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» Two Quizes (practical and theoretical)

» Case study project

> defense: presentation (20 min) + questions (10 min)
» report: 15 pages max

(Quizl+Quiz2+-2 x defense)

» Grades: )
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> As clients, we trigger business processes
» Applying for a permit to build a house
» Applying for a credit to finance property
» Submitting an insurance claim
> As professionals, we participate in business processes

» Check if the requirements for building a house are met
» Assess the risk of granting the credit

» Check whether a claim is covered by the insurance contract
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About Wil van der Aalst

Prof.dr.ir. Wil van der Aalst is a full professor at RWTH Aachen University,
leading the Process and Data Science (PADS) group. He is also the Chief
Scientist at Celonis, part-time affiliated with the Fraunhofer FIT, and a member
of the Board of Governors of Tilburg University. He also has unpaid
professorship positions at Queensland University of Technology (since 2003)
and the Technische Universiteit Eindhoven (TU/e). Currently, he is also a
distinguished fellow of Fondazione Bruno Kessler (FBK) in Trento, deputy CEO
of the Internet of Production (loP) Cluster of Excellence, and co-director of the
RWTH Center for Artificial Intelligence.

His research interests include Petri nets, business process
management, workflow management, process modeling, and process analysis.
Wil van der Aalst has published over 275 journal papers, 35 books (as author
or editor), 630 refereed conference/workshop publications, and 85 book
chapters,.
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Information systems

> Set of resources and tools allowing users to search for information in a given domain.
> Business processes (i.e. a succession of activities that allow them to achieve an objective).
» Information systems are established by explicit process models that are not all clearly defined.

Unstructured processes

> Diversity of tasks, stakeholders (designers, users, managers, etc.) and other unpredictable parameters
(user needs, unexpected failures or execution exceptions, etc.).

> Users can define their own processes (redundant and incomplete actions).
R. Champagnat.

Trabelsi, A. Hamdi et al.
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".. if we build it, they will come ..." (Wilson, 2003)

Theory Reality

28365

Enregistrement comptable
28365

28365

Vérification de facture
28682

28365

Autorisation de paiement
21765

Image from www.logpickr.com
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» Wil van der Aalst pioneered the process mining field at Eindhoven
University of Technology in the late 1990s.

» 2000, 1st Process Mining Algorithm (Alpha Miner)

» COOK, J. E. AND WOLF, A. L. 1995. Automating process discovery through
event-data analysis. In Proceedings of the 17th International Conference on

Software Engineering (Seattle, WA, April 23-30). ACM Press, New York, NY,
73-82.

Motivation

Many software process approaches and tools assume the existence of a formal
process model. Unfortunately, creating a formal model for an ongoing complex
process may be time-consuming, expensive, and error-prone. This is a
practical impediment to the adoption of process technologies.

R. Champagnat, M. Trabelsi, A. Hamdi et al. Intro. to PM 19/43
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2019, First International Conference on Process Mining
https://icpmconference.org
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> data analysis techniques based on the process.
> event logs processing task.

Events logs are recorded data in various systems used for work (ERP, CRM,
MES etc.). Analyzing event logs allows understanding

» how a certain product is manufactured?

» which itinerary, a customer goes through within a service, is identified and
visualized?
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Process mining, why?

Events are user actions in information systems that occur at a defined time.
This event data is recorded in the Logs

» We all generate event data
» Phones capture data
> Internet

R. Champagnat, M. Trabelsi, A. Hamdi et al. Intro. to PM 24743
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What happened? >

Why did it happen?

What will happen? >

What is the best that can happen?

What is )cess mining?

Process mining, why?

What is the process that people
really follow?

Where are the bottlenecks in my
process?

Where do people (or machines)
deviate from the expected or
idealized process?

What about delays?
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Incident Log
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For more uses cases please take a look at this web site
https://www.tf-pm.org/resources/casestudy
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» Academic

» ProM (http://www.promtools.org/doku. php)
> PMA4Py (https://pmdpy.fit.fraunhofer.de)

» Commercial (https://www.processmining-software.com)
> Disco
» Logpickr
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BPMN (Business Process Model and Notation) is the global standard for
process modelling

BPMN is a graphical notation easily readable to represent business
processes and their internal procedure
BPMN diagram but not only (Choreography, WSBPEL, etc.)
BPMN Elements
> Activity
> Event

> Gateway
> Flow

References

> https://www.bpmn.org
» https://camunda.com/bpmn/

R. Champagnat, M. Trabelsi, A. Hamdi et al. Intro. to PM 33743
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» Mathematical and graphical model
» Model synchronisation and resource sharing
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Why Process Mining matters ?
-> click here https://www.youtube. com/@PAFnow
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Extract and analyse business processes from logs
» Transform raw data into modelled data and clean the data

» Using various process mining algorithms, extract models from logs and
assess the quality of the models

Perform conformance checking analysis
Trace clustering

vy

R. Champagnat, M. Trabelsi, A. Hamdi et al. Intro. to PM 40/43



Course organization
Context

La Rochelle Process mining
Universite Business processes
Summary
Resources

@ Resources

R. Champagnat, M. Trabelsi, A. Hamdi et al Intro. to PM 41743



Course organization
Context

La Rochelle Process mining

Université

Business processes
Summary
Resources

P> https://www.processmining.org/home.html
» https://fluxicon.com/book/read/aboutbook/
> https://link.springer.com/chapter/10.1007/978-3-642-28108-2_19
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@ Process discovery
Workflow nets
Event log
Process model
Early research

e Process Discovery : Alpha algorithm
@ Log-based ordering relations
@ «-Algorithm
@ Limitations

e Tools
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» Use traces to discover a process model
» Hence, it models the process as it happens in reality
» Example

» Set of trace variants
> <rc, ccc, dc, pa, sal >, < rc, ccc, de, pr, srl >, < rc, ccc >

» Process discovery algorithms investigate
» Events and how events are ordered
» Execution constraints like splits or joins
| 2

Depending on the process discovery algorithm

R. Champagnat, M. Trabelsi et al. «-algorithm 6/35
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» Process discovery by hand

> Set of trace variants

» <rc, ccc, dc, pa, sal >, < rc, ccc, de, pr, srl >, < rc, ccc >
» Characterization

» Process always starts with <rc, ccc>

» Process can end with <pa, sal> or <pr, srl>

» Immediately before either of these sequences, we observe <dc>
» Process might end immediately after ccc

check claim
completeness
(ccc)

decide on claim

receive claim (rc) Coverage (d0)

R. Champagnat, M. Trabelsi et al. «-algorithm 7735
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A wide range of different process discovery algorithms have been developed
> With different assumptions and limitations
» With different notations

Algorithms

» Alpha algorithms
» Heuristic Miner (HM) > Petri Nets

» Inductive Miner (IM) > Workflow Nets

> Regions Based algorithms (SBR and ILP) > Process Trees

» Genetic Miner (GM) > Directly Follows Graphs
> Fuzzy Miner (FM) > etc.

> etc.

R. Champagnat, M. Trabelsi et al. «-algorithm 8/35
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» First discovery algorithms 1995 (Cook and Wolf), 1998 (Agrawal, Gunopulos
and Leymann) and 2000 («-algorithm)

» First release of BPMN: 2006
» Base-line approach using Directly Follows Graphs (DFGs)

Bottom-up Top-down
discovery discovery

Alpha Inductive
algorithm mining

R. Champagnat, M. Trabelsi et al. «-algorithm 9/35



Preliminaries

La Rochelle Process Discovery : Alpha algorithm
Université Tools

Process discovery algorithms use workflow nets to modelise business
processes

\Xorkflow net is a restriction of Petri Net

Workflow net

Let N = (P, T,F) be a Petri Net and t a fresh identifier notin PUT. N is a
workflow net iff:

@ object creation: Ip; € P : Vt € T, BPost(t,p;)
@ object completion : 3p, € P : Vt € T, HPre(po, t)
@ connectedness: N = (P, T Ut, F U {(po,1),(t,p:))} is strongly connected.

R. Champagnat, M. Trabelsi et al. «-algorithm 10/35
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t
a b d

O
D)
O

C

Today we focus on a-algorithm to understand discovery issues but we will see
other algorithms in the next weeks.

R. Champagnat, M. Trabelsi et al. «-algorithm 11/35
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Tools Process model
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Caseld  User Timestamp Activity Abbreviated
1 Roger 2016-01-12 12:34:25 Decide a
2 Sean 2016-01-12 12:36:25 Decide a
1 Roger 2016-01-12 12:35:26 Order Meat b
1 Roger 2016-01-1212:44:28  Eat Meal d
3 Daniel 2016-01-12 12:46:26 Decide a
3 Daniel 2016-01-12 12:50:27 Order Vege C

» An event log is a multiset of of traces, ordered in cases, (a same case may
appear multiple times). eg. L = [{(a,b,d)?, (a,c,d)3]

> A case is a sequence of activity names. e.g. (a,b,d)

R. Champagnat, M. Trabelsi et al. «-algorithm 12/35
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> From L = [(a,b,c,d)3, (a,c,b,d)?, (a,e,d)]

O
O

>

» Possible transition firing sequences: {(a, b, c,d), (a,c,b,d),(a,e,d)}

(9} I O

» Discovered Petri Net

R. Champagnat, M. Trabelsi et al. «-algorithm 13/35
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» Directly-follows graph

> Possible sequences:
{(07 b7 C7 d)’ (07 c7 b7 d)’ (07 e7 d)7 (a7 c7 d)7 (07 b7 d)7 (07 b7 C, b7 c7 d)}

R. Champagnat, M. Trabelsi et al. «-algorithm 14/35
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» R. Agrawal, D. Gunopulos, and F. Leymann. Mining Process Models from
Workflow Logs. In Sixth International Conference on Extending Database
Technology, pages 469-483, 1998.

@ Draw the graph of precedence constraints
@ Remove edge that appears in both direction
© Remove strongly connected component

@ Perform a graph reduction

R. Champagnat, M. Trabelsi et al. «-algorithm 15/35
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Early research

» JE Cook and A.L. Wolf. Discovering Models of Software Processes from
Event-Based Data. ACM Trans- actions on Software Engineering and

Methodology, 7(3):215-249, 1998. They describe three methods for process
discovery:

» using neural networks
» purely algorithmic approach

» Markovian approach
They propose specific metrics (entropy, event type counts, periodicity, and

causality) and use these metrics to discover models out of event streams.
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Early research

> . van der Aalst, T. Weijters and L. Maruster, "Workflow mining: discovering

process models from event logs," in IEEE Transactions on Knowledge and Data

Engineering, vol. 16, no. 9, pp. 1128-1142, Sept. 2004, doi:
10.1109/TKDE.2004.47.
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» Analyze causal dependencies of activities in the log (e.g. if an activity is always
followed by another activity it is likely that there is a causal relation between
both activities)

> \Xe will consider the forth following relations between any activities a; and as:

@ Direct succession : a; > a if there is a trace such that a; is immediately followed
by a, in a log;

@ Causality : a; — ap, ifa; > ax and as ¥ as;
Q@ Parallel: ay)|az, if a1 > az and az > ay;

@ Choice: an#as, if ap ¥ ax and a, ¥ ay.

