data and clean the data
▶ Using various process mining algorithms, extract models from logs and

assess the quality of the models
▶ Perform conformance checking analysis
▶ Trace clustering
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Resources

▶ https://www.processmining.org/home.html
▶ https://fluxicon.com/book/read/aboutbook/
▶ https://link.springer.com/chapter/10.1007/978-3-642-28108-2_19
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Preliminaries : Process discovery II
▶ Idea

▶ Use traces to discover a process model
▶ Hence, it models the process as it happens in reality

▶ Example
▶ Set of trace variants
▶ < rc, ccc, dc, pa, sal >, < rc, ccc, dc, pr, srl >, < rc, ccc >

▶ Process discovery algorithms investigate
▶ Events and how events are ordered
▶ Execution constraints like splits or joins

▶ Depending on the process discovery algorithm

R. Champagnat, M. Trabelsi et al. α-algorithm 6/35
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Preliminaries : Process discovery III
▶ Process discovery by hand

▶ Set of trace variants
▶ < rc, ccc, dc, pa, sal >, < rc, ccc, dc, pr, srl >, < rc, ccc >

▶ Characterization
▶ Process always starts with <rc, ccc>
▶ Process can end with <pa, sal> or <pr, srl>
▶ Immediately before either of these sequences, we observe <dc>
▶ Process might end immediately after ccc

R. Champagnat, M. Trabelsi et al. α-algorithm 7/35
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Preliminaries : Process discovery IV
A wide range of different process discovery algorithms have been developed
▶ With different assumptions and limitations
▶ With different notations

Algorithms
▶ Alpha algorithms

▶ Heuristic Miner (HM)

▶ Inductive Miner (IM)

▶ Regions Based algorithms (SBR and ILP)

▶ Genetic Miner (GM)

▶ Fuzzy Miner (FM)

▶ etc.

Modeling languages
▶ Petri Nets

▶ Workflow Nets

▶ Process Trees

▶ Directly Follows Graphs

▶ etc.

R. Champagnat, M. Trabelsi et al. α-algorithm 8/35



Preliminaries
Process Discovery : Alpha algorithm

Tools

Process discovery
Workflow nets
Event log
Process model
Early research

Preliminaries : Process discovery V

▶ First discovery algorithms 1995 (Cook andWolf), 1998 (Agrawal, Gunopulos
and Leymann) and 2000 (α-algorithm)

▶ First release of BPMN: 2006
▶ Base-line approach using Directly Follows Graphs (DFGs)
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Workflow nets I

Process discovery algorithms use workflow nets to modelise business
processes

Workflow net is a restriction of Petri Net

Workflow net

Let N = (P,T,F) be a Petri Net and t̄ a fresh identifier not in P ∪ T . N is a
workflow net iff:

1 object creation : ∃pi ∈ P : ∀t ∈ T, ∄Post(t,pi)
2 object completion : ∃po ∈ P : ∀t ∈ T, ∄Pre(po, t)
3 connectedness : N̄ = (P,T ∪ t̄,F ∪ {(po, t̄), (̄t,pi))} is strongly connected.
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Preliminaries
Process Discovery : Alpha algorithm

Tools

Process discovery
Workflow nets
Event log
Process model
Early research

Workflow nets II

a b

c

d

t̄

Today we focus on α-algorithm to understand discovery issues but we will see
other algorithms in the next weeks.
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Event log

CaseId User Timestamp Activity Abbreviated
1 Roger 2016-01-12 12:34:25 Decide a
2 Sean 2016-01-12 12:36:25 Decide a
1 Roger 2016-01-12 12:35:26 Order Meat b
1 Roger 2016-01-12 12:44:28 Eat Meal d
3 Daniel 2016-01-12 12:46:26 Decide a
3 Daniel 2016-01-12 12:50:27 Order Vege c

▶ An event log is a multiset of of traces, ordered in cases, (a same case may
appear multiple times). e.g. L =

[
⟨a,b,d⟩2, ⟨a, c,d⟩3

]
▶ A case is a sequence of activity names. e.g. ⟨a,b,d⟩

R. Champagnat, M. Trabelsi et al. α-algorithm 12/35
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Process model I

▶ From L =
[
⟨a,b, c,d⟩3, ⟨a, c,b,d⟩2, ⟨a, e,d⟩

]

▶ Discovered Petri Net

a b d

e

c

▶ Possible transition firing sequences: {(a,b, c,d), (a, c,b,d), (a, e,d)}

R. Champagnat, M. Trabelsi et al. α-algorithm 13/35
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Process model II

▶ Directly-follows graph

a b c d

e

▶ Possible sequences:
{(a,b, c,d), (a, c,b,d), (a, e,d), (a, c,d), (a,b,d), (a,b, c,b, c,d)...}
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Early research I

▶ R. Agrawal, D. Gunopulos, and F. Leymann. Mining Process Models from
Workflow Logs. In Sixth International Conference on Extending Database
Technology, pages 469–483, 1998.

1 Draw the graph of precedence constraints

2 Remove edge that appears in both direction

3 Remove strongly connected component

4 Perform a graph reduction
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Early research II
Let us consider L = [⟨a,b, c, f⟩, ⟨a, c,d, f⟩, ⟨a,d, e, f⟩, ⟨a, e, c, f⟩]

b c

a

d f

e

b c

a

d f

e
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Early research III

▶ J.E. Cook and A.L. Wolf. Discovering Models of Software Processes from
Event-Based Data. ACM Trans- actions on Software Engineering and
Methodology, 7(3):215–249, 1998. They describe three methods for process
discovery:

▶ using neural networks

▶ purely algorithmic approach

▶ Markovian approach

They propose specific metrics (entropy, event type counts, periodicity, and
causality) and use these metrics to discover models out of event streams.
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Early research IV

▶ W. van der Aalst, T. Weijters and L. Maruster, "Workflow mining: discovering
process models from event logs," in IEEE Transactions on Knowledge and Data
Engineering, vol. 16, no. 9, pp. 1128-1142, Sept. 2004, doi:
10.1109/TKDE.2004.47.
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Log-based ordering relations

▶ Analyze causal dependencies of activities in the log (e.g. if an activity is always
followed by another activity it is likely that there is a causal relation between
both activities)

▶ We will consider the forth following relations between any activities a1 and a2:

1 Direct succession : a1 > a2 if there is a trace such that a1 is immediately followed
by a2 in a log;

2 Causality : a1 → a2, if a1 > a2 and a2 ≯ a1;

3 Parallel : a1∥a2, if a1 > a2 and a2 > a1;

4 Choice : a1#a2, if a1 ≯ a2 and a2 ≯ a1.
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Ordering relations example
From the following logs L =

[
⟨a,b, c,d⟩3, ⟨a, c,b,d⟩2, ⟨a, e,d⟩

]
, we can extract

the following relations

▶ Direct succession relations (>):

▶ a > b, a > c, a > e, b > c, b > d, c > b, c > d, e > d;

▶ Causality (→):

▶ a→ b, a→ c, a→ e, b→ d, c→ d, e→ d;

▶ Parallel (∥):

▶ b∥c, c∥b;

▶ Choice (#) :

▶ b#e, e#b, c#e, e#c, a#d, d#a.
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α-algorithm I

Formallly:

1 TL = {t ∈ T|∃σ∈Lt ∈ σ}

2 TI = {t ∈ T|∀σ∈Lt = first(σ)}

3 TO = {t ∈ T|∀σ∈Lt = last(σ)}

4 XL = {(A,B)|A ⊆ TL ∧ A ̸= ∅ ∧ B ⊆ TL ∧ B ̸= ∅ ∧ ∀a∈A∀b∈Ba→L

b ∧ ∀a1,a2∈Aa1#La2 ∧ ∀b1,b2∈Bb1#Lb2}

5 YL = {(A,B) ∈ XL|∀A′,B′∈XLA ⊆ A′ ∧ B ⊆ B′ ⇒ (A,B) = (A′,B′)}

6 PL = {p(A,B)|(A,B) ∈ YL} ∪ {iL,oL}
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α-algorithm II
7 FL = {(a,p(A,B))|(A,B) ∈ YL ∧ a ∈ A} ∪ {(p(A,B),b)|(A,B) ∈ YL ∧ b ∈ B} ∪ {(iL, t)|t ∈

TI} ∪ {(t,oL)|t ∈ To}

8 α(L) = (PL,TL,FL)
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α-algorithm III
In detail:

1 TL = {t ∈ T|∃σ∈Lt ∈ σ}. Extract transitions names (an activity is a transition)

2 TI = {t ∈ T|∀σ∈Lt = first(σ)}. Fix the set of start activity

3 TO = {t ∈ T|∀σ∈Lt = last(σ)}. Fix the set of end activity
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α-algorithm IV
4 XL = {(A,B)|A ⊆ TL ∧ A ̸= ∅ ∧ B ⊆ TL ∧ B ̸= ∅ ∧ ∀a∈A∀b∈Ba→L

b ∧ ∀a1,a2∈Aa1#La2 ∧ ∀b1,b2∈Bb1#Lb2}.

Find pairs (A,B) of sets of activities such that:

▶ Every element a ∈ A and every element b ∈ B are causally related (i.e. a→ b)

▶ All elements in A are independent (a1#a2), and all elements in B are independent
(b1#b2).
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α-algorithm V
5 YL = {(A,B) ∈ XL|∀A′,B′∈XLA ⊆ A′ ∧ B ⊆ B′ ⇒ (A,B) = (A′,B′)}. Delete

non-maximal pairs (A,B) from XL, For instance: let us take a,b, c ∈ T with
a→ b,a→ c and b#c then ({a}, {b}) in X and ({a}, {b, c}) also. The goal is to
reduce the number of places to keep the ones that connect the maximum of
transitions (here ({a}, {b, c})).

6 PL = {p(A,B)|(A,B) ∈ YL} ∪ {iL,oL}. Determine the place set: each element (A,B)
of YL is a place. And add source and target places.

7 FL = {(a,p(A,B))|(A,B) ∈ YL ∧ a ∈ A} ∪ {(p(A,B),b)|(A,B) ∈ YL ∧ b ∈ B} ∪ {(iL, t)|t ∈
TI} ∪ {(t,oL)|t ∈ To}. Determine the flow relation by connecting each place
p(A,B) with each element a of its set A of source transitions and with each
element b of its set B of target transitions. In addition, draw an arc from the
source place iL to each start transition t∈TI and an ark from each end transition
t∈To to the sink place oL
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α-algorithm VI

8 α(L) = (PL,TL,FL). The discovered Petri Net.

The whole concept
▶ Find pairs that are maximal (step 5).
▶ If two activities follow there is a place in between.
▶ A place defines a local constraint

A place is a constraint
▶ If we have a sequential pattern a→ b, the place between the transition a

and b specifies that a and b should happen the same number of times and
b should be executed after a.
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Example I
L =

[
⟨a,b, c,d⟩3, ⟨a, c,b,d⟩2, ⟨a, e,d⟩

]
1 a, b, c, d, e

2 a

3 d

4

a b c d e
a # → → # →
b ← # ∥ → #
c ← ∥ # → #
d # ← ← # ←
e ← # # → #

XL = {({a}, {b}), ({a}, {c}), ({a}, {e}), ({a}, {b, e}), ({a}, {c, e}), ({b}, {d}),
({c}, {d}), ({e}, {d}), ({b, e}, {d}), ({c, e}, {d})}
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Example II

5 YL = {({a}, {b, e}), ({a}, {c, e}), ({b, e}, {d}), ({c, e}, {d})}

6

b

e

c

a d
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Limitations

▶ The discovered model is not optimal (implicit places)

▶ Cannot discover loops (length 1 and more)

▶ Non-local dependencies
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Tools

▶ ProM (http://promtools.org/)

▶ PM4PY (https://pm4py.fit.fraunhofer.de)
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Introduction I

▶ To evaluate is to measure the reliability of a tool
▶ Evaluation depends on the phenomena to be assessed
▶ The approach requires a ground truth
▶ Assessment of results depends on the intended application
▶ Evaluation must be reproducible
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Introduction II
▶ In a classification system (binary)

▶ True positive
▶ True negative
▶ False positive
▶ False negative

▶ while 0 is the negative class and 1
is the positive class

Real Predicted
0 0 TN
0 1 FP
1 0 FN
1 1 TP
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Introduction III
Let p1,p2,p3,p4,p5,p6,p7 be a set of data representing pebbles and A and B
two classes with :
▶ A (pebbles with gold nuggets)
▶ B (pebbles of no interest)

Ground truth Predictions Confusion matrix

p1 A
p2 A
p3 A
p4 A
p5 B
p6 B
p7 B

p1 A
p2 B
p3 A
p4 B
p5 B
p6 A
p7 B

GT
pred

A B

A p1, p3 (TP) p2, p4 (FN)
B p6 (FP) p5, p7 (TN)
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Introduction IV
▶ Precision : rate of correct answers

TRUE POSITIVE VS FALSE POSITIVE
"Among the positive predictions, how many are really positive?"

▶ Recall : rate of answers found
TRUE POSITIVE VS FALSE NEGATIVE
"Among the real positives, how many are predicted positive?"

▶ Noise : rate of incorrect answers
▶ Silence : rate of forgotten answers

▶ Noise = 1− precision→ errors of type I
▶ Silence = 1− recall→ errors of type II
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Introduction V
▶ Precision = number of relevant items found

number of items found

▶ → P = TP
TP + FP

▶ Recall = number of relevant items found
number of relevant items

▶ → R = TP
TP + FN

F-measure :

Fβ = (1+ β2)
PR

(β2P) + R

▶ β = 1→ balance between P and R
▶ β < 1→ P is favored
▶ β > 1→ R is favored

→What about process mining?
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Introduction VI

▶ Venn Diagram1

▶ Is the discovered model a correct reflection of the real process?
▶ what is the quality of the discovered model?
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Introduction VII

Classification approaches (using confusion matrix) define:
▶ TP: traces possible in model and also possible in real process.
▶ TN: traces not possible in model and also not possible in real process.
▶ FP: traces possible in model but not possible in real process.
▶ FN: traces not possible in model but possible in real process.

Cannot be used since the identified model generates infinite sequences and
log only contains a subset of all potential traces.
⇒ Need for defining specific measures

1J.E. Cook and A.L. Wolf. Software Process Validation: Quantitatively Measuring the
Correspondence of a Process to a Model. ACM Transactions on Software Engineering and
Methodology (TOSEM), 8:147–176, April 1999.
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What is the best model? I

▶ How good is my model?

▶ There are many different process discovery algorithms available

▶ Many discovery algorithms build on parameters and, therefore, can
produce different models

▶ How can we assess whether a resulting model is “good”?

▶ We can build on the notion of underfitting and overfitting from machine
learning
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What is the best model? II
Let us consider the following log L =

[
⟨a, c,d⟩99, ⟨b, c, e⟩85

]
we can deduce the

candidate models:

a b

c
d

e

c

a d

b e

c

a d

b e

And with logs L =
[
⟨a, c,d⟩99, ⟨a, c, e⟩50, ⟨b, c, e⟩85, ⟨b, c,d⟩48

]
or

L =
[
⟨a, c,d⟩99, ⟨a, c, e⟩1, ⟨b, c, e⟩85, ⟨b, c,d⟩2

]
?
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What is the best model? III

a b

c

Or
a c b
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What is underfitting and overfitting?
In machine learning, we often fit a model to training data for the purpose of
prediction

▶ Underfitting
▶ Large distance from line to

most data points
▶ The shape of the model and

the data are very different

▶ Overfitting
▶ Low distance from line to most

data points
▶ The shape of the model and

the data are very similar
R. Champagnat, M. Trabelsi, A. Hamdi et al. Quality Criteria 16/55
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Notion of Overfitting

Allows only the discovered behaviour (the next trace will not fit)

a b c d
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Notion of Underfitting

Underfitting
Allows too much behaviour

a b

c d
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Quality Criteria in Process Mining
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Overfitting and underfitting
Quality Criteria
Example

Four Quality Criteria for Process Mining I

Buijs Joos et al. (2012). On the Role of Fitness, Precision, Generalization and
Simplicity in Process Discovery.

▶ Fitness: ability to explain observed behaviour

▶ Precision: (avoid underfitting): the discovered model should not allow for
behavior completely unrelated to what was seen in the event log.