R. Champagnat, M. Trabelsi et al. «-algorithm 20/35
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From the following logs L = [(a,b,c,d)3, (a,c,b,d)?, (a,e,d)]. we can extract
the following relations

» Direct succession relations (>):
> a>ba>ca>eb>cb>dc>bc>de>d,
> Causality (—);
» ga—-ba—-ca—eb—dc—de—d,
» Parallel (||):
> bllc, c|lb;
» Choice (#)
> b#e, e#b, c#e, e#tc, a#d, d#a.

R. Champagnat, M. Trabelsi et al. «-algorithm 21/35



Preliminaries Log-based ordering relations
La Rochelle Process Discovery : Alpha algorithm a-Algorithm
Tools Limitations

Université

Formallly:
Q 7. ={teT|Fetco}
Q T = {t € TVt = first(o)}
Q To = {t e T|Vyert = last(c)}

Q X = {(A,B)|A CTINA%SABCT, AB# 3 AVaeaVpepad —1
b AV a,eAi#102 N Vp, peab1#1b2}

Q V. ={(AB) eXVapex,ACA ANBCB = (AB) = (A,B)}

Q PL={pwuplAB)e Y} U{io}

R. Champagnat, M. Trabelsi et al. «-algorithm 22735
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QF = {(a,p(A’B))\(A,B) eYLhnaeALU {(p(Ayg),b)|(A,B) eY.AnbeB}U{(i,,t)|t e
T/} U {(t, OL)|t S TO}

Q ol) = (P, T, FL)

R. Champagnat, M. Trabelsi et al. «-algorithm 23/35
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In detail.
Q T, = {t € T|F,e.t € o}. Extract transitions names (an activity is a transition)
Q T, ={te T|V,e.t = first(c)}. Fix the set of start activity

Q To = {t € T|V,ert = last(o)}. Fix the set of end activity

R. Champagnat, M. Trabelsi et al. «-algorithm 24/35
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Q X = {ABJACT . NA#SANBC T, AB# D AVaeaVpesad =1
b AV, aeaAQ1#102 A Vb, p,eab1#1 b2}

Find pairs (A, B) of sets of activities such that:

> Every element a € A and every element b € B are causally related (ie. a — b)

> All elements in A are independent (a1 #a5), and all elements in B are independent
(b1#b>).

R. Champagnat, M. Trabelsi et al. «-algorithm 25/35
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Q Y. ={(AB)eX |Vargex,ACA NBCB = (A,B) = (A",B)}. Delete
non-maximal pairs (A, B) from X, For instance: let us take a,b,c € T with
a — b,a — ¢ and b#c then ({a}, {b}) in X and ({a}, {b,c}) also. The goal is to
reduce the number of places to keep the ones that connect the maximum of
transitions (here ({a}, {b,c})).

O PL={pnupl(A,B) € YL} U{i, 0.} Determine the place set: each element (A, B)
of Y, is a place. And add source and target places.

@ FL={(a,pup)l(A,B) € Yo Aa €AY U{(pug),b)I(A,B) € YL Ab e BU{(iL,t)|t €
T} U{(t,0.)|t € To}. Determine the flow relation by connecting each place
p,p) With each element a of its set A of source transitions and with each
element b of its set B of target transitions. In addition, draw an arc from the
source place j; to each start transition teT, and an ark from each end transition
teT, to the sink place o

R. Champagnat, M. Trabelsi et al. «-algorithm 26/ 35
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Q «(L) = (P, T.,FL). The discovered Petri Net.

The whole concept

» Find pairs that are maximal (step 5).
> If two activities follow there is a place in between.
> A place defines a local constraint

A place is a constraint

> If we have a sequential pattern a — b, the place between the transition a
and b specifies that a and b should happen the same number of times and
b should be executed after a.

R. Champagnat, M. Trabelsi et al. «-algorithm 27735
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] o @y ¢

(a) sequence pattern: a—b

D ON
K O[T
OeDg

(b) XOR-split pattern: (c) XOR-join pattern:
a—b, a—c¢, and b#c a—c, b—c, and a#b

e S ¢ /EFO\
O—[I EFO/

(d) AND-split pattern: (e) AND-join pattern:
a—b, a—c, and b||c a—c, b—c, and a||b

\

R. Champagnat, rabelsi et al. «-algorithm
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L = [(a,b,c,d)3, (a,c,b,d)?, (a,e,d)]

Q ab.cde
Q «a
Qd
a b ¢ d e
al|l# - — # =
cl« I # — #
d| # <+ + # <+
e |« # H# — H#

X, = {({a}. (b)), ({a}. {c)). ({a}. {e}). ({a}. {b.€}). ({a}. {c.e}). ({b}. {dl}),
({c}. {d}). (e} {d}). ({b.e}. {d}). ({e. e}, {d})}
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Q Y. ={({a},{b,e}),({a}, {c,e}), ({b,e},{a}), ({c, e}, {d})}

b

O—»I I—O

I/
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» The discovered model is not optimal (implicit places)
» Cannot discover loops (length 1 and more)

» Non-local dependencies

R. Champagnat, M. Trabelsi et al. «-algorithm 32/35
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» ProM (http://promtools.org/)
> PM4PY (https://pmdpy.fit.fraunhofer.de)
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Introduction

Why using Quality Criteria?

Quality Criteria for Process Dicovery
Initial Measures

Introduction

Process discovery (a-Algorithm)

Metrics and quality of discovered models
Raw traces/ modelled traces (case study)
Advanced process mining algorithms
Advanced process mining algorithms
Conformance checking

Decision mining in processes

Trace clustering

Trace profile

Case study

Case study defense
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e Introduction
e Why using Quality Criteria?

e Quality Criteria for Process Dicovery
@ Overfitting and underfitting
@ Quality Criteria
@ Example

e Initial Measures
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To evaluate is to measure the reliability of a tool

Evaluation depends on the phenomena to be assessed
The approach requires a ground truth

Assessment of results depends on the intended application
Evaluation must be reproducible
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» In a classification system (binary)

» True positive

> True negative
» False positive
» False negative

» while O is the negative class and 1
is the positive class

Real | Predicted ||

— = OO

0
1 FP
0
1

R. Champagnat, M. Trabelsi, A. Hamdi et al. Quality Criteria

Type il erro; e
(false negative)

0 O or ey
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Let p1,p2,P3, P4, Ps, Ps, P7 De a set of data representing pebbles and A and B
two classes with :

> A (pebbles with gold nuggets)
> B (pebbles of no interest)

Ground truth Predictions Confusion matrix
p1|A p1| A
ﬁi 2 gi E or pred A B
gg g g‘s‘ g A p1. p3 (TP) | pa2. pa (FN)
pe | B e | A B pe (FP) | ps, p7 (TN)
p7 | B p7 | B

R. Champagnat, M. Trabelsi, A. Hamdi et al. Quality Criteria 7755
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» Precision : rate of correct answers
TRUE PosITIVE VS FALSE POSITIVE
"Among the positive predictions, how many are really positive?"

> Recall: rate of answers found
TRUE PosITIVE VS FALSE NEGATIVE
"Among the real positives, how many are predicted positive?"

» Noise : rate of incorrect answers
» Silence : rate of forgotten answers

» Noise = 1 — precision — errors of type |
» Silence =1 — recall — errors of type |l

R. Champagnat, M. Trabelsi, A. Hamdi et al. Quality Criteria 8/55
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> Precision = B ems found
> > P= %
> Recall - A etevant o
> = R=pim
F-measure : » 3 =1— balance between P and R
X PR » [ <1— Pisfavored
FB:(“‘ﬁ)m » 3>1— Ris favored

— What about process mining?

R. Champagnat, M. Trabelsi, A. Hamdi et al. Quality Criteria &) /5
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» Venn Diagram?

Software Process Validation . 151

Execution Events

Collected Events

Model Events

Fig. 1. Venn diagram of event types.

» |s the discovered model a correct reflection of the real process?
» what is the quality of the discovered model?

R. Champagnat, M. Trabelsi, A. Hamdi et al. Quality Criteria
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Classification approaches (using confusion matrix) define:
> TP: traces possible in model and also possible in real process.
» TN: traces not possible in model and also not possible in real process.
> FP: traces possible in model but not possible in real process.
> FN: traces not possible in model but possible in real process.

Cannot be used since the identified model generates infinite sequences and
log only contains a subset of all potential traces.
= Need for defining specific measures

1JE. Cook and A L. Wolf. Software Process Validation: Quantitatively Measuring the
Correspondence of a Process to a Model. ACM Transactions on Software Engineering and
Methodology (TOSEM), 8:147-176, April 1999.

R. Champagnat, M. Trabelsi, A. Hamdi et al. Quality Criteria 11/55
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e Why using Quality Criteria?
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How good is my model?
» There are many different process discovery algorithms available

» Many discovery algorithms build on parameters and, therefore, can
produce different models

» How can we assess whether a resulting model is “good"?

> \WXe can build on the notion of underfitting and overfitting from machine
learning

R. Champagnat, M. Trabelsi, A. Hamdi et al. Quality Criteria 13/55
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Let us consider the following log L = [{(a, ¢, d)%°

candidate models:

a b a d

A | .
\I |-O @<(5—»|—»

d

And with logs L = [(a, ¢, d)®
L= [{a,c,d)®®

,{a,c,e)®
,(a,c,e)l, (b,c,e)®, (b,c,d)?]?

R. Champagnat, M. Trabelsi, A. Hamdi et al.

, (b, c,e)®] we can deduce the

|- @4\
|- ©~|/

,(b,c,e)®, (b,c,d)*®] or

Quality Criteria
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In machine learning, we often fit a model to training data for the purpose of

prediction
» Underfitting » Overfitting
» Large distance from line to » Low distance from line to most
most data points data points
» The shape of the model and » The shape of the model and
the data are very different the data are very similar

R. Champagnat, M. Trabelsi, A. Hamdi et al. Quality Criteria 16 / 55
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© Quality Criteria for Process Dicovery
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Allows only the discovered behaviour (the next trace will not fit)

1o lotoilo
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Underfitting
Allows too much behaviour
a b
I ;. I
©— % |-O
c d
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event log [ process model

R. Champagnat, M. Trabelsi, A. Hamdi et al. Quality Criteria 20/55




Introduction
Why using Quality Criteria?
La Rochelle Quality Criteria for Process Dicovery
Universite Initial Measures

Buijs Joos et al. (2012). On the Role of Fitness, Precision, Generalization and
Simplicity in Process Discovery.
» Fitness: ability to explain observed behaviour

» Precision: (avoid underfitting): the discovered model should not allow for
behavior completely unrelated to what was seen in the event log.