▶ Generalisation: (avoid overfitting): the discovered model should generalize
the example behavior seen in the event log.

▶ Simplicity: complexity and specificity of the model
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Four Quality Criteria for Process Mining II
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Best process discovery algorithm
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Fitness I

Indicates how much the observed behaviour in the log is captured by the
process model

▶ In general -> f = number_of_traces_captured_by_the_model
number_of_traces_in_the_log

▶ Comparing footprints

▶ Token-Based Replay

▶ Alignment
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Fitness : Comparing footprints

Compare the footprints of log (L) and possible traces of the model (M).
L a b c d e
a # → → # →
b ← # ∥ → #
c ← ∥ # → #
d # ← ← # ←
e ← # # → #

M a b c d e
a # → # # →
b ← # ∥ → #
c ← ∥ # → #
d # ← ← # ∥
e ← # # → #

f = 1− number_of_different_elements
number_of_elements
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Fitness : Token-Based Replay I

▶ Given an event log and a Petri net, token based-replay takes each trace in
the log in isolation and fire transitions sequentially according to the
ordering of events in the trace.

▶ If a transition should be fired according to an event in a trace but it is not
enabled,missing tokens are added to enable the transition.

▶ All added tokens are recorded.
▶ Together with the number of remaining tokens left after all traces are

replayed, the amount of added tokens is used to measure conformance
between the log and the net.
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Fitness : Token-Based Replay II

While replay progresses, we count the number of tokens that had to be
created artificially (i.e., the transition belonging to the logged event was not
enabled and therefore could not be successfully executed ) and the number of
tokens that were left in the model,which indicate that the process was not
properly completed2

f =
1
2
(1−

∑k
i=1 nimi∑k
i=1 nici

) +
1
2
(1−

∑k
i=1 niri∑k
i=1 nipi

) (1)

Where:
▶ i is the log trace index,
▶ ni is the number of process instances combined into the current trace,
▶ ci is the number of consumed tokens,

R. Champagnat, M. Trabelsi, A. Hamdi et al. Quality Criteria 27/55



Introduction
Why using Quality Criteria?

Quality Criteria for Process Dicovery
Initial Measures

Overfitting and underfitting
Quality Criteria
Example

Fitness : Token-Based Replay III
▶ pi is the number of produced tokens during log replay of the current trace,
▶ mi is the number of missing tokens,
▶ ri is the number of remaining tokens.
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Fitness : Token-Based Replay IV

Let’s replay the trace "acdeh" on this discovered model. Initially, p = c = 0 and
all places are empty.
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Fitness : Token-Based Replay V
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Fitness : Token-Based Replay VI
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Fitness : Token-Based Replay VII
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Fitness : Token-Based Replay VIII

So for the first example the fitness value will be :

f =
1
2
(1− 0

7
) +

1
2
(1− 0

7
) = 1 (2)

Let’s replay another trace "adceh" on this discovered model. Initially, p = c = 0
and all places are empty.
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Fitness : Token-Based Replay IX
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Fitness : Token-Based Replay X

2
Rozinat et al. (2008). Conformance checking of processes based on monitoring real behavior. Information Systems
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Fitness : Computation based on alignment-based algorithms
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Precision I

Precision
▶ Does the model allow for traces that are not in the event log?
▶ Determining howmany traces from the model are not part of the event log.
▶ This is not always straightforward since models often allow for an infinite

number of traces

In general, Precision quantifies the fraction of the behavior allowed by the
model which is not seen in the event log 3

Precision(L,M) =
1
|E|

∑
e∈E

|enL(e)|
|enM(e)|

(3)

where:
▶ |E| is the number of events in the log L (the number of lines of the log)
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Precision II
▶ e is an event in the log (one line)
▶ enL(e) is the set of activities (event types) enabled in the event logs
▶ enM(e) be the set of activities enabled in the model
▶ enL(e) ⊆enM(e) because the event log is perfectly fitting. Therefore,

0 < precision(L,M) ≤ 1.
▶ Precision is 1 if all the possible behaviors allowed in the model are

observed in the log.
▶ If the model allows for much more behavior than observed, then

precision(L,M) ≤ 1.
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Precision III

Munoz-Gama et al. (2011). Enhancing precision in Process Conformance:
Stability, confidence and severity.

▶ The precision metric avoids enumerating all the possible states.

▶ Requires to calculate the prefix automaton based on the log
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Precision IV
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Precision V

▶ For each state identify the escape states (enabled transition in the model
and note in the log when replaying the log)
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Precision VI

etcp = 1−
∑

for_each_state (number_of_escaping_states× occurence_of_the_prefix)∑
for_each_state (number_of_available_states× occurence_of_the_prefix)

(4)

▶ For more details please see this Helpers’ presentation Precision helpers

▶ Both metrics require the log to fit the model.

3Aalst 2016, Process mining: data science in action
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Generalization and Simplicity

Generalization
Assesses the extent to which the resulting model will be able to reproduce
future behavior of the process.

Simplicity
Quantify the complexity of a process model

Based on complexity measures of a process model
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Combination of measures

F-measure

F −measure = 2∗F∗P
F+P

▶ A proper process model must find a balance between quality criteria.
▶ It has been shown that Fitness and Precision are linked. A small amount of

behaviors (event logs) leads to a decrease in Fitness and an increase in
Precision
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How to compute Quality Criteria

▶ It exists various metrics for a quality criteria
▶ Based on process modelling metrics (Petri Net)
▶ Based on Workflow net
▶ Based on Process Tree
▶ Based on alignment algorithms
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Examples I
Let us consider the following log
L =

[
⟨a, c,d, e⟩99, ⟨d,a,b, e⟩85, ⟨a,d, c, e⟩56, ⟨a,d,b, e⟩21, ⟨a,b,d, e⟩15, ⟨d,a, c, e⟩6

]
a c d e ▶ Fitness: bad

▶ Simplicity: good
▶ Precision: good
▶ Generalization: bad
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Examples II
L =

[
⟨a, c,d, e⟩99, ⟨d,a,b, e⟩85, ⟨a,d, c, e⟩56, ⟨a,d,b, e⟩21, ⟨a,b,d, e⟩15, ⟨d,a, c, e⟩6

]
a b

c d

e

▶ Fitness: good
▶ Simplicity: good
▶ Precision: bad
▶ Generalization: good
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Examples III

a c d

d a b

a d c

a b d

a d b

d a c

e

[⟨a, c,d, e⟩99, ⟨d,a,b, e⟩85, ⟨a,d, c, e⟩56,
⟨a,d,b, e⟩21, ⟨a,b,d, e⟩15, ⟨d,a, c, e⟩6]

(5)

▶ Fitness: good

▶ Simplicity: bad

▶ Precision: good

▶ Generalization: bad
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Complexity of a Process Model I
Modelling complex business processes is difficult and people make numerous
errors. It has been shown in empirical studies that about 20% of models have
design flaws...
In Kristian Bisgaard Lassen et al, Complexity metrics for Workflow nets,
Information and Software Technology, Volume 51, Issue 3, 2009, Pages
610-626, ISSN 0950-5849, they define 3 metrics.

1 Extend Cardoso metrics (J. Cardoso Transactions on Enformatika (sixth
ed.), Systems Sciences and Engineering, vol. 8, Springer-Verlag, Berlin,
Budapest, Hungary (2005), pp. 213-218)
It is based on the presence of certain splits and joins in the syntactical
process definition (based on Weyuker’s properties4) that give comlexity
measure to determine if a program can be categorized as good,
structured, and comprehensive.
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Complexity of a Process Model II

Cardoso metrics:
▶ Activity complexity: calculate the number of activities a process has
▶ Control-flow complexity: based on splits, joins loops and ending
▶ Data-flow complexity: data complexity and mapping, composed of several

sub-metrics (data complexity, interface complexity, and interface integration
complexity)

▶ Resource complexity: based on resources access during activities

The metric is based on the number of subsets of places reachable form a
place.
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Complexity of a Process Model III

2 Extend McCabe Cyclomatic metric (T. McCabe IEEE Transactions on
Software Engineering, 2 (1976), pp. 308-320 control flow graph of
procedure of a program) well-kown for measuring the control-flow graph
of a procedure of a programme.
The metric is based on the number of edges, vertex and strongly
connected components.

3 Structuredness metric
It is based on "behavioral" pattern. It better tries to capture the complexity
of the model as it is perceived by humans. It iteratively analyzes the
structure of the model and assigns penalties to undesirable constructs
from a complexity point of view.

4Weyuker, E.J., Evaluating software complexity measures. IEEETransactions on Software Eng.,
1988. 14(9): p. 1357-1365
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Correspondance between process execution I

In J.E. Cook el al. Software Process Validation: Quantitatively Measuring the
Correspondence of a Process to a Model. ACM Transactions on Software
Engineering and Methodology (TOSEM), 8:147–176, April 1999 Their aim is to
measure the level of correspondence between a process execution and a
process model.
Their ambition is to answer the questions:
▶ Does our model reflect what we actually do?
▶ Do we follow our model?

They define two metrics:
1 Simple String Distance metric
2 Non-linear String Distance metric
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Correspondance between process execution II

The metrics are based on comparing
sequences. Research on sequencing
DNA have been very popular since the
2000s and a lot of sequence
alignment algorithms have been
developped.
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Traces I

▶ Business Process software
▶ Software for public services
▶ Information seeking

Generates a lot of data.

A use trace is a footprint left by a user when using a software.
▶ At short term, the objective is providing feedback for the production teams.
▶ At long term, a smart assistant could be designed to help the user to

perform some tricky tasks or repetitive actions.
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Traces II

Improve quality
▶ reproducing anomalies situation
▶ validate user experience
▶ determine performance criteria

Analysis based on experience rather
than knowledge

Difficult to analyse Information Seeking systems
▶ Task are defined step by step during its realization
▶ No exact goal
▶ No indentified means to rich its goal
▶ Depends on the context (information found during the process)
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Use trace I
Laflaquière, Julien et al. (2006). Trace-Based Framework for Experience
Management and Engineering.
▶ A Trace-Based Framework for Experience Management and Engineering is

considered as a recording of a computer-mediated activity that is
potentially constructed from variety of sources (log-files, video, transcripts,
etc)

▶ Trace lifecycle:
▶ Collecting (deciding with what to collect and how)
▶ Transformation (automatically ou manually filtering rearranging or adding

information)
▶ Presentation (visualization and involves choosing what to present and how)

▶ In a Trace-Based System each tracemust always be associated to an
explicit trace model
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Use trace II

A use trace is a temporal sequences of observed items.

▶ Order-relation that organizes trace data relatively to a time base
▶ Observed item indicates that trace data result form an observation

The objective is to deal with use traces that "make sense"
▶ Qualitative approaches are proposed in ethnographic and ergonomics

research
▶ Quantitative approaches are based on log-files. They are obtained by

passive observation and are used to calculate some statistical insights
▶ Use trace approaches: in between
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Use trace III

Trace model
A Trace Model is an ontology MT = (C;≤C;≤R;T;A;σA;σR) consisting of
▶ a set of concepts C organized in hierarchy with an order relation ≤C

▶ a set of relations R organized with ≤R

▶ a relation signature R → C × C
▶ a set of data types T
▶ a set of attributes A
▶ and an attribute signature A → C × T .
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Use trace IV

Trace
A trace is a quintuplet (MT ,Dp,Otr,Rt,Rs) where
▶ MT is the associated trace model;
▶ Dp is a temporal domain (T, <) with T a set of time instants and < an order

on T ;
▶ Otr is a set of objects O, Otr = O0,O1, ...,On such as ∀Oi ∈ Otr, f(Oi) ∈ C, with

f a labelling function f : Otr → C
▶ Rt ⊆ Dp × Dp × Otr is a relation representing the structural links between

objects
▶ ∀Rsi ∈ Rs,g(Rsi) ∈ C, with g a labelling function g : Rs → C.
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Use trace V
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Raw Traces

May be:
▶ Flat file
▶ Spreadsheet
▶ Transaction log
▶ Database table
▶ Data warehouse

Not always structured and
well-described by meta data.

The origin of the raw data could be:
▶ Web pages
▶ emails
▶ PDF documents
▶ scanned text
▶ screen scraping

Data need to be extracted and
converted into event logs.
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Modelled Traces I

▶ Each event refers to a case, an
activity, and a point in time.

▶ An event log can be seen as a
collection of cases.

▶ A case can be seen as a
trace/sequence of events.
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Modelled Traces II
Event time Process Case Activity
e1 t1 p1 c1 a1
e2 t2 p1 c1 a3
e3 t3 p1 c2 a1
e4 t4 p2 c3 a2
e5 t5 p1 c2 a3
e6 t6 p2 c3 a3
e7 t7 p1 c2 a4
e8 t8 p1 c1 a4
e9 t9 p2 c4 a2
e10 t10 p1 c5 a1
e11 t11 p2 c3 a5
e12 t12 p2 c4 a3
e13 t13 p1 c6 a1
e14 t14 p1 c5 a3
e15 t15 p2 c4 a5
e16 t16 p1 c6 a3
e17 t17 p1 c6 a4
e18 t18 p1 c5 a4

▶ L =
[
⟨a1,a3,a4⟩4, ⟨a2,a3,a5⟩2

]
▶ E = {e1, e2, ..., e18}

▶ A = {a1,a2,a3,a4}

▶ P = {p1,p2}

▶ Instance of p1 :
Cp1 = {c1, c2, c5, c6}

▶ Instance of p2 : Cp2 = {c3, c4}

▶ ⟨a1,a3,a4⟩ and ⟨a2,a3,a5⟩
correspond to variant
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Modelled Traces III

CaseId User Timestamp Activity
1 user1 2016-01-12T10:34:25 home index
1 user1 2016-01-12T10:34:27 home languages
1 user1 2016-01-12T10:34:28 language selection
1 user1 2016-01-12T10:34:31 catalog show
2 user2 2016-01-12T10:34:26 home index
2 user2 2016-01-12T10:34:29 home periods
2 user2 2016-01-12T10:34:30 catalog show

user1 home-index home-languages language-selection catalog-show

user2 home-index home-periods catalog-show
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More refined view : activity instances
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Ambiguity in traces

We can only observed activities that has footprint, but:

Event time Process Case activity
e1 t1 p1 c1 start a1
e2 t2 p1 c1 start a1
e3 t3 p1 c1 complete a1
e4 t4 p1 c1 complete a1
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eXtensible Event Stream I

XES (www.xes-standard.org) is a standard for storing and exchanging event
logs.

The XES standard defines a grammar for a tag-based language whose aim is to
provide designers of information systems with a unified and extensible
methodology for capturing systems behaviors by means of event logs and
event streams.
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eXtensible Event Stream II
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eXtensible Event Stream III

1 <?xml vers ion = " 1 .0 " encoding= "UTF−8 " ?>
2 <! −− This f i l e has been generated with the OpenXES l i b r a r y . I t conforms −−>
3 <! −− to the XML se r i a l i z a t i o n of the XES standard for log storage and −−>
4 <! −− management . −−>
5 <! −− XES standard vers ion : 1 .0 −−>
6 <! −− OpenXES l i b r a r y vers ion : 1 .0RC7 −−>
7 <! −− OpenXES i s ava i lab le from http : //www. openxes . org/ −−>
8 <log xes . vers ion = " 1 .0 " xes . features = " nested− a t t r i bu tes " openxes . vers ion = " 1 .0RC7 " >
9 <extension name= " L i fecycle " p re f i x = " l i f e cyc l e " u r i = " http ://www. xes−standard . org/ l i f ecyc l e . xesext " />
10 <extension name= " Time " p re f i x = " time " u r i = " http ://www. xes−standard . org/time . xesext " />
11 <extension name= " Concept " p re f i x = " concept " u r i = " http ://www. xes−standard . org/concept . xesext " />
12 < c l a s s i f i e r name= " Event Name" keys= " concept : name" />
13 < c l a s s i f i e r name= " ( Event Name AND Li fecycle t r a n s i t i o n ) " keys= " concept : name l i f ecyc l e : t r a n s i t i o n " />
14 < s t r i ng key= " concept : name" value = "XES Event Log " />
15 <trace >
16 < s t r i ng key= " concept : name" value = " 10 | 1 " />
17 <event > < s t r i ng key= " concept : instance " value = "0" />
18 < s t r i ng key= " l i f ecyc l e : t r a n s i t i o n " value = " s t a r t " />
19 <date key= " time : timestamp " value = " 1998−05−06T16 :00:57.000+02:00 " />
20 < s t r i ng key= " concept : name" value = " request " />< s t r i ng key= " task " value = " 87 " />
21 </event >
22 . . .
23 </trace >
24 </log >
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Classifier I

A classifier is a function that maps the attributes of an event onto a label.