» Generalisation: (avoid overfitting): the discovered model should generalize
the example behavior seen in the event log.

» Simplicity: complexity and specificity of the model

R. Champagnat, M. Trabelsi, A. Hamdi et al. Quality Criteria 21/55
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Example

fithess
(ability to explain
observed behavior)

generalization precision
(avoiding overfitting) (avoiding underfitting)

simplicity
("Occam's razor")
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Model 1 Medel 2 Model 3 Model 4
produced by produced by produced by produced by
algorithm A aigorithm B aigorithm C aigorithm D

o—
9——
o—

- &

(f .
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Indicates how much the observed behaviour in the log is captured by the
process model

number_of _traces_captured_by _the_model
number_of _traces_in_the_log

» Ingeneral ->f =
» Comparing footprints

» Token-Based Replay

> Alignment

R. Champagnat, M. Trabelsi, A. Hamdi et al. Quality Criteria 24 /55
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Example

Compare the footprints of log (L) and possible traces of the model (M).

::H:\L@

:ﬁ:():ﬁ:T:ﬁiziﬁ

L3l L 3lafd L Lo

f —1_ number_of _different_elements
- number_of _elements

naoocalZoaoocalr
T [ T#HT T
:H:::ﬁzzﬁzim:ﬁ:T:ﬁ::H:im

T =% L|lo|FT

H* 1%
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> Given an event log and a Petri net, token based-replay takes each trace in
the log in isolation and fire transitions sequentially according to the
ordering of events in the trace.

» If a transition should be fired according to an event in a trace but it is not
enabled, missing tokens are added to enable the transition.

> All added tokens are recorded.

» Together with the number of remaining tokens left after all traces are

replayed, the amount of added tokens is used to measure conformance
between the log and the net.

R. Champagnat, M. Trabelsi, A. Hamdi et al. Quality Criteria 26 /55
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While replay progresses, we count the number of tokens that had to be
created artificially (i.e, the transition belonging to the logged event was not
enabled and therefore could not be successfully executed ) and the number of
tokens that were left in the model,which indicate that the process was not
properly completed?

R R
(1 o Z/I?l n/mf + 1 1— Z/i:l n,-r,-' W)
Sianici” 2 >_im1 Nip
Where:
» jis the log trace index,
> n;is the number of process instances combined into the current trace,

» C;is the number of consumed tokens,

R. Champagnat, M. Trabelsi, A. Hamdi et al. Quality Criteria 27/ 55
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» p;is the number of produced tokens during log replay of the current trace,
» mj is the number of missing tokens,

» r;is the number of remaining tokens.

R. Champagnat, M. Trabelsi, A. Hamdi et al. Quality Criteria 28 /55
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Example

Let's replay the trace "acdeh” on this discovered model. Initially, p = ¢ = O and
all places are empty.

At the beginning the environment produces
a token for place start. Therefore, the p
counter is incremented: p = 1.

R. Champagnat, M. Trabelsi, A. Hamdi et al. Quality Criteria 29 /55
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Example

We first fire transition a. Since a consumes one token and
produces two tokens, the ¢ counter is incremented by 1 and the
p counter is incremented by 2. Therefore, p=3 and c =1.

R. Champagnat, M. Trabelsi, A. Hamdi et al.
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Example

Then we replay the second event ¢
and the third event d.
p=5andc=3

A. Hamdi et al.

R. Champagnat, M. Trabe

Quality Criteria 31/55



Introduction

Why using Quality Criteria?

Quality Criteria for Process Dicovery
Initial Measures

Overfitting and underfitting
Quality Criteria

La Rochelle

Université

Example

At the end, the environment
consumes one token from place
end. Hence,p=c=7

o T
139T
ol o~

A. Hamdi et al.
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Example

So for the first example the fithess value will be ;

1 O 1 O
f=5- 745071 “

Let's replay another trace "adceh” on this discovered model. Initially, p =c =0
and all places are empty.

R. Champagnat, M. Trabelsi, A. Hamdi et al. Quality Criteria 33/55



Introduction

Why using Quality Criteria?

Quality Criteria for Process Dicovery
Initial Measures

Overfitting and underfitting
Quality Criteria

La Rochelle

Université

Example

R. Champagnat, M. Trabelsi, A. Hamdi et al.

Quality Criteria 34/55



Introduction

Why using Quality Criteria?

Quality Criteria for Process Dicovery
Initial Measures

Overfitting and underfitting
Quality Criteria

La Rochelle

Université

Example

Rozinat et al. (2008). Conformance checking of processes based on monitoring real behavior. Information Systems
A. Hamdi et al.
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Devjation

Log moves d
d f Model moves

b is skipped

process model
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Precision

» Does the model allow for traces that are not in the event log?
» Determining how many traces from the model are not part of the event log.

» This is not always straightforward since models often allow for an infinite
number of traces

In general, Precision quantifies the fraction of the behavior allowed by the
model which is not seen in the event log 3

len, (e
Precision(L,M) = (3)
M =15 2 Z |enM(e
where:
> |E| is the number of events in the log L (the number of lines of the log)
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Example

eis an event in the log (one line)
en; (e) is the set of activities (event types) enabled in the event logs
eny(e) be the set of activities enabled in the model

en,(e) Cenum(e) because the event log is perfectly fitting. Therefore,
O < precision(L,M) < 1.

Precision is 1if all the possible behaviors allowed in the model are
observed in the log.

» If the model allows for much more behavior than observed, then
precision(L,M) < 1.

v
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Munoz-Gama et al. (2011). Enhancing precision in Process Conformance:
Stability, confidence and severity.

» The precision metric avoids enumerating all the possible states.
» Requires to calculate the prefix automaton based on the log
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3200

# Instances Log Traces
1435 ABDEA
946 ACDGHFA
764 ACGDHFA 1435 1435 1435 1435

54 ACGHDFA
1 ACDGGHFA

(a) Log Ly

Fig. 2. Prefix Automaton
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» For each state identify the escape states (enabled transition in the model
and note in the log when replaying the log)

p4
Register . Complete

Low-value Claim Low-value Claim
Set Check Set
Checkpoint Checkpoint
0 pL 2 Policy p5 " o7 P8

omplete
High-value Claim

Register
High-value Claim

3]

Check
Liability

Consult
Expert

(b) Model M1

R. Champagnat, M. Trabelsi, A. Hamdi et al.

Quality Criteria

1435 1435 1435 1435 0

Fig. 3. Extended Prefix Automaton
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> _for_each_state (NUMber _of _escaping_states x occurence_of _the_prefix)

2 _for_each_state (NUMber _of _available_states x occurence_of _the_prefix)
(4)

» For more details please see this Helpers' presentation Precision helpers

» Both metrics require the log to fit the model.

etc, = 1—

3Aalst 2016, Process mining: data science in action

R. Champagnat, M. Trabelsi, A. Hamdi et al. Quality Criteria 42 /55


https://docs.google.com/presentation/d/1LYC9HrMtKeZCdZfQPAZiUqtgeKPWGw6K/edit?usp=sharing&ouid=112663468749975872231&rtpof=true&sd=true

Introduction

Why using Quality Criteria?

Quality Criteria for Process Dicovery
Initial Measures

Overfitting and underfitting
Quality Criteria

La Rochelle

Université

Example

Generalization

Assesses the extent to which the resulting model will be able to reproduce
future behavior of the process.

Simplicity

Quantify the complexity of a process model

Based on complexity measures of a process model
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F-measure

_ 2*FxP
F — measure = p

» A proper process model must find a balance between quality criteria.

» It has been shown that Fitness and Precision are linked. A small amount of

behaviors (event logs) leads to a decrease in Fitness and an increase in
Precision
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» |t exists various metrics for a quality criteria

» Based on process modelling metrics (Petri Net)
» Based on Workflow net

» Based on Process Tree

» Based on alignment algorithms
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Let us consider the following log
L = |:<a? c’ d’ e>997 <d’ a? b? e>85? <a7 d’ C’ e>567 <a7 d7 b’ e>217 <a7 b? d? e>15’ <d7 a’ C’ e>6]

» Fitness: bad

a c d e
®_>I_>O_>I_>O_>I_>O_>I_>O > Simplicity: good
» Precision: good
» Generalization: bad
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L = [(a,c,d,e)®, (d,a,b,e)® (a,d,c,e)®® (a,d,b,e)?, (a,b,d,e)’®, (d,a,c,e)°]

a b » Fitness: good
» Simplicity: good

I O » Precision: bad
» Generalization: good
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O O

[<a’ C? d? e>997 <d7 a7 b7 e>85’ <a7 d? C? e>56’

!\ (a,d,b,e)? (a,b,d,e)’®, (d,a,c,e)°
e

a b
| -0 -0
a
|-O—-O
“ c N (5)
9400 Do
a
I O ! O ! » Fitness: good
a
! O I O I » Simplicity: bad
a ¢ » Precision: good
I O I O I » Generalization: bad
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Modelling complex business processes is difficult and people make numerous
errors. It has been shown in empirical studies that about 20% of models have
design flaws...

In Kristian Bisgaard Lassen et al, Complexity metrics for Workflow nets,
Information and Software Technology, Volume 51, Issue 3, 2009, Pages
610-626, ISSN 0950-5849, they define 3 metrics.

@ Extend Cardoso metrics (J. Cardoso Transactions on Enformatika (sixth
ed.), Systems Sciences and Engineering, vol. 8, Springer-Verlag, Berlin,
Budapest, Hungary (2005), pp. 213-218)

It is based on the presence of certain splits and joins in the syntactical
process definition (based on Weyuker's properties?) that give comlexity
measure to determine if a program can be categorized as good,
structured, and comprehensive.
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Cardoso metrics:
> Activity complexity: calculate the number of activities a process has
» Control-flow complexity: based on splits, joins loops and ending
» Data-flow complexity: data complexity and mapping, composed of several
sub-metrics (data complexity, interface complexity, and interface integration
complexity)
» Resource complexity: based on resources access during activities
The metric is based on the number of subsets of places reachable form a
place.
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@ Extend McCabe Cyclomatic metric (T. McCabe IEEE Transactions on
Software Engineering, 2 (1976), pp. 308-320 control flow graph of
procedure of a program) well-kown for measuring the control-flow graph
of a procedure of a programme.