For any event e ∈ E and name n ∈ ActivityName,#n(e) is the value of attribute n
for event e. And e is the name of the event
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Classifier II

▶ If events are simply identified by their activity name, then e = #activity(e).

▶ Instance a in Fig. 5.4 would be mapped onto ⟨a,a,a,a⟩.
▶ In this case α-algortihm would create just one a transition.

▶ If events are identified by their activity name and transaction type then
e = (#activity(e),#trans()e). Now activity instance a would be mapped onto
⟨(a, schedule), (a,assign), (a, start), (a, complete)⟩.
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Data Extraction

In the Process Mining book - Data Science in Action (Wil M.P. van der Aalst,
2016.) five challenges were highlighted:
▶ Event correlation: how to identify events and their corresponding cases?
▶ Timestamps: when merging data from different sources time may be

wrong because of multiple clocks...
▶ Snapshot of a longer running process (missing head or tail)
▶ Scoping, knowledge associated to data
▶ Granularity
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Data Quality

▶ Missing in log: activity not recorded
▶ Missing in reality: extra activity recorded
▶ Concealed in log: the activity was recorded and exists but it is hidden in a

larger less structured data.
▶ Missing attribute
▶ Incorrect attribute
▶ Imprecise attribute
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Guidelines for logging

To create an event log from trace:
1 we need to select the events relevant for the process at hand
2 events need to be correlated to form process instances (cases)
3 events need to be ordered using timestamp information (or have an

explicit order)
4 event attributes need to be selected or computed based on the raw data

(resource, cost, etc.)
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Example

Move on to a real case : how to create an event log from documents ?

-> Database tables extracted from documents

Link to the case presentation Example on claims documents
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Outlier I
Ghionna, Lucantonio et al. (2008). Outlier Detection Techniques for Process
Mining Applications.

Outlier
Exceptional individual trace from a set of traces or Infrequent behaviour.

▶ Important applications in bioinformatics, fraud detection, and intrusion
detection, etc.

▶ Problem in Process Mining: concurrency may produce traces that only
differ in the ordering but are not outlier (even if occurs rarely)
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Outlier II

Fani Sani et al. (2018). Applying Sequence Mining for Outlier Detection in
Process Mining.
▶ Noise versus Outlier.

▶ Noise relates to behaviour that does not conform to the process specification
or its correct execution.

▶ Infrequent behaviour refers to behaviour that is possible according to the
process model, but, in exceptional cases of the process.

▶ The presence of outlier behaviour makes results complex,
incomprehensible and even inaccurate.

▶ Applying filtering on log prior to apply any process discovery algorithm.
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Sampling Event Log I
Fani Sani et al. (2019). The Impact of Event Log Subset Selection on the
Performance of Process Discovery Algorithms.
Problems:
▶ Dealing with large event logs
▶ Meaningful sampling
▶ Sampling biais

Sampling methods aim to reduce the number of process instances and
increase the performance of discovery algorithms
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Sampling Event Log II

Subset selection strategies
▶ Random Sampling
▶ Biased Sampling Strategies: first find all variants in an event log and use

more advanced strategies (biases) to select them
▶ Frequency-based Selection: This ranking strategy gives higher priority to

a variant that has a higher occurrence frequency in the event log
▶ Length-based Selection: sort variants based on their length and choose

the longest or the shortest ones first
▶ Similarity-based Sampling: rank variants based on the similarity of them

to each other
▶ Structure-based Selection: we consider the presence of unstructured

behavior in each variant

R. Champagnat, M. Rabah, M. Trabelsi et al. Event logs 34/42



Introduction
Traces

Event Log
Outlier

Sampling Event Log
Privacy

Sampling Event Log III

Kabierski, Martin et al. (2018). HowMuch Event Data Is Enough? A Statistical
Framework for Process Discovery.

▶ Statistics for pre-processing event logs (detect unstructured behaviour...)

▶ Statistics for determining how a newly sampled trace add new information

For instance, with traces ⟨a,d,b, e⟩ and ⟨a,b,d, e⟩ one can derive the following
ordering relations: a → b,a → d,b||d,b → e,d → e.
Adding the new trace ⟨d,a,b, e⟩ changes the deduction on ordering relations
as follows: a → b,a||d,b||d,b → e,d → e.
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Privacy I

▶ Privacy, security, law, and ethics are key ingredients to protect individuals
and organizations from “bad” data science practices.

▶ Differences between Information Security and Privacy1

▶ Privacy relates to the idea that the information about individuals or groups
that is not advertised to others.

▶ Security is the practice of preventing unauthorized and malicious access,
use, disruption and modification of information.

Privacy referes to the ability to isolate sensitive information.

▶ Data should be accurate and stored safely
▶ Individuals need to be able to trust the way data are stored and transmitted
▶ Not all types of analysis possible are morally defendable.
▶ Due to a lack of sufficient data, minority groups may be wrongly classified
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Privacy II

▶ Ensure privacy without losing meaningful correlations.
Hashing can be a powerful tool in the trade-off between privacy and
analysis.

▶ Privacy and anonymization
Event logs may contain sensitive or private data. Events refer to actions
and properties of customers, employees, etc.

▶ Privacy protection techniques
▶ Cryptographic technique
▶ Access Control
▶ Differential Privacy 2
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Privacy III

▶ Anonymization techniques
A study estimated that 87% of the population of the United States can be
uniquely identified using the attributes gender, date of birth, and 5-digit zip
code3. Those three attributes were used to link Massachusetts voter
registration records (which includes the name, gender, zip code, and date of
birth) to supposedly anonymized medical data from the Group Insurance
Commission GIC (which includes gender, zip code, date of birth and
diagnosis). The linking between these two tables managed to identify the
medical records of the governor of Massachusetts in the medical data4.

▶ K-anonymity
A table satisfies k-anonymity if every record in the table is indistinguishable from
at least k -1 other records with respect to every set of quasi-identifier attributes,
such a table is called a k-anonymous table.
There are many limitations that have been identified for this technique, namely
attacks such as homogeneity attack and background knowledge attack.
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Privacy IV
▶ L-Diversity

Requires each group of quasi-identifier attributes containing at least one
representative and distinct sensitive attributes that have equal proportion in
order to avoid homogeneity attack and background attack

▶ t-closeness
An equivalence class is said to have t-closeness if the distance between the
distribution of a sensitive attribute in this class and the distribution of the
sensitive attribute in the whole table is no more than a threshold t. A table is said
to have t-closeness if all equivalence classes have t-closeness.
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Privacy V

▶ Process mining techniques do not create new data but active use of data
and process mining techniques increases the risk of data misuse

▶ Organizations should continuously balance the benefits of creating and
using event data against potential privacy and security problems.

1Wang, Tao et al. (2018). Privacy Preservation in Big Data From the Communication
Perspective—A Survey. IEEE Communications Surveys & Tutorials.

2it seeks at providing rigorous and statistical guarantees against what an adversary can infer
and learn over an individual’s data. It consists in perturbing the raw records of individuals
randomly.

3Kunaserkan Kokula Krishna Hari et al. Proceedings of the International Conference on
Systems, Science, Control, Communication, Engineering and Technology, ICSSCCET 2015.

4Latanya Sweeney. k-anonymity: A model for protecting privacy. International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems
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Representational bias

The representational bias determines the search space and potentially limits
the expressiveness of the discovered model.

▸ Inability to represent concurrency
▸ Inability to deal with loops
▸ Inability to represent silent actions
▸ Inability to represent duplicate actions
▸ Inability to represent non-free-choice behavior
▸ Inability to represent hierarchy
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Dealing with real log

The real log may contain:

Noise ▸ Add events in a trace
▸ Loose events in a trace

Exceptional/infrequent behaviour

Completeness All the variants may not appear in the log, i.e. to discover a∥b
we must discover cases containing ⟨...,a,b, ...⟩ and ⟨...,b,a, ...⟩, if
a,b,c,d,e are in sequence and in parallel with f , it requires 16
variants to be totally observed.
The assumption that event logs are directly-follows complete is
unrealistic for less structured processes and relatively small event
logs

Incomplete Case (or trace) may be incomplete (missing the beginning or the
end due to data extraction)
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Overview I
Limitation of Process Discovery models:
▸ Generate models with non-living transitions
▸ Unable to replay the log

Inductive miner is a family of algorithms that discover a Process Tree model by
splitting Log recursively

Inductive miner techniques can deal with:
▸ infrequent behaviour
▸ completeness
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Overview II

Characteristics:
▸ Discover "sound" model
▸ Ability to rediscover the original model
The property rediscoverability entails that a discovery algorithm is able to
discover a model that is language equivalent to the system that underlies
the given event log.

▸ Can deal with huge logs

Inductive mining is currently one of the leading process discovery approaches
due to its flexibility, formal guarantees and scalability.
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Workflow Net

A Petri net N is a Workflow Net if:
1 Object creation: ∃pi ∈ P ∶ ∀t ∈ T,∄Post(t,pi), it contains an input place
2 Object completion: ∃po ∈ P ∶ ∀t ∈ T,∄Pre(po, t) it contains and output place
3 Connectedness: adding transition t̄ from po to pi, then we have

N̄ = (P,T ∪ t̄,F ∪ {(po, t̄), (̄t,pi))} is strongly connected.
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Sound I

AWorkflow Net is sound iff:
▸ the net is safe (places cannot hold multiple tokens at the same time);
▸ proper completion: if the sink place is marked, all other places are empty.
∀S([i]

∗
Ð→ s) ⇒ (s

∗
Ð→ [o]), for each reachable marking from the input place

there exists a sequence of firing that leads to the final marking with [i] the
initial marking meaning only pi holds a token and [o] the final marking
meaning only po holds a token;

▸ option to complete: it is always possible to reach the marking that marks
just the sink place. ∀M([i]

∗
Ð→ s ∧ s ≥ [o]) ⇒ (s = [o]);

▸ Absence of dead parts.
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Sound II

a

b

c

d

e

f

g

h
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Block-StructuredWorkflow Nets

Block-Structured Workflow Nets is a hierarchical workflow net that can be
divided recursively into parts having single entry and exit points.

a τ

b

c

d

τ e

f

g

h
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Process Tree I
A process tree is a compact abstract representation of a block-structured
workflow net: a rooted tree in which leaves are labeled with activities and all
other nodes are labeled with operators.
A Process Tree is formally defined recursively by:
Let a finite alphabet Σ of activities and a set⊕ of operators. Symbole τ ∉ Σ
denotes the silent activity.

Process Tree
▸ a, with a ∈ Σ ∪ τ , is a Process Tree;
▸ Let M1...Mn with n > 0 be Process Tree and let⊕ a Process Tree Operator,
then⊕(M1, ...,Mn) is a Process Tree.
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Process Tree II

▸ Operator ×means the exclusive choice,

▸ →means the sequential execution,

▸ ∧means a parallel (interleaved) execution and

▸ ↺ a structured loop (with do and redo).

Example: → (a,↺ (→ (∧(×(b,c),d),e), f),×(g,h)) correspond to the
Block-Structured Workflow net given slide 13.
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Convert Process Tree to Workflow Net

Any process tree can be converted to
an equivalent WF-net (and BPMN
model, etc.) directly by:
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Directly-Follows Graph I
The basic Inductive Miner algorithm uses the Directly-Follows graph that
corresponds to the "directly follows" relation (>L) used by the α-algorithm.
It is formally defined by:
Let L be an event log. The Directly-Follows graph of L is
G(L) = (AL,↦L,Astart

L ,Aend
L ) with:

▸ AL = {a ∈ σ∣σ ∈ L]} is the set of activities in L
▸ ↦L= {(a,b) ∈ A × A∣a >L b} is the directly follows relation
▸ Astart

L = {a ∈ A∣∃σ∈La = first(σ)} is the set of start activities
▸ Aend

L = {a ∈ A∣∃σ∈La = last(σ)} is the set of end activities
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Directly-Follows Graph II

From L = [⟨a,b,c,d⟩3, ⟨a,c,b,d⟩2, ⟨a,e,d⟩]

a b c d

e

R. Champagnat, M. Trabelsi et al. Advanced Process Discovery: Inductive Miner, Fuzzy Miner, etc 18/82



Introduction
Inductive Miner

Fuzzy Miner
Other Algorithms

Conclusion

Soundness
Process Tree
Directly-Follows Graph
Inductive Miner
Extension

Eventually-Follows Graph I
The Eventually-Follows graph corresponds to the relation a is eventually
followed by b if there is a trace in the event log in which a happens somewhere
before b.
Let L be an event log. The Eventually-Follows graph of L is
Ge(L) = (AL,↦

+
L ,A

start
L ,Aend

L ) with:
▸ AL = {a ∈ σ∣σ ∈ L]} is the set of activities in L
▸ ↦+L is the eventually follows relation.
if there is a non-empty path from a to b in G(L), i.e., there exists a sequence
of activities a1,a2, ...,ak such that k ≥ 2, a1 = a and ak = b and ai ↦L ai+1.
a↦̸+L b if there is no path from a to b in the directly-follows graph.

▸ Astart
L = {a ∈ A∣∃σ∈La = first(σ)} is the set of start activities

▸ Aend
L = {a ∈ A∣∃σ∈La = last(σ)} is the set of end activities
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Eventually-Follows Graph II

From L = [⟨a,b,c,d⟩3, ⟨a,c,b,d⟩2, ⟨a,e,d⟩]

a b c d

e
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Algorithm I

Leemans, Sander & Fahland, Dirk & Aalst, Wil. (2013). Discovering
Block-Structured Process Models from Event Logs - A Constructive Approach.

Inductive Miner
1 The Inductive Miner algorithm iteratively splits the initial event log into

smaller sublogs using cuts.
2 For any sublog L we can create a directly-follows graph G(L)
3 Sublogs will be mined recursively until a sublog will contain just a single

activity
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Algorithm II

We consider the following cuts:

▸ exclusive-choice

▸ sequence

▸ parallel

▸ redo-loop

Corresponding to the four Process
Tree operators: ×,→,∧,↺
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Cuts I
Let L be an event log with corresponding directly-follows graph
G(L) = (AL,↦L,Astart

L ,Aend
L ).