The metric is based on the number of edges, vertex and strongly
connected components.

© Structuredness metric
It is based on "behavioral" pattern. It better tries to capture the complexity
of the model as it is perceived by humans. It iteratively analyzes the
structure of the model and assigns penalties to undesirable constructs
from a complexity point of view.

*“Weyuker, E.J., Evaluating software complexity measures. IEEETransactions on Software Eng.,
1988. 14(9): p. 1357-1365
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In J.E. Cook el al. Software Process Validation: Quantitatively Measuring the
Correspondence of a Process to a Model. ACM Transactions on Software
Engineering and Methodology (TOSEM), 8147-176, April 1999 Their aim is to
measure the level of correspondence between a process execution and a
process model.

Their ambition is to answer the questions;

» Does our model reflect what we actually do?
» Do we follow our model?
They define two metrics:
© Simple String Distance metric
@ Non-linear String Distance metric
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194+ B Cookand AL Wol The metrics are based on comparing

Sum [alslc cla[B c E[e[B]c]a] sequences. Research on sequencing
DNA have been very popular since the
2000s and a lot of sequence
alignment algorithms have been
developped.

Srem |AlB G A“B‘DiEIE‘E‘B‘D‘E C‘A‘

(a)

—r—
B‘

Tran:r"\l:rmLA B CMA BX HE‘ ‘E *DHEHC‘A‘
 — - |

(b)

NSD A—] — —
Soere [ [0 X ale)X|p| e[E]E[eo[Efca]
 i— — — 1

©

Fig. 3. Example execution and model event streams (a), with execution stream transformed
for the SSD metric (b) and the NSD metric (c) calculations.
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Introduction

Process discovery (a-Algorithm)

Metrics and quality of discovered models
Raw traces/ modelled traces (case study)
Advanced process mining algorithms
Advanced process mining algorithms
Conformance checking

Decision mining in processes

Trace clustering

Trace profile

Case study

Case study defense
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» Business Process software Generates a lot of data.
> Software for public services
» Information seeking

A use trace is a footprint left by a user when using a software.
> At short term, the objective is providing feedback for the production teams.

> At long term, a smart assistant could be designed to help the user to
perform some tricky tasks or repetitive actions.

R. Champagnat, M. Rabah, M. Trabelsi et al. Event logs
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Improve quality Analysis based on experience rather
» reproducing anomalies situation  than knowledge
> validate user experience
» determine performance criteria

Difficult to analyse Information Seeking systems
> Task are defined step by step during its realization
» No exact goal
» No indentified means to rich its goal
» Depends on the context (information found during the process)
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Laflaquiere, Julien et al. (2006). Trace-Based Framework for Experience
Management and Engineering.

» A Trace-Based Framework for Experience Management and Engineering is
considered as a recording of a computer-mediated activity that is
potentially constructed from variety of sources (log-files, video, transcripts,
etc)

» Trace lifecycle:

» Collecting (deciding with what to collect and how)

» Transformation (automatically ou manually filtering rearranging or adding
information)

> Presentation (visualization and involves choosing what to present and how)

» In a Trace-Based System each trace must always be associated to an
explicit trace model

R. Champagnat, M. Rabah, M. Trabelsi et al. Event logs 8/42
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A use trace is a temporal sequences of observed items.

» Order-relation that organizes trace data relatively to a time base
> Observed item indicates that trace data result form an observation
The objective is to deal with use traces that "make sense’

» Qualitative approaches are proposed in ethnographic and ergonomics
research

» Quantitative approaches are based on log-files. They are obtained by
passive observation and are used to calculate some statistical insights

» Use trace approaches: in between

R. Champagnat, M. Rabah, M. Trabelsi et al. Event logs 9/42
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A Trace Model is an ontology Mt = (C; <¢; <g; T; A; 0a; or) consisting of

| 2

VVvYyVvyy

a set of concepts C organized in hierarchy with an order relation <¢
a set of relations R organized with <g

a relation signature R — C x C

aset of datatypes T

a set of attributes A

and an attribute signature A — C x T.
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Trace

A trace is a quintuplet (Mr, Dy, Oy, R, Rs) Where
> M7 is the associated trace model;

» Dy is atemporal domain (T, <) with T a set of time instants and < an order
onT,

> Oy is a set of objects O, Oy = Og, Oy, ..., O, such as VO; € Oy, f(0O;) € C, with
f a labelling function f : Oy — C

> R: C Dp x Dp x Oy is a relation representing the structural links between
objects

> YRs € Rs,g(Rsi) € C, with g a labelling function g : Rs — C.

R. Champagnat, M. Rabah, M. Trabelsi et al. Event logs 11/ 42
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Trace Model T P
B Temporal Domain D
"" """ 127.0.0.1

Ftmporal retations R¢ [13/Dec/05:18:22:37)
I S ————— [13/Dec/05:18:23:17]
serveirsquse Strfctyral relations Rg [13/Dec/05:18:24:57]

EI _[ "GET /getstyle.cs\HTTP/1.1" ]————

~ .
O N ~{ "GET /managestyle.css HTTP/1.1" ]/

Fig. 3. In this example, the trace model is a set of concepts (server, request, username). Trace
objects (one server and two requests) are related to the temporal domain D, through R, (note
the server is related to a time interval). Traces objects have structural relations through Ry

R. Champagnat, M. Rabah, M. Trabelsi et al. Event logs 12/ 42



Introduction

Traces

La Rochelle Event Lo
Université Outlie%
Sampling Event Log
Privacy

e Event Log

R. Champagnat, M. Rabah, M. Trabelsi et al Event logs 13742



La Rochelle

Université

Introduction Raw Traces

Traces

Event Log

Outlier

Sampling Event Log ¢
Privacy ow to Create Event Log

May be: Not always structured and
> Flat file well-described by meta data.
» Spreadsheet
» Transaction log
» Database table
» Data warehouse

The origin of the raw data could be: Data need to be extracted and
» Web pages converted into event logs.

>
>
>
>

emails

PDF documents
scanned text
screen scraping
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1 activity, and a point in time.
[Ge » An event log can be seen as a
cordreds collection of cases.
T oy T [ Aty ]
e » A case can be seen asa

trace/sequence of events.
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Event time Process Case Activity >
e 51 P1 o1 a1
e 2 P1 o1 as
es t3 P1 C2 a > £ ={eep, .., e18}
€4 iy P2 C3 az
es ts pP1 c2 as > A={01,02,03,04}
€6 te P2 C3 as
ez t7 P1 c2 ay
eg ts D1 ) a4 > P={p1,p2}
) ty P2 C4 az
€10 tio P1 Cs ar » Instance of p; :
en tn P2 C3 as =
ep t> P2 [ as Cpl - {Cl7 C27 Cs, C6}
e3 b p1 Ce a
1 fa D1 Cs a3 » Instance of py : Cp, = {C3,Ca}
e1s tis P2 Cy4 as
e pe B & > (a1,a3,04) and (a2, a3, as)
17 17 1 6 4 .
s fis o1 s o correspond to variant
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Caseld User Timestamp Activity
1 user; 2016-01-12T10:34:25 home index
1 user;  2016-01-12T10:34:27 home languages
1 user;  2016-01-12T10:34:28  language selection
1 user; 2016-01-12T10:34:31 catalog show
2 user, 2016-01-12T10:34:.26 home index
2 user, 2016-01-12T10:34:29 home periods
2 user, 2016-01-12T10:34:30 catalog show
’ usen ‘ ’ home-index H home-languages H language-selection }—»’ catalog-show

‘ user, ‘ ‘ home-index H home-periods H catalog-show ‘
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We can only observed activities that has footprint, but:

Event time Process Case activity
e t p1 1 start a;
e to p1 c1 start a;
e3 t3 pP1 1 complete a;
ey ty pP1 1 complete o
5.2 Event Logs 133
start start complete complete start start complete complete
& | | | s, 4 | | | I
: | | [ i i : i i i J i
I | | 1 ] | 1 |
I | ] 1 I I 1 |
I I 1
! | 6 hours ! 2 hours |
| i i |
i A -}
5 hours 9 hours -

Fig. 5.5 Two scenarios involving two activity instance leaving the same footprint in the log
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XES (www.xes-standard. org) is a standard for storing and exchanging event
logs.

The XES standard defines a grammar for a tag-based language whose aim is to
provide designers of information systems with a unified and extensible
methodology for capturing systems behaviors by means of event logs and
event streams.

R. Champagnat, M. Rabah, M. Trabelsi et al. Event logs 20/ 42
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53 XES 139

<defines>

<trace-globat>

<event-globat>

<contains>

<contains>

<contains>

Fig. 5.7 Meta model of XES [64]. A log contains traces and each trace contains events. Logs,
traces, and events have attributes. Extensions may define new attributes and a log should declare:
the extensions used in it. Global attributes are attributes that are declared to be mandatory. Such
attributes reside at the trace or event level. Atributes may be nested. Event classifiers are defined
for the log and assign a “label” (e.g., activity . There may i
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<?xml version="1.0" encoding="UTF-8" ?>

<!-- This file has been generated with the OpenXES library. It conforms -->

<!-- to the XML serialization of the XES standard for log storage and -->

<!-- management. -->

! XES standard version: 1.0 -->

<!-- OpenXES library version: 1.0RC7 -->

<!-- OpenXES is available from http://www. openxes.org/ -->

<log xes.version="1.0" xes.features-"nested-attributes" openxes.version="1.0RC7">

<extension name-"Lifecycle" prefix="Llifecycle" uri="http://www.xes-standard.org/lifecycle.xesext"/>

©CONO O AWN -
[
|
|

10 <extension name="Time" prefix="time" uri="http://www.xes-standard.org/time.xesext"/>

1 <extension name-="Concept" prefix="concept’ uri="http://wwaw.xes-standard.org/concept.xesext"/>
12 <classifier name="Event_Name" keys-"concept:name"'/>

13 <classifier name="(Event_Name AND_Lifecycle_transition)" keys="concept:name_lifecycle:transition"/>
14 <string key="concept:name" value-"XES_Event_Log"/>

15 <trace>

16 <string key-"concept:name" value-"10[1"/>

17 <event> <string key="concept:instance" value="0"/>

18 <string key="lifecycle:transition® value="start"/>

19 <date key="time:timestamp" value="1998-05-06T16:00:57.000+02:00"/>

20 <string key="concept:name" value="request'/><string key-="task" value="87"/>
21 </event>

22

23 </trace>

24 </log>
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A classifier is a function that maps the attributes of an event onto a label.