Let n ≥ 1.
A n-ary cut of G(L) is partition of AL into pairwise disjoint sets
A1,A2, ...,An ∶ AL = ⋃i∈1,...,nAi and Ai ∩ Aj = ∅ for i ≠ j.
Notation is (⊕,A1,A2, ...,An) with⊕ ∈ {→,×,∧,↺}.
For each type of operator →,×,∧,↺ sepcific conditions apply:

Exclusive-choice cut (no crossing edges) of G(L) is a cut (×,A1,A2, ...,An)

such that ∀i,j∈[1,...,n]∀a∈Ai
∀b∈Aj

i ≠ j⇒ a↦̸L b

Sequence cut (edges crossing one-way only) of G(L) is a cut (→,A1,A2, ...,An)

such that ∀i,j∈[1,...,n]∀a∈Ai
∀b∈Aj

i < j⇒ (a↦+L b ∧ b↦̸+L a)
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Cuts II
Parallel cut (all possible crossing edges) of G(L) is a cut (∧,A1,A2, ...,An)

such that
▸ ∀i∈[1,...,n]Ai ∩ Astart

L ≠ ∅ ∧ Ai ∩ Aend
L ≠ ∅ and

▸ ∀i,j∈[1,...,n]∀a∈Ai
∀b∈Aj

i ≠ j⇒ a↦L b
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Cuts III

redo-loop cut (identify body and loopback parts; assumption: start/end
activities disjoint) of G(L) is a cut (↺,A1,A2, ...,An)

such that
▸ n ≥ 2
▸ Astart

L ∪ Aend
L ⊆ A1

▸ {a ∈ A1∣∃i∈[2,...,n]∃b∈Ai
a↦L b} ⊆ Aend

L
▸ {a ∈ A1∣∃i∈[2,...,n]∃b∈Ai

b↦L a} ⊆ Astart
L

▸ ∀i,j∈[2,...,n]∀a∈Ai
∀b∈Aj

i ≠ j⇒ a↦̸L b
▸ ∀i∈[2,...,n]∀b∈Ai

∃a∈Aend
L
a↦L b⇒ ∀a′∈Aend

L
a′ ↦ b

▸ ∀i∈[2,...,n]∀b∈Ai
∃a∈Aend

L
b↦L a⇒ ∀a′∈Astart

L
b↦ a′
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Example I

Let us consider the following log: L = [⟨a,b,c⟩ , ⟨a,c,b⟩ , ⟨a,d,e⟩ , ⟨a,d,e, f ,d,e⟩]
We derive the following directly-follows graph:
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Example II

Sequence cut →

L1 L2

with L1 = [⟨a⟩ , ⟨a⟩ , ⟨a⟩ , ⟨a⟩] and
L2 = [⟨b,c⟩ , ⟨c,b⟩ , ⟨d,e⟩ , ⟨d,e, f ,d,e⟩]
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Example III

Exclusive-choice cut →

a ×

L3 L4

with L3 = [⟨b,c⟩ , ⟨c,b⟩] and
L4 = [⟨d,e⟩ , ⟨d,e, f ,d,e⟩]
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Example IV

Parallel cut →

a ×

∧ L4

b

c
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Example V

Redo-loop cut

→

a ×

∧ ↺

b

c

L5 f

with L5 = [⟨d,e⟩]

The complete Process Tree is then:
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Example VI
→

a ×

∧ ↺

b

c

→ f

d e
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Example VII

And the corresponding Workflow net:

a

τ

τ

b

c

d

τ

e τ

f
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Empty traces

Silent activities are only introduced for base cases and empty traces.

▸ If the sublog is of the form L′ = [⟨⟩k , ⟨a⟩l] with k, l ≥ 1, then IM(L′) = ×(a, τ)
because a is sometimes skipped.

▸ If a is executed at least once in each trace in the sublog and sometimes
multiple times (e.g., L′ = [⟨a⟩9 , ⟨a,a⟩2 , ⟨a,a,a⟩]), then IM(L′) =↺ (a, τ).

▸ In all other cases e.g., L′ = [⟨⟩3 , ⟨a⟩4 , ⟨a,a,a⟩], IM(L′) =↺ (τ,a) because a is
executed zero or more times in the traces of sublog L.
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Inductive Miner Infrequent I
Leemans, Sander & Fahland, Dirk & Aalst, Wil. (2014). Discovering
Block-Structured Process Models from Event Logs Containing Infrequent
Behaviour.

Deals with variants with low frequency.

Let us consider the log L = [⟨a,b,c,d⟩645 , ⟨a,c,b,d⟩389 , ⟨a,e, f ,d⟩8 , ⟨a,e,d⟩].
Variant ⟨a,e,d⟩ is infrequent.
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Inductive Miner Infrequent II

The corresponding Directly-Follows graph is given by:

Where the numbers indicate frequencies, e.g., activity b was executed 1034
times and was directly followed by activity c 645 times.
The basic idea is to:
▸ filter edge with low frequency (e↦ d)
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Inductive Miner Infrequent III

▸ filter activity with low frequency (e and d). The log is then
L′ = [⟨a,b,c,d⟩645 , ⟨a,c,b,d⟩389 , ⟨a,d⟩8 , ⟨a,d⟩]

▸ filter edge with low frequency from the Eventuall-Follows graph (↦L)

The filtering can also be applied to log splitting (adapting the cut operators).
For instance (with Σ1 = {a}, Σ2 = {b}):
▸ Behaviour that violates the × operator is the presence of activities from
more than one subtree in a single trace. For instance, the trace
t1 = ⟨a,a,a,a,b,a,a,a,a⟩ contains activities from both Σ1 and Σ2. Σ1
explains the most activities, is most frequent. All activities not from Σ1 are
considered infrequent and are discarded: ⟨a,a,a,a,a,a,a,a⟩ ∈ L1.
In t2, the split ⟨a,a,a,a⟩ ∈ L1, ⟨b,b,b,b,b⟩ ∈ L2 discards the least events.
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Inductive Miner Infrequent IV

▸ Behaviour that violates the → operator is the presence of events out of
order according to the subtrees. For instance, in the trace
t2 = ⟨a,a,a,a,b,b,b,b,a,b⟩, the last a occurs after a b, which violates the
→. Filtering infrequent behaviour is an optimization problem: the trace is to
be split in a least-events-removing way.
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Inductive Miner Incompleteness

Leemans, Sander & Fahland, Dirk & Aalst, Wil. (2014). Discovering
Block-Structured Process Models from Incomplete Event Logs.

Tackle the issue of missing behavior due to the incompleteness of the event log

The IMC algorithm uses so-called “probabilistic activity relations” based on
both the directly-follows graph and the eventually-follows graph. These are
used to select the “most likely cut” even if the requirements are not fully
satisfied
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Inductive Miner Directly-Follows based

▸ Apply Inductive Miner techniques on the directly-follows graph directly
without creating sublogs.

▸ Directly-follows graphs can be computed in a single pass over the event
log, and their computation can even be parallelized, for instance using
highly-scalable map-reduce techniques

▸ Pros: extremely scalable
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Week 36 Introduction

Week 37 Process discovery (α-Algorithm)

Week 38 Metrics and quality of discovered models

Week 39 Raw traces/ modelled traces (case study)

Week 40 Advanced process mining algorithms

Week 41 Advanced process mining algorithms

Week 42 Conformance checking

Week 46 Decision mining in processes

Week 47 Trace clustering

Week 48 Trace profile

Week 49 Case study

Week 50 Case study defense
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Overview I

Günther et al. (2007). Fuzzy Mining –
Adaptive Process Simplification
Based on Multi-perspective Metrics.

▸ Deal with unstructured processes
that generally generate
spaghetti-like model.

▸ Demo with disco
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Overview II

▸ The fuzzy miner was developed to simplify the mined process model.
▸ The problem was that the resulting model tends to show all details without
providing an abstraction. Where in reality, activities and relations can be
clustered or removed depending on their role in the process.

Adaptative approach for process simplification inspired by the route map.
▸ works similarly to a GPS software. It tries to discover models depending to
user desires.

▸ If the user zooms in, the model will include more details. When the user
zooms out, the model is clustered and becomes fuzzier (which gives the
algorithm its name).
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Overview IV
Concepts:

Aggregation To limit the number of information items displayed, maps often
show coherent clusters of low-level detail information in an
aggregated manner.

Abstraction Lower-level information that is insignificant in the chosen context
is simply omitted from the visualization.

Emphasis More significant information is highlighted by visual means such as
color, contrast, saturation, and size.

Customization Maps are specialized in a defined local context, have a specific
level of detail, and a dedicated purpose
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Overview V
Based onmetrics:

Significance
▸ Measures the relative importance of each activity
▸ One example for measuring significance is by frequency, i.e.
events or precedence relations which are observed more
frequently are deemed more significant

Correlation
▸ Measures how closely related two events following one
another are.
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Overview VI

Sketch of approach for process simplification:

▸ Highly significant behaviour is preserved, i.e. contained in the simplified
model.

▸ Less significant but highly correlated behaviour is aggregated, i.e. hidden
in clusters within the simplified model.

▸ Less significant and lowly correlated behaviour is abstracted from, i.e.
removed from the simplified model.
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Log-Based Process Metrics I

Three Primary Types of Metrics

Unary Significance describes the relative importance of an event class

▸ Unary Frequency Significance: The more often a certain
event class was observed in the log, the more significant it is.

▸ Unary Routing Significance: The higher the number and
significance of predecessors for a node (i.e., its incoming arcs)
differs from the number and significance of its successors (i.e.,
outgoing arcs), the more important that node is for routing in
the process.
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Log-Based Process Metrics II

Binary Significance describes the relative importance of a precedence relation
between two event classes, i.e. an edge in the process model.

▸ Binary Frequency Significance: The more often two event
classes are observed after one another, the more significant
their precedence relation.

▸ Binary Distance Significance: The more the significance of a
relation differs from its source and target nodes’ significances,
the less its distance significance value
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Log-Based Process Metrics III

Binary correlation Measures the distance of events in a precedence relation,
i.e. how closely related two events following one another are (need
timestamp).

▸ Proximity Correlation: Event classes that occur shortly after
one another are highly correlated.
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Log-Based Process Metrics IV

▸ Originator Correlation: The correlation between event classes
is determined from the names of the persons, who have
triggered two subsequent events. The more similar these
names, the higher correlated the respective event classes.

▸ Endpoint Correlation: More similar activity names of
subsequent events will be interpreted as higher correlation.

▸ Data Type Correlation: Event classes are highly correlated if
subsequent events share a large amount of data types.

▸ Data Value Correlation: Event classes are highly correlated if
subsequent events share a large amount of data values.
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Adaptive Graph I

Process Model
▸ All event classes found in the log are translated to activity nodes, whose
importance is expressed by unary significance.

▸ For every observed precedence relation between event classes, a
corresponding directed edge is added to the process model. This edge is
described by the binary significance and correlation of the ordering
relation it represents.
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Adaptive Graph II

Three transformation methods are applied to simplify the model

Conflict Resolution Whenever two nodes in the initial process model are
connected by edges in both directions, they are defined to be in
conflict.
Possible situations:
▸ Length-2-loop: after executing A and B in sequence, one may
return to A and start over. The conflicting ordering relations
between these activities are explicitly allowed in the original
process, and thus need to be preserved.

▸ Exception: The process orders A→ B in sequence, however,
during real-life execution the exceptional case of B→ A also
occurs. The “weaker” relation needs to be discarded to focus
on the main behaviour.
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Adaptive Graph III

▸ Concurrency: A and B can be executed in any order. Both
conflicting ordering relations need to be removed from the
process model.

Edge Filtering isolates the most important behaviour by removing the globally
least significant edges, leaving only highly significant behavior. It
uses a weighted sum of its significance and correlation.
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Adaptive Graph IV

Node Aggregation and Abstraction Preserves highly correlated groups of
less-significant nodes as aggregated clusters, while removing
isolated, less-significant nodes.
▸ First phase: every node whose unary significance is below a
threshold will either be aggregated or abstracted from.
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Adaptive Graph V

▸ Second phase: merge the clusters
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Detail
Günther, CW 2009, "Process mining in flexible
environments"https://doi.org/10.6100/IR644335

Detail
Its purpose is to answer the question: “How important is the behavior explicitly
shown in the model, compared to behavior that has been aggregated or
abstracted from?”

Let F be a fuzzy model. Let N be the set of all primitive nodes in F , i.e., nodes
that are explicit, aggregated, or abstracted from. Let E ⊆ N be the subset of all
explicit nodes in F. Further, let s→ R+0 be a function that assigns to each node in
F its unary significance. The detail dt of a fuzzy model F is defined as

dt =
∑e∈E s(e)

∑n∈N s(n)
(1)
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Conformance

Conformance
Measures the alignment between a fuzzy model and an event log.

The behavior recorded in each trace of the log is replayed in the fuzzy model.
Any event in the log that is not valid in the given fuzzy model given the
previous execution history, counts as a deviation.
Let L be an event log, and F be a fuzzy model. Let d be the number of
deviations, i.e., the number of events in L that cannot be explained by F. The
conformance C between F and L is defined as:

C =
M(L) − d + 1
M(L) + 1

(2)
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α-algorithm extensions I

Medeiros et al. (2004). Process Mining for Ubiquitous Mobile Systems: An
Overview and a Concrete Algorithm.

α+

Deal with short-loops

Wen et al (2007). Mining process models with non-free-choice Constructs.

α++

Deal with non-free choice
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Flexible Heuristic Miner I

Weijters et al (2011). Flexible Heuristics Miner (FHM). Motivation
▸ Low-structured processes
▸ Noise

Take frequencies of events and sequences into account when constructing a
process model.
Based on:
▸ Causal Nets
▸ Dependency measures
A frequency-based metric is used to indicate how certain we are that there
is a truly dependency relation between two events a and b (consider direct
successor and length-two loops).
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Flexible Heuristic Miner II
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Flexible Heuristic Miner III

Causal nets
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Flexible Heuristic Miner IV
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Heuristic Miner : Learning dependency graph

▸ Reminder : Direct succession : a1 > a2 if there is a trace such that a1 is
immediately followed by a2 in a log;

▸ From L = [⟨a,e⟩5, ⟨a,b,c,e⟩10, ⟨a,c,b,e⟩10, ⟨a,b,e⟩, ⟨a,c,e⟩,
⟨a,d,e⟩10, ⟨a,d,d,e⟩2, ⟨a,d,d,d,e⟩] count all the direct succession in L.

|> L| a b c d e
a 0 11 11 13 5
b 0 0 10 0 11
c 0 10 0 0 11
d 0 0 0 4 13
e 0 0 0 0 0
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Heuristic Miner : Learning dependency graph

Direct succession Measure
Let L be an event log over A and a, b A . |a >L b| is the number of times a is
directly followed by b in L, i.e.,

∣a >L b∣ = ∑
σ∈L

L(σ) × ∣{1 ≤ i < ∣σ∣ ∣ σ(i) = a ∧ σ(i + 1) = b}∣

Dependency Value

∣a⇒L b∣

is the value of the dependency relation between a and b:

∣a⇒L b∣ =
⎧⎪⎪
⎨
⎪⎪⎩

∣a>Lb∣−∣b>La∣
∣a>Lb∣+∣b>La∣+1

if a ≠ b
∣a>La∣
∣a>La∣+1

if a = b
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Heuristic Miner : Learning dependency graph

∣⇒L∣ a b c d e
a 0

0+1 = 0
11−0
11+0+1 = 0.92

11−0
11+0+1 = 0.92

13−0
13+0+1 = 0.93

5−0
5+0+1 = 0.83

b 0−11
0+11+1 = −0.92

0
0+1 = 0

10−10
10+10+1 = 0

0−0
0+0+1 = 0

11−0
11+0+1 = 0.92

c 0−11
0+11+1 = −0.92

10−10
10+10+1 = 0

0
0+1 = 0

0−0
0+0+1 = 0

11−0
11+0+1 = 0.92

d 0−13
0+13+1 = −0.93

0−0
0+0+1 = 0

0−0
0+0+1 = 0

4
4+1 = 0.80

13−0
13+0+1 = 0.93

e 0−5
0+5+1 = −0.83

0−11
0+11+1 = −0.92

0−11
0+11+1 = −0.92

0−13
0+13+1 = −0.93

0
0+1 = 0
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Heuristic Miner : Learning dependency graph

▸ Dependency graph using a threshold of 2 for ∣>L∣ and 0.7 for ∣⇒L∣ : each arc
shows the ∣>L∣ value and the ∣⇒L∣ value between brackets. For example,
∣a >L d∣ = 13 and ∣a⇒L d∣ = 0.93
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Heuristic Miner : Learning Splits and Joins
▸ C-net derived from L. Each node shows the frequency of the
corresponding activity. Every arc has a frequency showing how often both
activities agreed on a common binding. The frequencies of input and
output bindings are also depicted, e.g., 20 of the 40 occurrences of a were
followed by the concurrent execution of b and c
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Genetic Miner I
Medeiros et al. (2007). Genetic process mining: An experimental evaluation.
Data Mining and Knowledge Discovery.
Motivation:
▸ non-free choice (synchronization and choice)
▸ invisible tasks
▸ duplicate tasks
▸ Noise

Try to mimic the process of evolution. Such approaches are not deterministic
and depend on randomization to find new alternatives.
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Genetic Miner II

Principle:
▸ Initialization
A first generation of individuals is created. An individual is a process model.
Using the activity names appearing in the log, process models are created
randomly.

▸ Selection
The fitness of each individual is computed. A fitness function determines
the quality of the individual in relation to the log

▸ Reproduction
Populations evolve by selecting the fittest individuals and generating new
individuals using genetic operators such as crossover (combining parts of
two or more individuals) and mutation (random modification of an
individual)
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Genetic Miner III

▸ Termination
The best individuals move on to the next round (elitism) or are used to
produce new offspring
The evolution process terminates when a satisfactory solution is found, i.e.,
a model having at least the desired fitness

Difficulties:
▸ Define the internal representation (the search space of a genetic algorithm)
by a causal matrix (expresses the task dependencies)
A Causal Matrix is a tuple CM = (A,C, I,O), where:
▸ A is a finite set of activities
▸ C ⊆ A × A is the causality relation
▸ I ∶ A→ P(P(A)) is the input condition function
▸ O ∶ A→ P(P(A)) is the output condition function

Such that
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Genetic Miner IV

▸ C = {(a1,a2) ∈ A × A∣a1 ∈ ⋃ I(a2)}
▸ C = {(a1,a2) ∈ A × A∣a2 ∈ ⋃O(a1)}
▸ C⋃{(ao,ai) ∈ A × A∣ao●

C = 0 ∧ ●aC
i = 0} is a strongly connected graph

▸ Define the fitness measure

▸ Genetic operators
They should ensure that all points in the search space defined by the
internal representation may be reached when the genetic algorithm runs
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Two Step Approach I

Aalst et al. (2010). Process mining: A two-step approach to balance between
underfitting and overfitting. Software and Systems Modeling. 9. 87-111.

Motivation: enable the user to control the balance between “overfitting” and
“underfitting” and discover concurrency

Approach
1 Construct a transition system based on prefix, on postfix or on prefix and on

postfix
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Two Step Approach II

2 A Petri Net is synthesized from the transition system resulting (state-based
regions or language-based regions)

Used to mine the objections handled by the Municipality of Heusden.
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Which Process Discovery algorithm is the best? I

Rozinat el al. (2007). Towards an evaluation framework for process mining
algorithms. Reactivity of Solids.

With the following log: L =
[⟨A,B,D,E, I⟩ , ⟨A,C,D,G,H,F, I⟩ , ⟨A,C,G,D,H,F, I⟩ , ⟨A,C,H,D,F, I⟩ , ⟨A,C,D,H,F, I⟩]
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Which Process Discovery algorithm is the best? III

▸ Use metrics to evaluate the four quality criteria

▸ For unstructured processes we have:
Lookup Exploratory

F P G F P G
Alpha ++ 0.00 0.00 0.00 0.00 0.00 0.00

Heuristic Miner 0.00 0.00 0.00 0.00 0.00 0.00
Inductive Miner 0.9886 0.2391 0.9994 0.9315 0.1437 0.9992
Genetic Miner 0.9992 0.1800 0.9938 0.6232 0.8053 0.9963

Language Based Regions 0.6163 0.3825 0.9793 0.7835 0.1919 0.9622
State Based Regions 0.8995 0.4233 0.9957 0.9560 0.2942 0.9918

Fuzzy Miner − − − − − −
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Process Discovery algorithms : Qualitative comparison I

Techniques Visualisation

Alpha ++ Statistics Petri nets

Heuristic Miner Statistics/heuristics Dependency graphs→ Causal nets→ Petri nets

Inductive Miner Divide & conquer Directly follows graphs→ Process trees→ Petri nets

Genetic Miner Genetic algorithm Causal nets→ Petri nets

Language Based Regions Linear programming Languages process→ Petri nets

State Based Regions Traces abstraction Transition systems→ Petri nets

Fuzzy Miner Statistics/heuristics Fuzzy models
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Process Discovery algorithms : Qualitative comparison II

Logs Model
Noise Incompletness Real log Soundness Choice and

parallelism
Alpha ++ x x x x x

Heuristic Miner ✓ x ✓ x x
Inductive Miner ✓ ✓ ✓ ✓ ✓

Genetic Miner ✓ ✓ ✓ ✓ x
Language Based Regions x x x ✓ x

State Based Regions x x x ✓ x
Fuzzy Miner ✓ ✓ ✓ x x
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Business Process Analysis II
The classical approach for business process analysis is make up of 5 steps:
1 Obtain an event log
2 Create or discover a process model
3 Connect events, this step is essential for projecting information onto

models and to add perspectives
4 Extend the model (add time perspective, connect activities to group of

resources, etc.)
5 Return integrated model.

R. Champagnat, M. Trabelsi, A. Hamdi et al. Conformance Checking 6/83



Introduction
Model-Based Process Analysis

Event Data Analysis
Conformance Checking

Business Process Analysis
Specific cases

Business Process Analysis III

The technique, which mostly relies on conformance checking, enables:

Check the conformance to specification (audit)
▶ Audits are carried out to determine the accuracy and dependability of data

concerning businesses and the processes that are connected to them.
▶ Check constraints that management, governments, and other

stakeholders have established.

Determine the trace equivalence.
▶ Two transition systems are equivalent if their sets of execution sequences

are identical.
▶ It uses bisimulation equivalence, or bisimilarity for short. It is a more refined

notion taking into account the moment of choice.
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Model-Based Process Analysis I

▶ Verification: it concerns
▶ Soundness, completeness, deadlocks...
▶ Temporal logic

▶ Performance: three typical dimensions of performance are identified. For
each of them different Key Performance Indicators (KPIs) can be defined:
▶ Time

▶ Lead time (also referred to as flow time) is the total time from the creation of the
case to the completion of the case

▶ Service time is the time actually worked on a case
▶ Waiting time is the time a case is waiting for a resource to become available
▶ Synchronization time is the time an activity is not yet fully enabled and waiting

for an external trigger or another parallel branch
▶ Cost
▶ Quality (focuses on the “product” or “service” delivered to the customer)
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Event Log Analysis I

Up to now we focus on case, activity and timestamp. Let us focus on other
event attribues (resource, costs, ...).

▶ Important to attach the context to the event (or use trace)

▶ Use Dotted Chart to get an overview of all events

▶ Use Visual Inductive Miner to get an overview of business process
execution
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PM4PY Statistics

PM4PY provides a set of statistics:
▶ Throughput Time (list of all the durations of the cases)
▶ Case Arrival/Dispersion Ratio
▶ Cycle Time andWaiting Times
▶ Sojourn Time
▶ Concurrent Activities
▶ Events Distributions
▶ Detection of Batches (We say that an activity is executed in batches by a

given resource when the resource executes several times the same
activity in a short period of time.)

▶ Rework (activities, cases): identify the activities which have been repeated
during the same process execution.
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Introduction to Conformance Checking

▶ Compare event log to the discovered process models (sometimes to the
blueprint process model).

▶ Related to Fitnessmeasures (the proportion of behavior in the event log
possible according to the model).

▶ Investigate where the actual process execution deviates from the event
logs or the plan.

▶ Most common use case in practice: identify violation patterns.
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Conformance Checking insights

There are number of violation patterns a conformance analysis can reveal
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Conformance Checking why ?

There are many scenarios, in which a conformance assessment is important:

▶ Detecting problems and quality improvement potential in the process
(see Quality metrics course).

▶ Obtaining feedback on how well the process is aligned with expectations
/ the intended process.

▶ Complying with laws and regulations
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Matrice Footprint I
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Matrice Footprint II

▶ Conformance analysis based on footprints is only meaningful if the log is
complete with respect to the “directly follows” relation

▶ Does not take into account the number of cases

▶ Can also be used for log-to-log comparison (detect changes/deviations in
the process) and model-to-model comparison (model similarity)
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Token-Based Replay

R. Champagnat, M. Trabelsi, A. Hamdi et al. Conformance Checking 21/83



Introduction
Model-Based Process Analysis

Event Data Analysis
Conformance Checking

Business Process Analysis
Specific cases

Matrice Footprint
Token-Based Replay
Alignment
Summary

Correspondence between process execution and process model

Reminder

In J.E. Cook and A.L. Wolf. Software
Process Validation: Quantitatively
Measuring the Correspondence of a
Process to a Model. ACM Transactions
on Software Engineering and
Methodology (TOSEM), 8:147–176,
April 1999, Cook and Wolf aims to
measures the level of
correspondence between a process
execution and a process model.
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Alignment

▶ Howmany traces are allowed according to this model?
▶ < rc, ccc, icr, rci, rcr,dc,pa, sal >
▶ < rc, ccc, rci, icr, rcr,dc,pa, sal >
▶ < rc, ccc, icr, rci, rcr,dc,pr, srl >
▶ < rc, ccc, rci, icr, rcr,dc,pr, srl > ...
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Alignment : Comparing a trace and a model

▶ We can detect violation patterns by comparing a considered trace from
the event log with the closest trace from the model

▶ < rc, ccc, icr, rci, rcr,dc,pa, sal >

R. Champagnat, M. Trabelsi, A. Hamdi et al. Conformance Checking 24/83



Introduction
Model-Based Process Analysis

Event Data Analysis
Conformance Checking

Business Process Analysis
Specific cases

Matrice Footprint
Token-Based Replay
Alignment
Summary

Alignment : Comparing a trace and a model

▶ < rc, ccc, icr, rci,dc, rcr,pa >
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Alignment : From comparison to violation patterns
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Alignment : From comparison to violation patterns
Imagine we check a log with 1000 traces ...
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Trace Alignment : Formally I

▶ Let Σ denote the set of activities. |Σ| is the number of activities.
▶ Σ+ is the set of all non-empty finite sequences of activities from Σ. T ∈ Σ+

is a trace over Σ. |T| denotes the length of trace T
▶ The set of all n-length sequences over the alphabet Σ is denoted by Σn. A

trace of length n is denoted as Tn i.e., Tn ∈ Σn, and |Tn| = n.
▶ The ordered sequence of activities in Tn is denoted as T(1)T(2)T(3)...T(n)

where T(k) represents the kth activity in the trace
▶ Tn−1 denotes the n− 1 length prefix of Tn. In other words Tn = Tn−1T(n)
▶ An event log, L, corresponds to a multi-set (or bag) of traces from Σ+.
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Trace Alignment : Formally II

Bose et al. Trace Alignment in Process Mining: Opportunities for Process
Diagnostics.

Trace alignment

Trace alignment over a set of traces T = {T1,T2, ...,Tn} is defined as a mapping
of the set of traces in T to another set of traces T = {T1,T2, ...,Tn} where each
Ti ∈ (Σ ∪ {−})+ for 1 ≤ i ≤ n and
▶ |T1| = |T2| = ... = |Tn| = m,
▶ Ti by removing all “−” gap symbols is equal to Ti,
▶ ∄k, 1 ≤ k ≤ m such that ∀1≤i≤n,Ti(k) = −

For instance, with Σ = {a,b, c,d, e} we can have T1 = ⟨a,−,d,b⟩
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Paire-wize aligment I
Aligning a pair of traces is referred to as pair-wise trace alignment.
Let us consider the example of aligning the two traces T1 = ⟨a,b, c,a, c⟩ and
T2 = ⟨a, c,a, c,a,d⟩. We have three possible alignments:

T1 a b c a c − −
T2 a − c a c a d

T1 a b c a c −
T2 a c a c a d

T1 a b c a c − − − − − −
T2 − − − − − a c a c a d
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Paire-wize aligment II

Alignment between a pair of traces, T1 and T2 can be considered as a
transformation of the trace T1 to T2 or vice versa through a set of editing
operations applied to one of the traces iteratively. Assuming that T1 is written
over T2 in the alignment the following edit operations are defined for any
column j in the alignment:
▶ the activity pair (a,b),a,b ∈ Σ, denotes a substitution of activity a in T1 with

activity b in T2,
▶ the activity pair (a,−) denotes the deletion of activity a in T1, and
▶ the activity pair (−,b) denotes the insertion of activity b in T1.
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Alignment-based Conformance Checking I

A. Adriansyah. Aligning Observed and Modeled Behavior. Phd thesis,
Eindhoven University of Technology, April 2014.
▶ Find the closestmodel trace in the model behavior for a given log trace
▶ Define an alignment between logs and a process model as a pairwise

comparison between executed activities in the logs and the activities
allowed by the model.

▶ Given a trace and a Petri net, if the trace perfectly fits the net each activity
in the trace can be mimicked by firing a transition in the net. Furthermore,
at the end of the trace the final state should have been reached.
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Alignment-based Conformance Checking II
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Alignment-based Conformance Checking III
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Alignment-based Conformance Checking IV

▶ Synchronous Move : a step in which the event in the trace and the task in
the execution sequence of the model correspond to each other.

▶ Model Move : when a task and thus an activity should have been executed
according to the model, but there is no related event in the trace.

▶ Log Move : when an event in the trace indicates that an activity has been
executed, even though it should not have been executed according to the
model.
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Alignment-based Conformance Checking V
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Alignment-based Conformance Checking VI

A move is a pair (x, (y, t)) where the first element refers to the log and the
second element refers to the model.

For example,
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Alignment-based Conformance Checking VII

▶ (additems, (additems, t1))means that both log and model make an “additemsmove” and
the move in the model is caused by the occurrence of transition t1.

▶ (≫, (editorder, t4))means that the occurrence of transition t3 with label editorder is not
mimicked by a corresponding move of the log.

▶ (cancel,≫)means that the log makes an “cancelmove” not followed by the model.
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Alignment-based Conformance Checking VIII

(x, (y, t)) is a legal move if one of the following four cases holds:
▶ x = y and y is the visible label of transition t (synchronous move),
▶ x =≫ and y is the visible label of transition t (visible model move),
▶ x =≫, y = τ and transition t is silent (invisible model move), or
▶ x ̸=≫ and (y, t) =≫ (log move).

Other moves such as (≫,≫) and (x, (y, t)) with x ̸= y are illegal moves.
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Alignment-based Conformance Checking IX

Alignment
Let A ⊆ A be a set of activities. Let σ ∈ A∗ be a trace over A and let
N = (P,T,F, α,mi,mf ) be a Petri net over A. An alignment γ ∈ (A≫ × T≫)∗

between σ and N is a legal movement sequence such that:
▶ π1(γ)↓A = σ, i.e. its sequence of movements in the trace (ignoring≫) yields

the trace, and

▶ mi
π2(γ)↓T−−−−→ mf , i.e. its sequence of movements in the model (ignoring≫)

yields a complete firing sequence of N.

Γγ,N is the set of all alignments between a trace σ and a Petri net N.

Note that alignments require termination of both trace and process model.
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Cost of Alignment I

We are interested in alignments with the least total likelihood cost according to
the assigned likelihood cost function. Such an alignment is called an optimal
alignment.

Standard likelihood cost function
Let A ⊆ A be a set of activities. Let N = (P,T,F, α,mi,mf ) be a Petri net over A.
The standard likelihood cost function lc : A≫ × T≫ → R is the function that
maps all movements to real values, such that for all (x, y) ∈ A≫ × T≫:
▶ lc((x, y)) = 0 if either x ∈ A, y ∈ T , and x = α(y), or x =≫, y ∈ T , and

α(y) = τ ,
▶ lc((x, y)) = +∞ if either x ∈ A, y ∈ T , and x ̸= α(y), or x = y =≫, and
▶ lc((x, y)) = 1 otherwise.
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Cost of Alignment II

▶ Assign zero cost to all synchronous moves of activities and transitions with
the same label, as well as to allmoves on model of invisible transitions.

▶ Assign cost 1 to allmoves on log/moves on model of normal (not
invisible) transitions.

▶ +∞ to all synchronous moves whose transitions have different labels
than their activities.
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Fitness based optimal alignment computation I

▶ The alignment technique aims to find the optimal alignment with the
lower cost.

▶ It affects a standard positive cost for any type of move (i.e. ≫ symbols). in
case of multiple alignments,

▶ the Fitnessmetric is calculated on each alignment and the optimal one
with the best Fitness will be considered:

TraceFitness(t,M) = 1−
δ(λMopt(t))

δ(λMworst(t))
(1)

where, δ is the cost function, λMworst(t) is the worst case where there are no
synchronous moves between the trace t and the process model M and
λMopt(t) are each cost obtained on each optimal alignment.
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Fitness based optimal alignment computation II
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Oracle function I

▶ An oracle functionmaps each trace in the log to a set of alignments
relating traces to paths in the model.

▶ For any observed behavior a suitably chosen path through the model is
returned.

▶ An oracle function may use a likelihood cost function to assign probabilities
of alignments (may also need to look at the value of these attributes).

▶ The higher the probability of an alignment of a trace, the more likely the
alignment is the “best” representation of the trace.