For any event e € E and name n € ActivityName, #n(e) is the value of attribute n
for event e. And e is the name of the event

schedule assign start complete start complete
| | |

. | s .
a: | | | | > d:

schedule assign reassign start suspend resume complete

§ | | | | | | | »
B I I I I I I [ &

complete

start suspend resume suspend abort_activity e
c: | | | | | > ' >

I I I I | 4

Fig. 5.4 Transactional events for five activity instances
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> If events are simply identified by their activity name, then e = #qcriviry (€).
» Instance ain Fig. 5.4 would be mapped onto (a,a, a, a).
» In this case a-algortihm would create just one a transition.

> If events are identified by their activity name and transaction type then

e = (F#actiity(€), #trans()€). Now activity instance a would be mapped onto
((a,schedule), (a, assign), (a, start), (a, complete)).
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In the Process Mining book - Data Science in Action (Wil M.P. van der Aalst,
2016.) five challenges were highlighted:

» Event correlation: how to identify events and their corresponding cases?

» Timestamps: when merging data from different sources time may be
wrong because of multiple clocks...

» Snapshot of a longer running process (missing head or tail)
» Scoping, knowledge associated to data
Granularity

v
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» Missing in log: activity not recorded
Missing in reality: extra activity recorded

> Concealed in log: the activity was recorded and exists but it is hidden in a
larger less structured data.

» Missing attribute
Incorrect attribute

v

v

» Imprecise attribute
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To create an event log from trace:
@ we need to select the events relevant for the process at hand
events need to be correlated to form process instances (cases)

Q

© events need to be ordered using timestamp information (or have an
explicit order)

o

event attributes need to be selected or computed based on the raw data
(resource, cost, etc.)
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Move on to a real case : how to create an event log from documents ?
-> Database tables extracted from documents

Link to the case presentation Example on claims documents
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Ghionna, Lucantonio et al. (2008). Outlier Detection Techniques for Process
Mining Applications.

Outlier
Exceptional individual trace from a set of traces or Infrequent behaviour.

» |Important applications in bioinformatics, fraud detection, and intrusion
detection, etc.

» Problem in Process Mining: concurrency may produce traces that only
differ in the ordering but are not outlier (even if occurs rarely)
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Fani Sani et al. (2018). Applying Sequence Mining for Outlier Detection in
Process Mining.

» Noise versus Oultlier.

» Noise relates to behaviour that does not conform to the process specification
or its correct execution.

» Infrequent behaviour refers to behaviour that is possible according to the
process model, but, in exceptional cases of the process.

» The presence of outlier behaviour makes results complex,
incomprehensible and even inaccurate.

> Applying filtering on log prior to apply any process discovery algorithm.
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Fani Sani et al. (2019). The Impact of Event Log Subset Selection on the
Performance of Process Discovery Algorithms.
Problems:

» Dealing with large event logs
» Meaningful sampling
» Sampling biais

Sampling methods aim to reduce the number of process instances and
increase the performance of discovery algorithms
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Subset selection strategies

>
| 4

>

Random Sampling

Biased Sampling Strategies: first find all variants in an event log and use
more advanced strategies (biases) to select them

Frequency-based Selection: This ranking strategy gives higher priority to
a variant that has a higher occurrence frequency in the event log

Length-based Selection: sort variants based on their length and choose
the longest or the shortest ones first

Similarity-based Sampling: rank variants based on the similarity of them
to each other

Structure-based Selection: we consider the presence of unstructured
behavior in each variant

R. Champagnat, M. Rabah, M. Trabelsi et al. Event logs
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Kabierski, Martin et al. (2018). How Much Event Data Is Enough? A Statistical
Framework for Process Discovery.

» Statistics for pre-processing event logs (detect unstructured behaviour...)
» Statistics for determining how a nhewly sampled trace add new information

For instance, with traces (a,d, b, e) and (a, b, d, e) one can derive the following
ordering relations: a — b,a — d,b||d,b — e,d — e.

Adding the new trace (d, a, b, e) changes the deduction on ordering relations
as follows: a — b, al|d,b||d,b — e, d — e.
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» Privacy, security, law, and ethics are key ingredients to protect individuals
and organizations from “bad" data science practices.
» Differences between Information Security and Privacy?

> Privacy relates to the idea that the information about individuals or groups
that is not advertised to others.

» Security is the practice of preventing unauthorized and malicious access,
use, disruption and modification of information.

Privacy referes to the ability to isolate sensitive information.

» Data should be accurate and stored safely

» Individuals need to be able to trust the way data are stored and transmitted
> Not all types of analysis possible are morally defendable.

» Due to a lack of sufficient data, minority groups may be wrongly classified

R. Champagnat, M. Rabah, M. Trabelsi et al. Event logs
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» Ensure privacy without losing meaningful correlations.
Hashing can be a powerful tool in the trade-off between privacy and
analysis.

» Privacy and anonymization
Event logs may contain sensitive or private data. Events refer to actions
and properties of customers, employees, etc.

» Privacy protection techniques

» Cryptographic technique
> Access Control
» Differential Privacy 2
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» Anonymization techniques
A study estimated that 87% of the population of the United States can be
uniquely identified using the attributes gender, date of birth, and 5-digit zip
code?. Those three attributes were used to link Massachusetts voter
registration records (which includes the name, gender, zip code, and date of
birth) to supposedly anonymized medical data from the Group Insurance
Commission GIC (which includes gender, zip code, date of birth and
diagnosis). The linking between these two tables managed to identify the
medical records of the governor of Massachusetts in the medical data®.
> K-anonymity
A table satisfies k-anonymity if every record in the table is indistinguishable from
at least k -1 other records with respect to every set of quasi-identifier attributes,
such a table is called a k-anonymous table.
There are many limitations that have been identified for this technique, namely
attacks such as homogeneity attack and background knowledge attack.
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> | -Diversity
Requires each group of quasi-identifier attributes containing at least one
representative and distinct sensitive attributes that have equal proportion in
order to avoid homogeneity attack and background attack

> t-closeness
An equivalence class is said to have t-closeness if the distance between the
distribution of a sensitive attribute in this class and the distribution of the
sensitive attribute in the whole table is no more than a threshold t. A table is said
to have t-closeness if all equivalence classes have t-closeness.
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» Process mining techniques do not create new data but active use of data
and process mining techniques increases the risk of data misuse

» Organizations should continuously balance the benefits of creating and
using event data against potential privacy and security problems.

"Wang, Tao et al. (2018). Privacy Preservation in Big Data From the Communication
Perspective—A Survey. IEEE Communications Surveys & Tutorials.

2it seeks at providing rigorous and statistical guarantees against what an adversary can infer
and learn over an individual's data. It consists in perturbing the raw records of individuals
randomly.

3Kunaserkan Kokula Krishna Hari et al. Proceedings of the International Conference on
Systems, Science, Control, Communication, Engineering and Technology, ICSSCCET 2015.

4Latanya Sweeney. k-anonymity: A model for protecting privacy. International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems
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The representational bias determines the search space and potentially limits
the expressiveness of the discovered model.

» Inability to represent concurrency

» Inability to deal with loops

» Inability to represent silent actions

» Inability to represent duplicate actions

» Inability to represent non-free-choice behavior
» Inability to represent hierarchy

R. Champagnat, M. Trabelsi et al. Advanced Process Discovery: Inductive Miner, Fuzzy Miner, etc 5782
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The real log may contain:

Noise » Add eventsin atrace
» Loose events in a trace

Exceptional/infrequent behaviour

Completeness All the variants may not appear in the log, i.e. to discover a|b
we must discover cases containing (...,a, b,...) and (..., b,q, ...}, if
a,b,c,d, e are in sequence and in parallel with f, it requires 16
variants to be totally observed.
The assumption that event logs are directly-follows complete is
unrealistic for less structured processes and relatively small event
logs

Incomplete Case (or trace) may be incomplete (missing the beginning or the
end due to data extraction)
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Limitation of Process Discovery models:
» Generate models with non-living transitions
» Unable to replay the log

Inductive miner is a family of algorithms that discover a Process Tree model by
splitting Log recursively

Inductive miner techniques can deal with:
» infrequent behaviour
» completeness
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Characteristics:
» Discover "sound" model

» Ability to rediscover the original model
The property rediscoverability entails that a discovery algorithm is able to
discover a model that is language equivalent to the system that underlies
the given event log.

» Can deal with huge logs

Inductive mining is currently one of the leading process discovery approaches
due to its flexibility, formal guarantees and scalability.
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A Petri net N is a Workflow Net if:
© Object creation: 3p; € P: Vt e T, BPost(t,p;). it contains an input place
@ Object completion: 3p, € P: Vt e T, BPre(po, t) it contains and output place

@ Connectedness: adding transition t from p, to p;, then we have
N=(P, Tut,Fu{(po,t),(t,pi))} is strongly connected.
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A Workflow Net is sound iff:
» the net is safe (places cannot hold multiple tokens at the same time),

» proper completion: if the sink place is marked, all other places are empty.
Vs([/] = s) = (s = [0]). for each reachable marking from the input place
there exists a sequence of firing that leads to the final marking with [/] the
initial marking meaning only p; holds a token and [0] the final marking
meaning only p, holds a token;

» option to complete: it is always possible to reach the marking that marks
just the sink place. YM([i] = s as > [0]) = (s = [0]);

» Absence of dead parts.

R. Champagnat, M. Trabelsi et al. Advanced Process Discovery: Inductive Miner, Fuzzy Miner, etc 11/ 82



Introduction Soundness
Inductive Miner
i ite Fuzzy Miner
Universite Other Algorithms Induct
Conclusion Extension

La Rochelle

O

ot
O*Ii/

R. Champagnat, M. Trabelsi et al Advanced Process Discovery: Inductive Miner, Fuzzy Miner, etc 12/ 82



Introduction
Inductive Miner

La Rochelle Fuzzy Miner
Universite Other Algorithms
Conclusion

Block-Structured Workflow Nets is a hierarchical workflow net that can be
divided recursively into parts having single entry and exit points.
b

Qil/c\
o101 lﬁQ/
I

R. Champagnat, M. Trabelsi et al.

Advanced Process Discovery: Inductive Miner, Fuzzy Miner, etc 13/82



Introduction Soundness
Inductive Miner Process Tree
Fuzzy Miner
Other Algorithms
Conclusion

La Rochelle

Université

A process tree is a compact abstract representation of a block-structured
workflow net: a rooted tree in which leaves are labeled with activities and all
other nodes are labeled with operators.

A Process Tree is formally defined recursively by:

Let a finite alphabet X of activities and a set @ of operators. Symbole 7 ¢ ¥
denotes the silent activity.

Process Tree

» a, witha e X uT, is a Process Tree;

> Let M;...M, with n > O be Process Tree and let @ a Process Tree Operator,
then @ (M, ...,M,) is a Process Tree.
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» Operator x means the exclusive choice,

» — means the sequential execution,

» A means a parallel (interleaved) execution and
» (O astructured loop (with do and redo).

Example: - (a, O (= (A(x(b,c),d),e),f),x(g,h)) correspond to the
Block-Structured Workflow net given slide 13.

R. Champagnat, M. Trabelsi et al. Advanced Process Discovery: Inductive Miner, Fuzzy Miner, etc
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Extension

Any process tree can be convertedto  **
an equivalent WF-net (and BPMN
model, etc.) directly by:

Process Models

sitent
activity

normal
activity

sequential
compostion

exclusive

choice

paralle!

composition

redo
loop

81
T (o) T
L=
start end
) (@ a
@

start

end

3 @O0z
Ty = OO

S == @

] @O

Fig. 3.18 Mapping process trees onto WF-nets
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The basic Inductive Miner algorithm uses the Directly-Follows graph that

corresponds to the "directly follows" relation (>;) used by the a-algorithm.
It is formally defined by:

Let L be an event log. The Directly-Follows graph of L is
G(L) = (AL, =1, At ASN Y ith:
» AL ={aeo|oel]}isthe set of activities in L
» —={(a,b) e AxAl|a >, b} is the directly follows relation
> ASt = {a € A|3, e a = first(o)} is the set of start activities
» A9 = {a e A|3,.a = last(a) } is the set of end activities

R. Champagnat, M. Trabelsi et al. Advanced Process Discovery: Inductive Miner, Fuzzy Miner, etc 17/ 82
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From L = [(a,b,c,d)3,(a,c,b,d)? (a,e,d)]

R. Champagnat, M. Trabelsi et al Advanced Process Discovery: Inductive Miner, Fuzzy Miner, etc 18/82



Introduction
Inductive Miner

La Rochelle

Uni L= Fuzzy Miner llows Graph
niversite Other Algorithms
Conclusion

The Eventually-Follows graph corresponds to the relation a is eventually

followed by b if there is a trace in the event log in which a happens somewhere
before b.

Let L be an event log. The Eventually-Follows graph of L is
Ge(L) = (AL, =), Aot Ay wiith:
» AL ={aeo|oel]}is the set of activities in L
» ~/is the eventually follows relation.
if there is a non-empty path from ato b in G(L), i.e., there exists a sequence
of activities a;,ay, ...,ar suchthat k> 2, a; =aand a, = b and q; =, a;,;.
a | bif there is no path from a to b in the directly-follows graph.

> ASO = {g e A|3,q a = first(o)} is the set of start activities
> Afnd ={aeA|3,qa=last(o)} is the set of end activities
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From L = [(a,b,c,d)3,(a,c,b,d)? (a,e,d)]
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Leemans, Sander & Fahland, Dirk & Aalst, Wil. (2013). Discovering
Block-Structured Process Models from Event Logs - A Constructive Approach.
Inductive Miner

© The Inductive Miner algorithm iteratively splits the initial event log into
smaller sublogs using cuts.

@ For any sublog L we can create a directly-follows graph G(L)

© Sublogs will be mined recursively until a sublog will contain just a single
activity

R. Champagnat, M. Trabelsi et al. Advanced Process Discovery: Inductive Miner, Fuzzy Miner, etc
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24 7 Advanced Process Discovery Techniques

We consider the following cuts:

» exclusive-choice

>
Seq uence Fig. 7.21 G is the directly-follows graph for Ly = [(a,b,c,d)?, (a,c,b,d)?, (a,e,d)]. The
event log is recursively cut into smaller sublogs using the directly-follows graphs of these sublogs
. Fig.7.22 The different

para el sublogs created when

learning process tree

01=—(a, x(A®, c),e),d)
for Ly = [(a, b, ¢, d)?,
(a,c,b,d)? (a,e,d)]

v

redo-loop

Corresponding to the four Process
Tree operators: x, -, A, O
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Let L be an event log with corresponding directly-follows graph

G(L) = (AL, AStart A,

Letn>1

A n-ary cut of G(L) is partition of A, into pairwise disjoint sets

A1,A2, ...,A,-, tA = Uiel,...,nAi and A,‘ ﬂAj =gfori ¢_/'.

Notation is (@,A1,Az,...,An) With@® € {—,x,A, O }.

For each type of operator —, x, A, ) sepcific conditions apply:

Exclusive-choice cut (no crossing edges) of G(L) is a cut (x,A1,A5,...,An)
such that V,Je[l’.,,’,,]vaeA,VbeAji ;tj = adw) b

Sequence cut (edges crossing one-way only) of G(L) is a cut (—=,A1,Az, ...,An)
such that V/,je[l,...,n]vaeA/vbeAji <Jj= (Cl l—)Z' bab H*Z' Cl)
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Parallel cut (all possible crossing edges) of G(L) is a cut (A,A1,Az, ...,An)
such that

> vie[l,...,n]Ai ﬂAitart +BNA; ﬂAfnd + @ and
> Vije[1,...nVaea Voeal #J = a1 b
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redo-loop cut (identify body and loopback parts; assumption: start/end
activities disjoint) of G(L) isa cut (O,A1,A5,...,An)
such that
»nx2
> Aitart UAfnd c Ay
{a e ATz, m)Fbena =y b} € AP
{a €Az, mTpeab =L a} c ATt
Vijer2,...n) Vaea Voeal #j = aw b
Vie2,...n1 Vbea, Jaeagra@ =1 b =V i pena@’ = b

v

v

v

v

v

14
Vie[2,....11 Vber, Fgeaenal =1 O = V grepsionb = @

R. Champagnat, M. Trabelsi et al. Advanced Process Discovery: Inductive Miner, Fuzzy Miner, etc 25/82



Introduction
Inductive Miner

llja Roche]'I:q Fuzzy Miner Dir Follows Graph
QeI Other Algorithms Inductive Miner
Conclusion Extension

Let us consider the following log: L = [(a,b,c),(a,c,b),(a,d,e),{a,d,e,f,d,e)]
We derive the following directly-follows graph:

R. Champagnat, M. Trabelsi et al. Advanced Process Discovery: Inductive Miner, Fuzzy Miner, etc 26/ 82



Introduction
Inductive Miner

Llja .Ro"-‘he."E. Fuzzy Miner Directly-Follo
I Other Algorithms Inductive Miner
Conclusion Extension

Sequence cut -

- /N

Ly Ly

4 3 with Ly = [{a),(a),{(a),{(a)] and

—>a > ¢ Lo =[(b,c),{c,b),(d,e),(d,ef de)]
i R

d%e—é

L,
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Exclusive-choice cut -
_ b a X
| / \
—>C L3 Ly
= with Lz = [(b,c),{(c,b)] and
Hdﬁe% L4=[(d7e>7<d7eaf>dae>]
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Parallel cut -

s 7N
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Redo-loop cut

AN

with Ls = [(d, e)]

The complete Process Tree is then:
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Silent activities are only introduced for base cases and empty traces.
> If the sublog s of the form L’ = [()", {a)' ] with ,1 > 1, then IM(L") = x(a, )
because a is sometimes skipped.
» If ais executed at least once in each trace in the sublog and sometimes
multiple times (e.g., L = [(0)9 Aa,a)?, (a,a,a)]), then IM(L") =0 (a, ).

» Inall other cases e.g., L' = [()3 A{a)?(a,a, a)], IM(L") =O (7,a) because a is
executed zero or more times in the traces of sublog L.
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Leemans, Sander & Fahland, Dirk & Aalst, Wil. (2014). Discovering
Block-Structured Process Models from Event Logs Containing Infrequent
Behaviour.

Deals with variants with low frequency.

Let us consider the log L = [(a,b,c,d)645 , (a,c,b,d)389 ({a,e,f, d)8 , (a,e,d)].
Variant (a, e, d) is infrequent.
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The corresponding Directly-Follows graph is given by:

1034 b

Where the numbers indicate frequencies, e.g., activity b was executed 1034
times and was directly followed by activity ¢ 645 times.
The basic idea is to:

» filter edge with low frequency (e — d)
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» filter activity with low frequency (e and d). The log is then
L'=[(a,b,c,d)** {a,c,b,d)**? {a,d)®,(a,d)]
» filter edge with low frequency from the Eventuall-Follows graph ()

The filtering can also be applied to log splitting (adapting the cut operators).
For instance (with ¥ = {a}, ¥, = {b}):
» Behaviour that violates the x operator is the presence of activities from
more than one subtree in a single trace. For instance, the trace
t1 =(a,a,a,a,b,a,a,a,a) contains activities from both ¥; and X,. ¥;
explains the most activities, is most frequent. All activities not from X are
considered infrequent and are discarded: (a,a,a,a,a,a,a,qa) € L.
In to, the split (a,a,a,a) € Ly, (b,b,b,b,b) € L, discards the least events.
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» Behaviour that violates the — operator is the presence of events out of
order according to the subtrees. For instance, in the trace
t> =(a,a,a,a,b,b,b,b,a,b), the last a occurs after a b, which violates the
—, Filtering infrequent behaviour is an optimization problem: the trace is to
be split in a least-events-removing way.
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Leemans, Sander & Fahland, Dirk & Aalst, Wil. (2014). Discovering
Block-Structured Process Models from Incomplete Event Logs.

Tackle the issue of missing behavior due to the incompleteness of the event log

The IMC algorithm uses so-called “probabilistic activity relations” based on
both the directly-follows graph and the eventually-follows graph. These are
used to select the “most likely cut” even if the requirements are not fully
satisfied
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» Apply Inductive Miner techniques on the directly-follows graph directly
without creating sublogs.

» Directly-follows graphs can be computed in a single pass over the event
log, and their computation can even be parallelized, for instance using
highly-scalable map-reduce techniques

» Pros: extremely scalable
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Week 36 Introduction

Week 37 Process discovery (a-Algorithm)

Week 38 Metrics and quality of discovered models
Week 39 Raw traces/ modelled traces (case study)
Week 40 Advanced process mining algorithms
Week 41 Advanced process mining algorithms
Week 42 Conformance checking

Week 46 Decision mining in processes

Week 47 Trace clustering

Week 48 Trace profile

Week 49 Case study

Week 50 Case study defense
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Gunther et al. (2007). Fuzzy Mining -
Adaptive Process Simplification
Based on Multi-perspective Metrics.

» Deal with unstructured processes
that generally generate
spaghetti-like model.

» Demo with disco = =
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» The fuzzy miner was developed to simplify the mined process model.

» The problem was that the resulting model tends to show all details without
providing an abstraction. Where in reality, activities and relations can be
clustered or removed depending on their role in the process.

Adaptative approach for process simplification inspired by the route map.

» works similarly to a GPS software. It tries to discover models depending to
user desires.