▶ An oracle function gives the probabilities of all possible alignments
between a given trace and Petri net.
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Alignment Quality I

Both optimal alignments
show exactly one deviation.
γy is much shorter than γx .
Intuitively, the quality of γx
should be better than γy.
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Alignment Quality II

Therefore, when comparing two alignments computed from two different
traces and the same Petri net, we also take into account the length of the
traces.

Alignment Quality
Let A ⊆ A be a set of activities. Let σ ∈ A∗ be a trace over A and let
N = (P,T,F, α,mi,mf ) be a sound Petri net over A. Let lc : (A≫ × T≫) → R be a
likelihood cost function for movements. The quality of alignment γ ∈ Γσ,N with
respect to likelihood function lc is:

aql(γ,N, lc) = 1−
Σ(x,y)∈γ lc((x, y))

lim(π1(γ)↓A,N, lc)
(2)

where lim is the likelihood cost limit between σ and N with respect to lc.
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Summary

The goal of conformance checking is to underline similarities and differences
between a modelled behavior (process models) and an observed behaviour
(event logs).

▶ Attention to the size of event log when applying conformance checking
▶ Other Applications of Conformance Checking:

▶ Repairing Models
▶ Evaluating Process Discovery Algorithms
▶ Connecting Event Log and Process Model
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Alignment in Pm4py
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Key questions

1 What is the most common process behavior that is executed?
2 Where do process instances deviate and what do they have in common?
3 What are the contexts in which an activity is executed?
4 What are the process instances that exactly or approximately capture a

desired behavior?
5 Are there particular patterns (e.g., milestones, concurrent activities, etc.) in

my process?

6 Are there any decision points and/or bottlenecks?
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Decision points I

Decision points are OR-split (book flight or book hotel) or XOR-split (accept the
claim or reject the claim) in the log.
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Decision points I
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Decision points I

Decision mining aims to find rules explaining choices in terms of the
characteristics of the case

▶ Classification techniques can be used to find such rules

▶ Decision Trees
▶ Support Vector Machines
▶ Neural Networks
▶ ...

▶ Let us consider a simple approach based on decision
trees

▶ Decision trees are intuitive and easy to explain
▶ Decision trees do not require normalization
▶ Decision trees can also deal with missing

values
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Decision Tree I

Definition
Decision Tree is a supervised learning
technique aiming at the classification of
instances based on predictor variables.

▶ Response variable (dependent variable)

▶ Predictor variables (independent variables)

Goal
Partitioning instances in increasingly smaller
groups
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Decision Tree II
▶ Many trees are possible:

1 The tree is small and simple
2 The leaves are homogeneous in terms of the target feature
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Decision Tree III
Decision trees aim to explain the target feature (class) in terms of descriptive
features
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Decision Tree IV

▶ A Decision tree consists of three types of nodes
1 Root node
2 Branch node
3 Leaf node

▶ Tree generator determines
1 Which variable to split at a node and what will

be the value of the split?
2 Decision to stop (make a terminal note) or split

again has to be made
3 Assign terminal nodes to a label
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Example I

Feel Temp. Humidity Wind Play Golf
1 sun warm high false no
2 sun warm high true no
3 cloudy warm high false yes
4 rain good high false yes
5 rain cool normal false yes
6 rain cool normal true no
7 cloudy cool normal true yes
8 sun good high false no
9 sun cool normal false yes
10 rain good normal false yes
11 sun good normal true yes
12 cloudy good high true yes
13 cloudy warm normal false yes
14 rain good high true no

Descision Tree : steps
1 calculate the entropy of the

whole dataset

2 calculate the entropy of each
individual attribute

3 calculate the information gain
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Example II

Feel Temp. Humidity Wind Play Golf
1 sun warm high false no
2 sun warm high true no
3 cloudy warm high false yes
4 rain good high false yes
5 rain cool normal false yes
6 rain cool normal true no
7 cloudy cool normal true yes
8 sun good high false no
9 sun cool normal false yes
10 rain good normal false yes
11 sun good normal true yes
12 cloudy good high true yes
13 cloudy warm normal false yes
14 rain good high true no

Entropy

E = −
∑k

i=1 pi.log2(pi)

while log2 x = ln x
ln 2

▶ E = − 9
14 log2

9
14 −

5
14 log2

5
14 = 0.94
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Example III

Feel Temp. Humidity Wind Play Golf
1 sun warm high false no
2 sun warm high true no
3 cloudy warm high false yes
4 rain good high false yes
5 rain cool normal false yes
6 rain cool normal true no
7 cloudy cool normal true yes
8 sun good high false no
9 sun cool normal false yes
10 rain good normal false yes
11 sun good normal true yes
12 cloudy good high true yes
13 cloudy warm normal false yes
14 rain good high true no

Attribute: Temperature
values(temp.) = sun, cloudy, rain
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Example IV

Feel Temp. Humidity Wind Play Golf
1 sun warm high false no
2 sun warm high true no
3 cloudy warm high false yes
4 rain good high false yes
5 rain cool normal false yes
6 rain cool normal true no
7 cloudy cool normal true yes
8 sun good high false no
9 sun cool normal false yes
10 rain good normal false yes
11 sun good normal true yes
12 cloudy good high true yes
13 cloudy warm normal false yes
14 rain good high true no

Attribute: Temperature
▶ E1 = − 2

4 log2
2
4 − 2

4 log2
2
4 = 1

▶ E2 = − 4
6 log2

4
6 − 2

6 log2
2
6 = 0.918

▶ E3 = − 3
4 log2

3
4 − 1

4 log2
1
4 = 0.811

E = 4
14×1+ 6

14×0.918+ 4
14×0.811 = 0.91

GI = 0.94− 0.91 = 0.03
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Example V

Feel Temp. Humidity Wind Play Golf
1 sun warm high false no
2 sun warm high true no
3 cloudy warm high false yes
4 rain good high false yes
5 rain cool normal false yes
6 rain cool normal true no
7 cloudy cool normal true yes
8 sun good high false no
9 sun cool normal false yes
10 rain good normal false yes
11 sun good normal true yes
12 cloudy good high true yes
13 cloudy warm normal false yes
14 rain good high true no

Attribute: Feel
values(feel) = sun, cloudy, rain

▶ E1 = − 2
5 log2

2
5 − 3

5 log2
3
5 = 0.97

▶ E2 = − 4
4 log2

4
4 − 0

4 log2
0
4 = 0

▶ E3 = − 3
5 log2

3
5 − 2

5 log2
2
5 = 0.97

E = 5
14×0.971+ 4

14×0+ 5
14×0.97 = 0.69

GI = 0.94− 0.69 = 0.25
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Example VI

Feel Temp. Humidity Wind Play Golf
1 sun warm high false no
2 sun warm high true no
3 cloudy warm high false yes
4 rain good high false yes
5 rain cool normal false yes
6 rain cool normal true no
7 cloudy cool normal true yes
8 sun good high false no
9 sun cool normal false yes
10 rain good normal false yes
11 sun good normal true yes
12 cloudy good high true yes
13 cloudy warm normal false yes
14 rain good high true no

Attribute: Humidity
values(feel) = high, normal

▶ E1 = − 3
7 log2

3
7 − 4

7 log2
4
7 =

0.9852

▶ E2 = − 6
7 log2

6
7−

1
7 log2

1
7 = 0.5916

E = 7
14 × 0.9852+ 7

14 × 0.5916 = 0.79

GI = 0.94− 0.79 = 0.15
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Example VII

Feel Temp. Humidity Wind Play Golf
1 sun warm high false no
2 sun warm high true no
3 cloudy warm high false yes
4 rain good high false yes
5 rain cool normal false yes
6 rain cool normal true no
7 cloudy cool normal true yes
8 sun good high false no
9 sun cool normal false yes
10 rain good normal false yes
11 sun good normal true yes
12 cloudy good high true yes
13 cloudy warm normal false yes
14 rain good high true no

Attribute: Wind
values(feel) = false, true

▶ E1 = − 6
8 log2

6
8 −

2
8 log2

2
8 = 0.8113

▶ E2 = − 3
6 log2

3
6 − 3

6 log2
3
6 = 1

E = 8
14 × 0.8113+ 6

14 × 1 = 0.89

GI = 0.94− 0.89 = 0.05
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Example VIII

Feel Temp. Humidity Wind Play Golf
1 sun warm high false no
2 sun warm high true no
3 cloudy warm high false yes
4 rain good high false yes
5 rain cool normal false yes
6 rain cool normal true no
7 cloudy cool normal true yes
8 sun good high false no
9 sun cool normal false yes
10 rain good normal false yes
11 sun good normal true yes
12 cloudy good high true yes
13 cloudy warm normal false yes
14 rain good high true no

Information Gain
▶ GItemp = 0.03

▶ GIfeel = 0.25

▶ GIhumidity = 0.15

▶ GIwind = 0.05

Feel is the attribute with the maximum
gain→ Root of the tree
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Example IX

Feel

+P9,P11
−P1,P2,P8

sun

+P3,P7,P12,P13

cloudy

+P4,P5,P10
−P6,−P14

rain
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Example X

Feel

Play

cloudy

Humidity

Play

normal

Do not
play

High

sun

Wind

Play

no

Do not
play

yes

rain
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Example XI

Adaptation to Process Mining:

▶ Response variable: the activity executed at decision points (OR-split or
XOR-split)

▶ Predictor variables: attributes of events (the context) and/or the previous
activities.
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Mining Bottlenecks I

Bottlenecks are points of congestion in any process that slow or delay the goal
being achieved. Bottlenecks are generally one process in a chain of processes,
which causes the process to slow down or fail.

Bottlenecks can be:
▶ Short-Term: These are the more obvious problems caused by temporary

circumstances. For example, if two employees call in sick and no one else
is available to cover their work, a backlog will build until their return.

▶ Long-Term: Long-term bottlenecks are more insidious in nature. They are
chronic issues that become accepted as part of the process over time,
instead of being identified as an ongoing problem needing a solution.
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Mining Bottlenecks II

A bottleneck occurs when there is not enough capacity to meet the demand
or throughput for a product or service.
How to identify bottlenecks:

▶ Add timing information to the discovered model

▶ Identify long wait times or slow processing

▶ Visual inductive miner supports bottleneck analysis
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Mining Bottlenecks III
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Mining Bottlenecks IV

R. Champagnat, M. Trabelsi, A. Hamdi et al. Conformance Checking 74/83



Introduction
Model-Based Process Analysis

Event Data Analysis
Conformance Checking

Business Process Analysis
Specific cases

Mining Decision Points
Mining Bottlenecks
Organizational Mining
Decision

Organizational Mining

Organizational mining focuses on other perspectives:
▶ Social: identify interpersonal relationships in a process (regarding who is

performing a process activity and handovers)
▶ Organizational structure

The behavior of a resource can be characterized by a profile, i.e., a vector
indicating how frequently each activity has been executed by the resource.
Clustering algorithms can be used to discover similar resources.

▶ Resource behaviour
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Taking Decisions Over a Discovered Model I

▶ The model is Digital Twins. It can be used to simulate various parameters
to identify the benefits of decisions

▶ Explore: The combination of event data and models can be used to
explore business processes at run-time. Running cases can be visualized
and compared with similar cases that were handled earlier.

▶ Predict: By combining information about running cases with models
(discovered or hand-made), it is possible to make predictions about the
future, e.g., the remaining flow time and the probability of success.
Various techniques can be used to generate predictions. For example, the
supervised learning techniques
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Taking Decisions Over a Discovered Model II

▶ Recommend. The information used for predicting the future can also be
used to recommend suitable actions (e.g. to minimize costs or time). The
goal is to enable functionality similar to the guidance given by car
navigation systems.
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Taking Decisions Over a Discovered Model III
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Italian analysis I

Analyzing “Lasagna Processes"
▶ Lasagna processes have a clear structure and most cases are handled in a

prearranged manner.
▶ A process is a Lasagna process if with limited efforts it is possible to create

an agreed-upon process model that has a fitness of at least 0.8,
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Analyzing "Spaghetti Processes"
▶ The Spaghetti process comes

from unstructured process
▶ Use clustering
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Data Mining

What is Data Mining?
▶ Huge quantities of data are collected each second
▶ Data contains interesting patterns
▶ Patterns are more meaningful and important than data itself
▶ Data Mining is thus used to:

▶ Discover interesting patterns in large quantities of data
▶ Support human decision-making provided the discovered patterns

Definition
Data Mining is the exploration and analysis of large quantities of data to
discover meaningful patterns. a

aFrom Michael J.A. Berry, Gordon Linoff. Data mining techniques: for marketing, sales, and
customer relationship management /2nd ed, 2004
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Data Mining Process

From Fayyad et al. 1996
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Data Mining and Machine Learning

Data Mining Tasks and Techniques
▶ Descriptive Tasks (Unsupervised Learning)

▶ Goal: Find patterns in data
▶ Example:

▶ Cluster Analysis or Clustering
▶ Association Analysis

▶ Predictive Tasks (Supervised Learning)
▶ Goal: Predict unknown values of a variable, given some observations
▶ Example:

▶ Classification
▶ Regression

Application Fields
▶ E-Learning, E-Commerce, Military, Marketing, Health, Fraud Detection, ...
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What about huge amounts of traces?

Spaghetti models!!
▶ Huge amount of data —> Process Mining techniques will discover complex

users’ behaviors models.
▶ NEED FOR CLUSTERING!!
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Clustering

What is Clustering?
Grouping objects such that objects in a group (cluster) are similar to one
another and different from the objects in other groups (clusters)
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Clustering Algorithms

Clustering Types and Algorithms
There are different types of clustering:
▶ Partitional

▶ Dividing data objects into non-overlapping clusters such that each data
object is in exactly one subset

▶ Algorithms: K-Means, K-Medoids...
▶ Density-Based

▶ Identifying distinctive groups in the data, based on the idea that a cluster in a
data space is a contiguous region of high point density, separated from other
such clusters by contiguous regions of low point density.

▶ Algorithms: DBSCAN, Meanshift, OPTICS, DENCLU,...
▶ Hierarchical

▶ A set of nested clusters organized as a hierarchical tree (Dendrogram tree)
▶ Algorithms: Agglomerative, Divisive, ...
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Clustering Types

(a) Partitional Clustering

(b) Density-Based Clustering

(c) Hierarchical Clustering
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Clustering Related Aspects

What are the components needed to do clustering?
▶ Clustering Algorithm:

▶ Partitional
▶ Density-Based
▶ Hierarchical
▶ ...

▶ Proximity Measure (Similarity or Dissimilarity)
▶ Euclidean distance
▶ Cosine similarity
▶ ...

▶ The Ultimate Goal
▶ Minimize intra-cluster distance
▶ Maximize inter-clusters distance
▶ Relevance of clustering with analysis aim
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Proximity Measures

Proximity Measures
1 Manhattan Distance
2 Euclidean Distance
3 Cosine Measure
4 Jaccard Index
5 Edit Distance - Levenshtein Distance
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Distance Measures

Herman Minkowski
Generic Distance Metric for Euclidean and Manhattan.

x = (x1, x2, · · · , xn) and y = (y1, y2, · · · , yn)

d(x, y) =
(
|x1 − y1|p + |x2 − y2|p · · ·+ |xn − yn|p

) 1
p , p > 0

p = 1 : Manhattan distance

d(x, y) = |x1 − y1|+ |x2 − y2| · · ·+ |xn − yn|

p = 2 : Euclidean distance

d(x, y) =
√

|x1 − y1|2 + |x2 − y2|2 · · ·+ |xn − yn|2
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Distance Measures

Cosine Measure
▶ Determines the cosine of the angle between two vectors

x = (x1, x2, · · · , xn) and y = (y1, y2, · · · , yn)

cos(x, y) =
x1y1 + · · ·+ xnyn√

x21 + · · ·+ x2n
√
y21 + · · ·+ y2n

d(x, y) = 1− cos(x, y)

where: 0 ≤ d(x, y) ≤ 2
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Distance Measures

Jaccard Index
▶ Measures the similarity of two data sets, as their intersection divided by

their union

J(A,B) =
|A ∩ B|
|A ∪ B|

▶ How to interpret the value of this index?
▶ Set a threshold of similarity t
▶ if J(A,B) ≥ t, then sets A and B are said to be similar; else they are not similar
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Distance Measures

Edit Distance - Levenshtein distance
▶ Edit distance is a measure that quantifies how dissimilar two sequences

are from each other.
It is measured by counting the number of steps/operations needed to
transform one sequence into the other.