» |f the user zooms in, the model will include more details. \When the user

zooms out, the model is clustered and becomes fuzzier (which gives the
algorithm its name).
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34
Abstraction

insignificant roads 0
are not shown.

Aggregation Velg(!mveno s

parts of the city
are merged.

Fig. 2. Example of a road map.

Customization

Focuses on the
intended use and
level of detail.

Emphasis

Highways are highlighted
by size, contrast and color.

R. Champagnat, M. Trabelsi et al. Advanced Process Discovery: Inductive Miner, Fuzzy Miner, etc 44 /82



Introduction
Inductive Miner
Fuzzy Miner
Other Algorithms
Conclusion

Principle
Metric

La Rochelle

Université

Concepts:

Aggregation To limit the number of information items displayed, maps often
show coherent clusters of low-level detail information in an
aggregated manner.

Abstraction Lower-level information that is insignificant in the chosen context
is simply omitted from the visualization.

Emphasis More significant information is highlighted by visual means such as
color, contrast, saturation, and size.

Customization Maps are specialized in a defined local context, have a specific
level of detail, and a dedicated purpose
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Based on metrics:
Significance
» Measures the relative importance of each activity
» One example for measuring significance is by frequency, i.e.
events or precedence relations which are observed more
frequently are deemed more significant
Correlation

» Measures how closely related two events following one
another are.
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Criteria

Sketch of approach for process simplification:

» Highly significant behaviour is preserved, i.e. contained in the simplified
model.

> Less significant but highly correlated behaviour is aggregated, i.e. hidden
in clusters within the simplified model.

» Less significant and lowly correlated behaviour is abstracted from, i.e.
removed from the simplified model.
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Three Primary Types of Metrics
Unary Significance describes the relative importance of an event class

0)@5%)(;)}0) Eventclass | A | B [ C | D
@ 1lajcio) 1 o5 (o

» Unary Frequency Significance: The more often a certain
event class was observed in the log, the more significant it is.

» Unary Routing Significance: The higher the number and
significance of predecessors for a node (i.e., its incoming arcs)
differs from the number and significance of its successors (i.e.,
outgoing arcs), the more important that node is for routing in
the process.
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Binary Significance describes the relative importance of a precedence relation
between two event classes, i.e. an edge in the process model.

G)A@B»A )CID)  |Prec. Relation | A4 [B—+A|A=G|C~D [A-A
n Frequeny | 1 | 1|2 |21
e@ Significance | 0.5 [ 05 | 1 | 1 [05

» Binary Frequency Significance: The more often two event
classes are observed after one another, the more significant
their precedence relation.

» Binary Distance Significance: The more the significance of a
relation differs from its source and target nodes’ significances,
the less its distance significance value
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Binary correlation Measures the distance of events in a precedence relation,

i.e. how closely related two events following one another are (need
timestamp).

°§A$B§A§c)ﬁ) Prec. Relation| A=B[B—A|A—=C|C—D[A—A
r\704737} 47\‘6 9 @ Duration | 3 1 P 3 1

. Correlation (0.33| 1.0 | 0.5 |0.33| 1.0
@ )ajajcjo)

qUTET

» Proximity Correlation: Event classes that occur shortly after
one another are highly correlated.
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» Originator Correlation: The correlation between event classes
is determined from the names of the persons, who have
triggered two subsequent events. The more similar these
names, the higher correlated the respective event classes.

» Endpoint Correlation: More similar activity names of
subsequent events will be interpreted as higher correlation.

» Data Type Correlation: Event classes are highly correlated if
subsequent events share a large amount of data types.

» Data Value Correlation: Event classes are highly correlated if
subsequent events share a large amount of data values.
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Process Model

» All event classes found in the log are translated to activity nodes, whose
importance is expressed by unary significance.

» For every observed precedence relation between event classes, a
corresponding directed edge is added to the process model. This edge is
described by the binary significance and correlation of the ordering
relation it represents.

R. Champagnat, M. Trabelsi et al. Advanced Process Discovery: Inductive Miner, Fuzzy Miner, etc 52/82



Introduction
Inductive Miner
La Rochelle Fuzzy Miner
Other Algorithms

Conclusion

Universite Visualize Process Model

Evaluation Criteria

Three transformation methods are applied to simplify the model

Conflict Resolution Whenever two nodes in the initial process model are
connected by edges in both directions, they are defined to be in
conflict.

Possible situations:

» Length-2-loop: after executing A and B in sequence, one may
return to A and start over. The conflicting ordering relations
between these activities are explicitly allowed in the original
process, and thus need to be preserved.

» Exception: The process orders A — B in sequence, however,
during real-life execution the exceptional case of B - A also
occurs. The “weaker” relation needs to be discarded to focus
on the main behaviour.
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» Concurrency: A and B can be executed in any order. Both
conflicting ordering relations need to be removed from the
process model.

Edge Filtering isolates the most important behaviour by removing the globally
least significant edges, leaving only highly significant behavior. It
uses a weighted sum of its significance and correlation.
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Fig. 6. Example of a process model before (left) and after (right) edge filtering.

Node Aggregation and Abstraction Preserves highly correlated groups of
less-significant nodes as aggregated clusters, while removing

isolated, less-significant nodes.
» First phase: every node whose unary significance is below a

threshold will either be aggregated or abstracted from.
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» Second phase: merge the clusters

primitive node =
/ IVFI3laxcERsPo JAC
complete
0435

cluster node precedence
/ relation

J5K3laxecRsPo |-
complete
0621
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Gunther, CW 2009, "Process mining in flexible
environments'https://doi.org/10.6100/IR644335

Detail

Its purpose is to answer the question: “How important is the behavior explicitly
shown in the model, compared to behavior that has been aggregated or
abstracted from?"

Let F be a fuzzy model. Let N be the set of all primitive nodes in F , i.e., nodes
that are explicit, aggregated, or abstracted from. Let E ¢ N be the subset of all
explicit nodes in F. Further, let s - R§ be a function that assigns to each node in
F its unary significance. The detail dt of a fuzzy model F is defined as

ZeeES(e)
dt==———2 (1
ZneN S(n)
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Conformance
Measures the alignment between a fuzzy model and an event log.

The behavior recorded in each trace of the log is replayed in the fuzzy model.
Any event in the log that is not valid in the given fuzzy model given the
previous execution history, counts as a deviation.

Let L be an event log, and F be a fuzzy model. Let d be the number of
deviations, i.e., the number of events in L that cannot be explained by F. The
conformance C between F and L is defined as:

CM(L)-d+1
C= MO+
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Medeiros et al. (2004). Process Mining for Ubiquitous Mobile Systems: An
Overview and a Concrete Algorithm.

Deal with short-loops
Wen et al (2007). Mining process models with non-free-choice Constructs.

(MJrJr

Deal with non-free choice
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Weijters et al (2011). Flexible Heuristics Miner (FHM). Motivation
» Low-structured processes
» Noise

Take frequencies of events and sequences into account when constructing a
process model.

Based on;
» Causal Nets

» Dependency measures

A frequency-based metric is used to indicate how certain we are that there
is a truly dependency relation between two events a and b (consider direct
successor and length-two loops).
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Fig. 3.14 A C-net transformed into a WF-net with silent transitions: every “sound run” of the
WF-net corresponds to a valid sequence of the C-net C, shown in Fig. 3.13
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» Reminder : Direct succession : a; > a, if there is a trace such that a; is
immediately followed by a; in a log;

» From L = [(a,e)®,{(a,b,c,e)!° (a,c,b,e)!° (a,b,e),(a,c,e),
(a,d,e)° (a,d,d,e)?, (a,d,d,d,e)] count all the direct succession in L.

>Llla b ¢ d e
a |O 11 11 13 5
b O O 10 0 11
c |O 10 O O 1
d |0 0O O 4 13
e |O O O O O

R. Champagnat, M. Trabelsi et al. Advanced Process Discovery: Inductive Miner, Fuzzy Miner, etc 65/ 82



Introduction
Inductive Miner
F lle Fuzzy Miner
Universite Other Algorithms

Conclusion

«a-algorithm extensions

La Rochelle

Flexible Heuristic Miner

Direct succession Measure

Let L be an event logover Aand a, b A . a>L blis the number of times a is
directly followed by binL, i.e,

la> b= Y L(o)x[{1<i<|o||o(i) =ana(i+1)=b}]

oel

Dependency Value
la = b

is the value of the dependency relation between a and b:

la>.b|-|b>,a] i
ifa+b
|C1 Lb|: |C|’>Lb|+|b>LC’|+1

a>.q e
la> al+1 ifa=b
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Miner

=] a b c d e
0 _ 11-0 _ 11-0 13-0 5-0 _

a O+1 — 0 11+0+1 — 0.92 TI+0+1 ~ =0.92 13+0+1 — =0.93 5+0+1 ~ 0.83
o-1 _ 0 _ 10-10 _ 0-0 _ 11-0 _

b O+11+1 — 0.92 O+l — 0 10+10+1 — 0 0+0+1 — 0 11+0+1 — 0.92
o-1 _ 10-10 _ 0 _ 0-0 _ 11-0 _

¢ O+11+1 — 0.92 10+10+1 — 0 O+l — 0 0+0+1 — 0 11+0+1 — 0.92
0-13 _ 0-0 _ _0-0_ 4 _ 13-0  _

d O+13+1 — 0.93 0+0+1 — 0 0+0+1 ~ =0 4+1 ~ 0.80 13+0+1 — 0.93
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» Dependency graph using a threshold of 2 for |>, | and 0.7 for |=| : each arc

shows the |>; | value and the |= | value between brackets. For example,
la> d|=13and|a =, d|=0.93

5(0.83)

11(0.92)  11(0.92)
11(0.92)
13(0.93)

4(0.80)
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» C-net derived from L. Each node shows the frequency of the
corresponding activity. Every arc has a frequency showing how often both
activities agreed on a common binding. The frequencies of input and
output bindings are also depicted, e.g., 20 of the 40 occurrences of a were
followed by the concurrent execution of b and ¢
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Medeiros et al. (2007). Genetic process mining: An experimental evaluation.
Data Mining and Knowledge Discovery.
Motivation:

» non-free choice (synchronization and choice)
> invisible tasks

» duplicate tasks

» Noise

Try to mimic the process of evolution. Such approaches are not deterministic
and depend on randomization to find new alternatives.
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Principle:
> Initialization
A first generation of individuals is created. An individual is a process model.
Using the activity hames appearing in the log, process models are created
randomly.