▶ The possible operations are delete, replace, or insert
▶ Levenshtein distance, a type of edit distance, measures the difference

between two sequences
▶ The Levenshtein distance between two sequences is the minimum

number of edits needed to change one sequence into the other.
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Data Representations

Data Matrix
▶ For representing n data points/objects with p features/dimensions
▶ Each row represents a data point
▶ Each column represents a feature/attribute


x11 . . . x1f . . . x1p
. . . . . . . . . . . . . . .
xi1 . . . xif . . . xip
. . . . . . . . . . . . . . .
xn1 . . . xnf . . . xnp


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Data Representations

Distance / Proximity Matrix
▶ A square symmetric/triangular matrix
▶ For representing the distance among the n data points
▶ Each entity represents the distance between the row and column data

point


0

d(2, 1) 0
d(3, 1) d(3,2) 0

: : :
d(n, 1) d(n,2) . . . . . . 0


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Data Representation Example - Problem

Example
▶ Suppose we have this small dataset. It contains 4 data points and 2

features (x and y)
▶ What will be the data matrix?
▶ What will be the dissimilarity matrix for Manhattan Distance?
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Data Representation Example - Solution

point x y
p1 0 2
p2 2 0
p3 3 1
p4 5 1

Table: Data Matrix

(a) Dissimilarity Matrix for Manhattan Distance

p1 p2 p3 p4
p1 0 4 4 6
p2 4 0 2 4
p3 4 2 0 2
p4 6 4 2 0

(b) Dissimilarity Matrix for Euclidean Distance

p1 p2 p3 p4
p1 0 2.828 3.162 5.099
p2 2.828 0 1.414 3.162
p3 3.162 1.414 0 2
p4 5.099 3.162 2 0
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K-Means

K-Means
▶ Partitional Clustering Algorithm
▶ Each cluster has a centroid (central point)
▶ Each point is assigned to the cluster with the closest centroid
▶ Number of cluster kmust be known and specified in advance
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K-Means Example

Step 1:
▶ For k = 3, randomly pick 3 initial centroids
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K-Means Example
Step 2:
▶ Assign each point to the closest centroid (using a distance measure)
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K-Means Example

Step 3:
▶ Move the centroid to themean of each cluster
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K-Means Example
Step 4:
▶ Reassign points to the suitable cluster, if they are now closer to a different

centroid
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K-Means Example

Step 4:
▶ The reassigned points are:
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K-Means Example
Step 5:

1 Recompute cluster means
2 Move centroids to new cluster means
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K-Means Example

Step 5:
▶ The new centroids ( which are the cluster means):
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K-Means Convergence

When do we stop? -> Convergence
▶ no (or minimum) change of centroids
▶ no (or minimum) reassignments of data points to different clusters
▶ stopping after a predefined number of iterations
▶ setting a goal value for an evaluation metric (ex: minimum decrease in the

sum of squared errors (SSE))
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K-Means Evaluation

Sum of Squared Errors (SSE)
For each point, the error is the distance to the nearest centroid

SSE =
k∑
j=1

∑
x∈Cj

distance(x,mj)
2

where:
▶ Cj is the jth cluster
▶ mj presents the centroid of Cj

▶ distance(x,mj) is the distance between a data point x and the centroidmj

Given several clusterings (groupings), the one with the smallest SSE is the most
preferable
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Finding the optimal k

Elbow Method
▶ Elbow method is used to find the optimal number of clusters for a given

dataset
▶ The method works by plotting the SSE as a function of the number of

clusters and picking the elbow to be the number of clusters
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Finding the optimal k

Graph Based
▶ Plotting any evaluation metric as a function of the number of clusters
▶ Choose the number of clusters that optimizes the metric
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K-Means in Action - Python - Complete Example

1 Import the needed Libraries
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K-Means in Action - Python - Complete Example

2 Create a sample dataset (or upload one)
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K-Means in Action - Python - Complete Example

3 Scale using StandardScaler from sklearn

4 Perform the elbow method and choose the optimal k value

M. Trabelsi, N. Joudieh, R. Champagnat et al. Trace Clustering 40/122

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/


Introduction
Clustering Overview

Trace clustering
Real life example

Conclusion

Proximity Measures
Partitional Clustering
Density Based Clustering
Hierarchical Clustering
Clustering Evaluation

K-Means in Action - Python - Complete Example

M. Trabelsi, N. Joudieh, R. Champagnat et al. Trace Clustering 41/ 122



Introduction
Clustering Overview

Trace clustering
Real life example

Conclusion

Proximity Measures
Partitional Clustering
Density Based Clustering
Hierarchical Clustering
Clustering Evaluation

K-Means in Action - Python - Complete Example

5 Apply K-means
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K-Means in Action - Python - Complete Example

6 Evaluate the resulting clusters
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Meanshift Clustering

Meanshift Clustering
▶ Density-Based Clustering
▶ In simple words: Shifting to higher density regions by shifting to the mean,

in an iterative process
▶ Sliding Window algorithm. A circular sliding window with radius r is used.

(the radius is referred to as bandwidth or kernel)
▶ Density of a sliding window is represented by the number of points inside

the window
▶ Meanshift is a centroid-based algorithm used to find dense areas of data

points and locate the center points of each group
▶ Result of Meanshift: Final set of center points and their corresponding

clusters.
A complete example on Meanshift with Code in Python
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Meanshift Algorithm

Algorithm
1 Begin with a circular sliding window with a radius r, centered at a random

data point.
2 At each step, shift the center of the sliding window to the mean of all

points inside the window (thus to regions of higher density)
3 Stop shifting, when we are no longer adding more points to the window

(i.e. we are no longer increasing the density in the window). At this point,
we have found the center of the future cluster.

4 Steps 1 to 3, are in fact done with multiple sliding windows until all points
become in one window:
▶ When multiple sliding windows overlap, the one having the greatest number

of points is preserved (the most dense window)
▶ Data points are then clustered according to the sliding window they reside in.
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DBSCAN 1

Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
▶ DBSCAN eliminates noise points and returns the clustering of the

remaining points
▶ The Parameters of DBSCAN:

1 minPts: The minimum number of points clustered together for a region to
be considered dense

2 eps(ϵ): A distance, used to locate the points in the neighborhood of any point
▶ Some Concepts in DBSCAN

1 Eps-neighborhood of a point p (NEps(p)): is defined by

(NEps(p) = {q ∈ D|dist(p,q) ≤ Eps}

1From A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with
Noise, Ester et al., 1996
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DBSCAN

DBSCAN
▶ Density: Number of points within a specific radius Epsilon (ε)
▶ Divides data points into 3 types:

▶ Core Point: A point that has at least a specified number of neighboring
points (MinPts) within the specified radius ε

▶ The point itself is counted as well
▶ These points form the interior of a dense region (cluster)

▶ Border Point: A point with fewer points than MinPts within ε, but is the
neighborhood of a core point

▶ Noise Point: Any point that is neither a core point nor a border point

DBSCAN in Action
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DBSCAN Points Example
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DBSCAN Example
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DBSCAN

Algorithm
1 Pick a random data point p as your first point.
2 Mark p as visited
3 Extract all points present in its neighborhood (up to eps distance from the

point), and call it a set nb
4 If nb ≥ minPts, then

a Consider p as the first point of a new cluster
b Consider all points withing eps distance (members of nb) as other points in

this cluster
c Repeat step b. for all points in nb

5 Else, label p as noise
6 Repeat steps 1-5 till the entire dataset is labeled. Thus the clustering is

complete.
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Density-Based Algorithms in Python

1 DBSCAN

2 Meanshift
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Hierarchical Clustering

Recall
Hierarchical clustering produces a set of nested clusters organized as a tree
called dendrogram

Dendrogram: All what you need to know! (1)
▶ The core concept of hierarchical clustering lies in the construction and

analysis of the resulting dendrogram.
▶ Tree like structure that shows the sequence of merges or splits applied to

the data points.
▶ The diagram is either constructed in a bottom-up manner (agglomerative

algorithm) or in the opposite manner, top-bottom (divisive algorithm).
▶ Once constructed, the diagram is analyzed by slicing it horizontally.
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Hierarchical Clustering

Dendrogram: All that you need to know! (2)
▶ The core concept of hierarchical clustering lies in the construction and

analysis of the resulting dendrogram.
▶ Tree-like structure that shows the sequence of merges or splits applied to

the data points.
▶ The diagram is either constructed in a bottom-up manner (agglomerative

algorithm) or in the opposite manner, top-bottom (divisive algorithm).
▶ Once constructed, the diagram is analyzed by slicing it horizontally.
▶ All the possibilities of clusters are provided through the dendrogram
▶ The final clustering is picked by a horizontal cut through the dendrogram

(search for large gaps to cut . . . )
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Hierarchical Clustering - Dendrogram - Overview

1 Records the sequence of clustering.
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Hierarchical Clustering - Dendrogram - Overview

1 Records the sequence of clustering.
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Hierarchical Clustering - Dendrogram - Analysis

2 Analyzed by slicing it horizontally
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Hierarchical Clustering - Dendrogram - Analysis
2 Analyzed by slicing it horizontally (search for larger gaps)

Auxiliary Reference

M. Trabelsi, N. Joudieh, R. Champagnat et al. Trace Clustering 57/122

https://statsandr.com/blog/files/Hierarchical-clustering-cheatsheet.pdf


Introduction
Clustering Overview

Trace clustering
Real life example

Conclusion

Proximity Measures
Partitional Clustering
Density Based Clustering
Hierarchical Clustering
Clustering Evaluation

Hierarchical Clustering - Dendrogram - Construction

3 Constructed in a top-bottom manner (divisive) or bottom-up manner
(agglomerative)
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Construction Algorithms - Agglomerative

Definition
This algorithm starts with the points as individual clusters, and at each step, the
closest pairs of clusters are merged until only one final cluster is left

Algorithm
1 Compute the proximity matrix
2 Let each data point be a cluster
3 Repeat

1 Merge the two closest clusters
2 Update the proximity matrix (But how? Measuring proximity between clusters?)

Unitl only a single cluster is left

The key operation and additional step here is the computation of the proximity
between two clusters
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Agglomerative - Cluster Distance Measures

Linkage Criteria
▶ The linkage criteria refers to how the distance between clusters is

measured
▶ The distance between two clusters, In:

1 Single Linkage: is the shortest distance between an element in one cluster
and an element in the other

2 Complete Linkage: is the longest distance between an element in one
cluster and an element in the other

3 Average Linkage: is the average distance between each point in one cluster
to every point in the other cluster. This compromises between single and
complete linkage, as it is less sensitive to noise and outliers than single
linkage.

4 Ward Linkage: is the sum of squared differences within all clusters
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Linkage Criteria

Single Linkage

l (A,B) = min {d (a,b) : a ∈ A,b ∈ B}

Complete Linkage

l (A,B) = max {d (a,b) : a ∈ A,b ∈ B}

Average Linkage

l (A,B) =
1

|A| · |B|
∑
a∈A

∑
b∈B

d (a,b)
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Linkage Criteria: Ward Criterion

Ward Linkage
▶ Ward Criterion defines the distance between 2 clusters A and B as how

much the sum of squares will increase when wemerge them.
▶ Ward tries to minimize ∆ as it moves forward in clustering

∆(A,B) =
∑

x∈A∪B
∥x −mA∪B∥2 −

∑
a∈A

∥a−mA∥2 −
∑
b∈B

∥b−mB∥2

▶ where
▶ mx is the center of cluster x

▶ Ward is known to be used with Euclidean Distance
Helper Note*: To simplify the equation, it is the intra-cluster of the merged cluster minus the
intra-cluster of the first cluster minus the intra-cluster of the second cluster
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Linkage Criteria: Ward Criterion

Simpler equation for Ward’s Method

∆(A,B) =
∑

x∈A∪B
∥x −mA∪B∥2 −

∑
a∈A

∥a−mA∥2 −
∑
b∈B

∥b−mB∥2

=
nA.nB
nA + nB

∥mA −mB∥2

▶ where:
▶ mx is the center of cluster x
▶ nx is the number of points in cluster x
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Linkage Criteria: A visual glimpse
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Example - Applying Linkage Criteria

Example
Given the following dataset with 5 points, and one feature.

a b c d e
f 1 2 4 5 6

Consider we have 2 clusters: C1 = {a,b} and C2 = {c,d, e}

1 Draw and fill the proximity matrix of the provided dataset using Euclidean
distance

2 Calculate the 4 different cluster distances between C1 and C2 (single,
complete, average, ward) using Euclidean distance
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Example - Solution

The proximity matrix:

a b c d e
a 0 1 3 4 5
b 1 0 2 3 4
c 3 2 0 1 2
d 4 3 1 0 1
e 5 4 2 1 0

Single Linkage

dist (C1,C2) = min {(a, c), (a,d), (a, e), (b, c), (b,d), (b, e)}
= min {3,4,5,2,3,4} = 2
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Example - Solution

Complete Linkage

dist (C1,C2) = max {(a, c), (a,d), (a, e), (b, c), (b,d), (b, e)}
= max {3,4,5,2,3,4} = 5

Average Linkage

dist (C1,C2) =
d(a, c),d(a,d),d(a, e),d(b, c),d(b,d),d(b, e)

n1 × n2

=
3+ 4+ 5+ 2+ 3+ 4

2× 3

=
21
6

= 3.5
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Example - Solution

Ward Linkage

∆(C1,C2) =
nC1 .nC2

nC1 + nC2

∥∥mC1 −mC2

∥∥2
=

6
5
∥1.5− 5∥2

=
6
5
∥−3.5∥2

=
6
5
× 12.25 = 14.7
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Hierarchical Agglomerative Clustering in Python - Complete Example

Dataset
For this example, we will use the Wholesale customer data.csv

1 Import Libraries
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Hierarchical Agglomerative Clustering in Python - Complete Example

2 Load and Visualize your data
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Hierarchical Agglomerative Clustering in Python - Complete Example

3 Normalize your data - preprocessing step

4 Find the optimal number of clusters using dendrogram (horizontal cut at
the largest distance)
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Hierarchical Agglomerative Clustering in Python - Complete Example
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Hierarchical Agglomerative Clustering in Python - Complete Example

5 Apply Agglomerative Clustering with the optimal value (2 in this case)

6 Visualize the resulting clusters
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Hierarchical Agglomerative Clustering in Python - Complete Example
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Hierarchical Agglomerative Clustering in Python - Complete Example

7 Evaluate your clustering results
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Clustering Evaluation

Evaluation Metrics
1 Sum of Squared Errors (SSE)
2 Silhouette Score
3 Davies Bouldin Index
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Clustering Evaluation

Evaluation Metrics
2 Silhouette Score :

▶ A metric used to evaluate the goodness of clustering (and to find the optimal
number of clusters)

▶ Silhouette Score = (n−i)
max(i,n) ; where:

▶ n: the mean distance between a sample and all other points in the next nearest
cluster

▶ i: the mean distance between a sample and all other points in the same cluster
▶ The silhouette score for a set of samples is the mean of the silhouette scores

for each sample.
▶ Range [-1,1] -> How to interpret Silhouette Score?

▶ Closer to 1: Clusters are clearly distinguished and well apart
▶ Closer to 0: Distance between clusters is not significant
▶ Closer to -1: Clusters are assigned in the wrong way (incorrect clustering)
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Silhouette Score Example

M. Trabelsi, N. Joudieh, R. Champagnat et al. Trace Clustering 78/122



Introduction
Clustering Overview

Trace clustering
Real life example

Conclusion

Proximity Measures
Partitional Clustering
Density Based Clustering
Hierarchical Clustering
Clustering Evaluation

Clustering Evaluation

Evaluation Metrics
3 Davies Bouldin Index

▶ Introduced by David L. Davies and Donald W. Bouldin in 1979
▶ This index captures if the clusters are well spaced from each other and if the

data points in the clusters are dense enough
▶ Defined as the average similarity measure of each cluster with its most

similar cluster.
Similarity is the ratio of within-cluster (intra-cluster) distances to
between-cluster (inter-cluster) distances
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Clustering Evaluation

Evaluation Metrics
3 Davies Bouldin Index

▶ Range is [0,∞]. The smaller the value of this index, the better is the clustering.
▶ The index is calculated as follows:

DB =
1
n

n∑
i=1

max
j ̸=i

(
σi + σj
d (ci, cj)

)
where:

▶ n n is the number of clusters
▶ σi is the average distance of all points in cluster i from the cluster centroid ci
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Evaluation Metrics in Python
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Outline

1 Introduction

2 Clustering Overview

3 Trace clustering

4 Real life example

5 Conclusion
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Context: What about Process Mining ?

Terminology
▶ Event log: an event log L = {t1, t2, ..., tk} is a set of k traces
▶ Trace: each trace ti (1 ≤ i ≤ k) is a set of ni consecutive events

ti =< ei1, ei2, ...eini >made by the same user.
▶ Event: an event e is an activity performed by the user of the information

system. Each event is characterized by its frequency fe which is the
number of times it occurs in L.
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Users’ traces examples

CaseId User Timestamp Activity
1 user1 2016-01-12T10:34:25 home index
1 user1 2016-01-12T10:34:27 home languages
1 user1 2016-01-12T10:34:28 language selection
1 user1 2016-01-12T10:34:31 catalog show
2 user2 2016-01-12T10:34:26 home index
2 user2 2016-01-12T10:34:29 home periods
2 user2 2016-01-12T10:34:30 catalog show

user1 home-index home-languages language-selection catalog-show

user2 home-index home-periods catalog-show
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Context :Process Mining and spaghetti models

Spaghetti models ?
▶ Huge amount of data —> Process Mining techniques will discover complex

users’ behaviors models.
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Context : clustering before modeling
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Why trace clustering ?

▶ Trace clustering has been used as a method to partition event logs in a
way that more homogeneous sublogs are obtained, with the hope that
process discovery techniques will perform better on the sublogs than if
applied to the original log.

▶ Existing PM techniques perform well on structured processes
▶ Processes for each users types (novice users, professional users...) or

research tasks.
▶ Process enhancement (by proposing different types of processes for

users).
▶ How can we identify groups of behaviorally similar traces in an event

log?
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Clustering users traces

Trace-based
clustering
Similarity between two

traces can be
measured using the
syntax similarity.

Feature-based
clustering
Converting each trace
into a vector of features

based on defined
characteristics.

Model-based
clustering
Process models are

considered as input for
the clustering in order
to structure traces.

▶ Hybrid based clustering : combines the previous methods.
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Trace-based clustering

▶ Trace-based clustering, is the first category that cluster the traces using
the syntax similarity.

▶ It is inspired from the Levenshtein distance between two strings.
▶ A trace can be edited into another trace by substituting, adding or

removing events.
▶ The edit distance between two traces is the minimum number of edit

operations required to transform one trace to the second. Less the edit
distance is, more the traces are similar.
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Trace-based clustering : example

▶ For two traces or sequences t1 et t2, the following edit operations are
considered on the activities A ∪ {−} where − denotes a gap. For a,b ∈ A,
the pair

▶ (a,a) denotes a match of activities between t1 and t2 at some position t1(i)
and t2(j). A match can be considered as a substitution of an activities with
itself.

▶ (a,−) denotes the deletion of a in t1 at some position t1(i)
▶ (−,b) denotes the insertion b in t1(i)
▶ (a,b) denotes the replacement/substitution of a in t1 with b at some

position t1(i) where a ̸= b
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Trace-based clustering: state of the art

▶ Bose, R. J. C. and Van der Aalst, W. M. (2009 a), Context aware trace
clustering : Towards improving process mining results, in "Proceedings
of the 2009 SIAM International Conference on Data Mining", SIAM,
401–412

▶ They propose a context-aware approach to trace clustering based on
generic edit distance.

▶ They tackle the sensitivity of the cost function of edit operations in the
process.

▶ They determined the cost by taking into account the context of an event
within a trace.
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Trace-based clustering: state of the art

▶ Chatain, T., Carmona, J. and Van Dongen, B. (2017), Alignment-based
trace clustering, in "International Conference on Conceptual Modeling",
Springer, 295–308.

▶ The clustering approach of this paper assumes an additional input: a
process model that describes the current process

▶ The idea of their algorithm is to group log traces according to their
closeness to representative full runs of a given model. Those
representative full runs act as centroids for the clusters.

▶ This way, even in case of deviations, incomplete or noisy traces, or even
drifts in the process model, a process explanation of the traces in each
cluster is available, so that stakeholders can relate them more reliably to
the underlying process.
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Trace-based clustering: state of the art (Chatain et al., example)
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Feature-based clustering

▶ Feature-based clustering, is the second category that consists in
converting each trace into a vector of features based on defined
characteristics before the clustering.

▶ Various distance metrics in data mining are reused to estimate the
similarity between the corresponding traces vectors.

▶ Subsequently, distance-based clustering algorithms are deployed, such as
k-means or agglomerative hierarchical clustering algorithms.
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Feature-based clustering: state of the art

▶ Song, M., Günther, C. W. and Van der Aalst, W. M. (2008), Trace clustering
in process mining, in "International Conference on Business Process
Management", Springer, 109–120.

▶ The paper presents an approach based on log profiles, using trace
clustering, i.e., the event log is split into homogeneous subsets and for
each subset a process model is created.

▶ Each trace is transformed into a vector of features based on, for example,
the frequency of activities, the frequency of directly-followed relations,
the resources involved, etc.
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Feature-based clustering: state of the art (Song et al., example)
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Feature-based clustering: state of the art

▶ Bose, R. J. C. and van der Aalst, W. M. (2009 b), Trace clustering based on
conserved patterns: Towards achieving better process models, in
"International Conference on Business Process Management", Springer,
170–181.

▶ The basic idea is to consider k-gram of activities that are conserved across
multiple traces (variable k).

▶ Finding similar regions (sequence of activities) common within a trace
and/or across a set of traces in an event log signifies some set of common
functionality accessed by the process.

▶ The observed k-grams are the different patterns such as theMaximal
Repeat Set, as well as the Super Maximal Repeat Set and the Near Super
Maximal Repeats Set to constitute the vector of a particular trace.
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Feature-based clustering: state of the art (bose et al., example)
▶ Maximal Repeat: A maximal repeat in a sequence, T, is defined as a

subsequence α that occurs in a maximal pair in T.
▶ Super Maximal Repeat: A super maximal repeat in a sequence is defined

as a maximal repeat that never occurs as a substring of any other maximal
repeat.

▶ Near Super Maximal Repeat: A maximal repeat α is said to be a near
super maximal repeat if and only if there exists at least one instance of α at
some location in the sequence where it is not contained in another
maximal repeat
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Feature-based clustering : state of the art (L3I research works)

▶ Trabelsi, M., Suire, C., Morcos, J. and Champagnat, R. (2021 a), A new
methodology to bring out typical users interactions in digital libraries, in
"2021 ACM/IEEE Joint Conference on Digital Libraries (JCDL)", 11–20.

▶ Frequent Sub-Sequences (FSS) in the traces can contribute to distinguish
users and tasks.

▶ Grouping the traces based on the frequent sub-sequences (FSS).
▶ An FSS = < e1, ..., en > contains a finite set of events e of length n (n > 1)

where their events are executed in the order at least two time.
▶ Converting traces using a particular (FSS) encoding.
▶ Each identified (FSS) in a trace is replaced by its encoding.
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Feature-based clustering: state of the art (Trabelsi et al., L3I research works)

▶ The FSS encoding itself has to consider many factors to effectively
distinguish traces from different clusters.
▶ The length of the FSS: is the number of events in the FSS.
▶ The frequency of the FSS: is the number of times the FSS occurs in the

whole event logs. The FSS with the highest frequency fFSS is important.
▶ The frequency of events in the FSS: The difference between two FSS with

same frequency and length is underlined by the frequency of their events.
▶ The direct succession relation between events in the FSS: The encoding

takes into consideration the frequency of direct relations between events in
the FSS.
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Feature-based clustering: state of the art (Trabelsi et al., L3I research works)

Encoding (FSS) = 1
fFSS

∑n−1
i=1 fei fei+1 fri,i+1

▶ fFSS is the frequency of the FSS
▶ n is its length
▶ fei is the frequency of the event
▶ fri,i+1 is the frequency of the direct

relation between events
▶ FSS Encoding value ∈ [0, 1]
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Feature-based clustering: state of the art (L3I research works, Trabelsi et al., 2021)

▶ The Prefixspan2 algorithm was used to extract the sequential patterns FSS.
▶ The extracted FSS with a different length n are sorted at first according to

their lengths and secondly according to their frequencies fFSS

2https://pypi.org/project/prefixspan/
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Feature-based clustering: state of the art (Trabelsi et al., L3I research works)
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Model-based clustering

▶ Model-based clustering, is the third category that assumes that accurate
models are discovered from homogeneous sub-logs.

▶ The focus is directly on the quality of discovered models and the
distribution of traces among clusters.

▶ The process model is considered as input for the clustering in order to
structure traces. These traces are used back to mine process models.

▶ The obtained clusters strongly depend on the conformance-checking
measures used for evaluating the accuracy of discovered process models.
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Model-based clustering: state of the art

▶ Veiga, G. M. and Ferreira, D. R. (2009), Understanding spaghetti models
with sequence clustering for prom, in "International conference on
business process management", Springer, 92–103.

▶ Authors combined trace clustering with First order Markov models using a
hierarchical approach.

▶ Initially, random clusters are built, and traces are distributed among them.
Consequently, the cluster models (state transition probabilities of the
Markov chain of each cluster) are evaluated.

▶ Then iteratively, traces are re-assigned to the clusters and evaluation is
done again until the algorithm converges, and cluster models do not
change.
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Model-based clustering: state of the art

▶ DeWeerdt, J., Vanden Broucke, S., Vanthienen, J. and Baesens, B. (2013),
"Active trace clustering for improved process discovery", IEEE
Transactions on Knowledge and Data Engineering 25(12), 2708–2720

▶ Authors tried to find the optimal distribution of traces between clusters
that leads to maximum quality of process models of clusters.

▶ They do not aim to find the similarity between traces, but rather they
cluster traces that fit in a certain process model.

▶ A new approach based on active learning that first takes unique cases and,
based on their distance or frequency, they are clustered together as primal
clusters.

▶ Clusters accept members only if the fitness is optimized, otherwise traces
are allocated to a thrash cluster or are distributed equally between other
clusters.
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Hybrid clustering

▶ Hybrid clustering, is the last category. . .
▶ Combining existing trace clustering categories.
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Hybrid clustering: state of the art

▶ Hompes, B., Buijs, J., Van der Aalst, W., Dixit, P. and Buurman, J. (2015),
Discovering deviating cases and process variants using trace clustering,
in "Proceedings of the 27th Benelux Conference on Artificial
Intelligence (BNAIC), November", 5–6.

▶ Combines the model-based and feature vector-based approaches.
▶ Traces are transformed into vectors using a trace profiling approach and a

similarity matrix is calculated by applying the Cosine similarity measure.
▶ Eventually, similarity matrix is the input of the MCL algorithm3 (Markov

Cluster Algorithm).
▶ The graph clustering algorithm is able to find variations and deviations of a

process based on a set of selected perspectives.

3https://towardsdatascience.com/markov-clustering-algorithm-577168dad475
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Hybrid clustering: state of the art (Hompes et al., 2015)
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Hybrid clustering: state of the art

▶ De Koninck, Pieter, and Jochen DeWeerdt. "Scalable mixed-paradigm
trace clustering using super-instances." 2019 International Conference
on Process Mining (ICPM). IEEE, 2019.

▶ General idea:
▶ Combine the strengths of the two most prominent trace clustering

paradigms (Trace similarity-driven (or distance-driven) techniques and
Model-driven techniques)

▶ Two-step approach:
▶ Learn super-instances using a simple distance-driven clustering (e.g.

k-means)
▶ Apply a model-driven clustering technique to the super-instances to obtain a

final clustering
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Hybrid clustering : state of the art (De Koninck et al., 2019)
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State of the art: summary

Summary

Trace-based Feature-based Model-based Hybrid

Method Dataset Traces processing Clustering
bose et al., 2009 Telephone repair Edit distance Hierarchical clustering
Di Francescomarino et al.,2016 Healthcare Edit distance DBSCAN
Chatain et al., 2017 Synthetic Edit distance Closeness-centroids
Song et al., 2008 Healthcare Frequent features Multiple algorithms
bose et al., 2009 Healthcare n-gram Hierarchical clustering
Ceravolo et al.,2017 Industry Frequent features Multiple algorithms
Trabelsi et al., 2021 Digital Libraries Frequent subsequences DBSCAN/Meanshift
Veiga et al., 2009 Administration Marcov chains Hierarchical clustering
De Weerdt et al., 2013 Insurance Active learning k-clusters
Hompes et al., 2015 Healthcare Cosine distance Markov algorithm
De Koninck et al., 2019 Municipality Frequent features Active learning
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Evaluation levels

Clustering evaluation measures

▶ Silhouette
▶ Davies-Bouldin

Process evaluation measures

▶ Fitness
▶ Precision
▶ Generalization
▶ F-measure
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Information system example: Gallica

Image from https://gallica.bnf.fr
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User’s Journey Modeling in Gallica’s Digital library, Trabelsi et al. 2022

Process Mining for modeling Digital Library users’ behaviors
Is process mining appropriate to extract knowledge from DL users’ journeys?

Digital Library Logs Transformation
How to transform real logs into logs compatible with process mining techniques?

Exponential number of events in Digital Library logs
▶ Is clustering a solution for the huge number of logs?
▶ Can we find representative clusters (users types/tasks)?
▶ Which clustering method should be proposed for a large, complex and unstructured logs?

Handling Digital Library users’ logs
How many logs are required to generate relevant models for both users and designers?
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Logs prepocessing

1) Data visualization
▶ ELK services to visualise queries.

▶ Global view of users’ queries.

▶ ∼ 500M every month.

▶ April 2017.

▶ Web design queries (Javascript,
CSS...)

▶ HTML queries (static web pages→
collections navigation...)

▶ SRU queries (Search and Retrieve via
URL→ search engine)

▶ ARK queries (Collections
identification)

ELK services refers to https://www.elastic.co/fr/elastic-stack/
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Logs prepocessing

1) Data visualization
▶ ELK services to visualise queries.

▶ Global view of users’ queries.

▶ ∼ 500M every month.

▶ April 2017.

2) Outliers Detection
▶ Filtering queries from the

bots-crawlers

▶ Deleting irrelevant queries: css, js

▶ Deleting ∼ 60% of the queries
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1) Data visualization
▶ ELK services to visualise queries.

▶ Global view of users’ queries.

▶ ∼ 500M every month.

▶ April 2017.

2) Outliers Detection
▶ Filtering queries from the

bots-crawlers

▶ Deleting irrelevant queries: css, js

▶ Deleting ∼ 60% of the queries

3) Users’ Queries Tagging
▶ Standard convention to tag queries.

▶ Normalisation using standard
activity’s name.

▶ 9 activity names.

M. Trabelsi, N. Joudieh, R. Champagnat et al. Trace Clustering 118/122



Introduction
Clustering Overview

Trace clustering
Real life example

Conclusion

Gallica
The thesis key question
Logs quality
Findings

Logs prepocessing

1) Data visualization
▶ ELK services to visualise queries.

▶ Global view of users’ queries.

▶ ∼ 500M every month.

▶ April 2017.

2) Outliers Detection
▶ Filtering queries from the

bots-crawlers

▶ Deleting irrelevant queries: css, js

▶ Deleting ∼ 60% of the queries

3) Users’ Queries Tagging
▶ Standard convention to tag queries.

▶ Normalisation using standard
activity’s name.

▶ 9 activity names.

4) Sessionization
▶ Dividing all the users’ queries into

sessions.

▶ Session: a 1-hour navigation of the
same user (IP address).
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Findings (2 clusters for the first 20,000 traces)
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Conclusion

▶ Trace clustering techniques improve both quality of process models, as
well as reduces the amount of time needed to discover a single model.

▶ Data clustering algorithms group data points based on their distance in a
feature vector space. However, they are unable to perform strongly under
process-oriented event logs.

▶ Researchers attempted to overcome this deficiency by adopting data
clustering ideas in the process mining context.
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