» Selection
The fitness of each individual is computed. A fitness function determines
the quality of the individual in relation to the log

» Reproduction
Populations evolve by selecting the fittest individuals and generating new
individuals using genetic operators such as crossover (combining parts of
two or more individuals) and mutation (random modification of an
individual)
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» Termination
The best individuals move on to the next round (elitism) or are used to
produce new offspring
The evolution process terminates when a satisfactory solution is found, i.e.,
a model having at least the desired fitness

Difficulties:

» Define the internal representation (the search space of a genetic algorithm)
by a causal matrix (expresses the task dependencies)
A Causal Matrix is a tuple CM = (A, C,1,0), where:
» Alis a finite set of activities
C c A x A is the causality relation
I:A - P(P(A)) is the input condition function
O:A - P(P(A)) is the output condition function
Such that
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Genetic Miner
xo Step Approach

» C={(a,a2) e Ax Al eUl(az)}
» C={(a,a2) e AxAla e UO(a1)}
> CU{(ao,a;) e AxAlaoe® =0 neaf =0} is a strongly connected graph

» Define the fitness measure

» Genetic operators
They should ensure that all points in the search space defined by the
internal representation may be reached when the genetic algorithm runs
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Aalst et al. (2010). Process mining: A two-step approach to balance between
underfitting and overfitting. Software and Systems Modeling. 9. 87-111.

Motivation: enable the user to control the balance between “overfitting” and
‘underfitting” and discover concurrency

Approach

@ Construct a transition system based on prefix, on postfix or on prefix and on
postfix

1 |ACDGGHFA
@ Log Ly Fig. 2. Prefix Automaton
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@ A Petri Net is synthesized from the transition system resulting (state-based
regions or language-based regions)

Used to mine the objections handled by the Municipality of Heusden.
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Rozinat el al. (2007). Towards an evaluation framework for process mining
algorithms. Reactivity of Solids.

With the following log: L =
[(A,B,D,E,I),(A,C,D,G,H,F,I),(A,C,G,D,H,F,I),{(A,C,H,D,F,I),(A,C,D,H,F,I)]
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(d) Duplicates
Genetic Miner

Fig. 1. Process models that were discovered by different process discovery algorithms
based on the same log
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» Use metrics to evaluate the four quality criteria
» For unstructured processes we have:

Lookup Exploratory
F P G F P G
Alpha ++ 0.00 0.00 0.00 0.00 0.00 0.00
Heuristic Miner 0.00 0.00 0.00 0.00 0.00 0.00
Inductive Miner 09886 0.2391 0.9994 0.9315 0.1437 0.9992
Genetic Miner 0.9992 0.1800 0.9938 0.6232 0.8053 0.9963

Language Based Regions  0.6163 0.3825 0.9793 0.7835 0.1919  0.9622
State Based Regions 0.8995 0.4233 0.9957 0.9560 0.2942 0.9918
Fuzzy Miner - - - - - -
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Conclusion
Techniques Visualisation
Alpha ++ Statistics Petri nets
Heuristic Miner Statistics/heuristics Dependency graphs — Causal nets — Petri nets
Inductive Miner Divide & conquer Directly follows graphs — Process trees — Petri nets
Genetic Miner Genetic algorithm Causal nets — Petri nets
Language Based Regions  Linear programming Languages process — Petri nets
State Based Regions Traces abstraction Transition systems — Petri nets
Fuzzy Miner Statistics/heuristics Fuzzy models
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Logs Model

Noise Incompletness Reallog | Soundness Choice and

parallelism
Alpha ++ X X X X X
Heuristic Miner v X v X X
Inductive Miner v v v v v
Genetic Miner v v v v X
Language Based Regions X X X v X
State Based Regions X X X v X
Fuzzy Miner v v v X X
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Week 36
Week 37
Week 38
Week 39
Week 40
Week 41
Week 42
Week 46
Week 47
Week 48
Week 49
Week 50

Introduction

Model-Based Process Analysis
Event Data Analysis
Conformance Checking
Business Process Analysis
Specific cases

Introduction

Process discovery (a-Algorithm)

Metrics and quality of discovered models
Raw traces/ modelled traces (case study)
Advanced process mining algorithms
Advanced process mining algorithms
Conformance checking

Decision mining in processes

Trace clustering

Trace profile

Case study

Case study defense
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Model-Based Process Analysis @ Mining Decision Points
Event Data Analysis @ Mining Bottlenecks

@ Event Log Analysis @ Organizational Mining
@ PM4PY Statistics @ Decision
Conformance Checking @ Specific cases

@ Matrice Footprint

@ Token-Based Replay

@ Alignment

@ Summary

§ Introduction e Business Process Analysis
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Business Process Analysis
Specific cases

The classical approach for business process analysis is make up of 5 steps:
Obtain an event log
Create or discover a process model

Connect events, this step is essential for projecting information onto
models and to add perspectives

Extend the model (add time perspective, connect activities to group of
resources, etc.)

Return integrated model.
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Conformance Checking
Business Process Analysis
Specific cases

The technique, which mostly relies on conformance checking, enables:

Check the conformance to specification (audit)

> Audits are carried out to determine the accuracy and dependability of data
concerning businesses and the processes that are connected to them.

» Check constraints that management, governments, and other
stakeholders have established.

Determine the trace equivalence.

» Two transition systems are equivalent if their sets of execution sequences
are identical.

» |t uses bisimulation equivalence, or bisimilarity for short. It is a more refined
notion taking into account the moment of choice.

R. Champagnat, M. Trabelsi, A. Hamdi et al. Conformance Checking 7783
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» Verification: it concerns

» Soundness, completeness, deadlocks..
» Temporal logic

» Performance: three typical dimensions of performance are identified. For
each of them different Key Performance Indicators (KPIs) can be defined:
> Time
> Lead time (also referred to as flow time) is the total time from the creation of the
case to the completion of the case
> Service time is the time actually worked on a case
> Waiting time is the time a case is waiting for a resource to become available
> Synchronization time is the time an activity is not yet fully enabled and waiting
for an external trigger or another parallel branch
> Cost
> Quality (focuses on the “product” or “service" delivered to the customer)

R. Champagnat, M. Trabelsi, A. Hamdi et al. Conformance Checking 9/83
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e Event Data Analysis
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Conformance Checking PM4PY Statistics
Business Process Analysis
Specific cases

Up to now we focus on case, activity and timestamp. Let us focus on other
event attribues (resource, costs, ...

» Important to attach the context to the event (or use trace)
» Use Dotted Chart to get an overview of all events

» Use Visual Inductive Miner to get an overview of business process
execution

R. Champagnat, M. Trabelsi, A. Hamdi et al. Conformance Checking 11/83
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color of dot indieates|
activity executed

numerous
configuration options -
to explore event data

daily

cach ine patiems

corresponds
to a case

real cases XOR-spit

Fig. 11.6 Visual inductive miner replaying the event log on the discovered process model
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PM4PY provides a set of statistics:

>

vvyVvVvyypy

Throughput Time (list of all the durations of the cases)
Case Arrival/Dispersion Ratio

Cycle Time and Waiting Times

Sojourn Time

Concurrent Activities

Events Distributions

Detection of Batches (\We say that an activity is executed in batches by a
given resource when the resource executes several times the same
activity in a short period of time.)

Rework (activities, cases): identify the activities which have been repeated
during the same process execution.
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e Conformance Checking
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» Compare event log to the discovered process models (sometimes to the
blueprint process model.

> Related to Fitness measures (the proportion of behavior in the event log
possible according to the model.

» Investigate where the actual process execution deviates from the event
logs or the plan.

» Most common use case in practice: identify violation patterns.
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There are number of violation patterns a conformance analysis can reveal

invite claim receive claim
review review

R. Champagnat, M. Trabelsi, A. Hamdi et al. Conformance Checking 16/83
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invite claim

receive claim Invite claim
L review review

missing / skipped activities  wrong activity order

invite claim receive claim | T
n‘& el g

unexpected activities
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There are many scenarios, in which a conformance assessment is important:

» Detecting problems and quality improvement potential in the process
(see Quality metrics course).

» Obtaining feedback on how well the process is aligned with expectations
/ the intended process.

» Complying with laws and regulations
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Table 8.4 Differences @ b c d g f ¢ h
between the footprints of L,y
and Nj. The event log and the ¢ —>:#
model “disagree” on 12 of the 5 |:> —#
64 cells of the footprint & > —:#
matrix ' '
d <«# i< | —:#
e «—:# < #
g —: #
8
h
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» Conformance analysis based on footprints is only meaningful if the log is
complete with respect to the “directly follows" relation

» Does not take into account the number of cases

» Can also be used for log-to-log comparison (detect changes/deviations in
the process) and model-to-model comparison (model similarity)
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problem
430 tokens remain in place p7,
because ¢ did not happen while
the model expected c to happen

problem
566 tokens were missing in
place p3 during replay,
because e happened

problem

10 tokens were missing in place p7 during
replay, because ¢ happened while this
was not possible according to the model

start

while this was not possible
according to the model

examine
casually

register

problem
146 tokens were missing in
place p2 during replay, because
d happened while this was not
possible according to the model

Matrice orint
Token-Based Replay

gnment

Summary

reject nd
request

problem
607 tokens remain in place p5,
because h did not happen while
the model expected h to happen

461 of the 1391
cases did not
reach place end

Fig. 8.7 Diagnostic information showing the deviations (fitness(Lyuu, N3) = 0.8797)
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A. Hamdi et al.
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In J.E. Cook and A.L. Wolf. Software oo & Cockenah et

Process Validation: Quantitatively SRS AR
Measuring the Correspondence of a — 1 ! /B/ // ! xc
Process to a Model. ACM Transactions o

on Software Engineering and ] o
Methodology (TOSEM), 8:147-176, e (a]8]0 D(a oo e e [e s o][e] o [
April 1999, Cook and Wolf aims to "

measures the level of e (4T 0 (A B,E EB’

correspondence between a process
execution and a process model.

Fig. 3. Examy model event streams (a), with execution stream transformed
for the SSDmtn b ndth Nst: (¢) calculations.
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>
>
>
>
>

How many traces are allowed according to this model?
< rc,ccce,icr, rci, rer, de, pa, sal >

< rc,ccc,reiyicr, rer, de, pa, sal >

< rc,ccc,icr, rei, rer, de, pr, srl >

< rc,ccce,rei,icr,rer, de, pr,srl > ..

‘maid woou wiep
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> We can detect violation patterns by comparing a considered trace from
the event log with the closest trace from the model

» < rc,ccc,icr,rci,rer,dc, pa,sal >

eventlog trace | rc | ccc | icr rci rcr dc pa | sal

model trace | rc | ccc | icr rci rcr | dc pa | sal
1
R e ki
O el e 4 e s 8 &
1 2 s s 6
3 5
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» < rc,ccce,icr,rci,de, rer, pa >

eventlogtrace | rc | ccc | icr | rci X dc | rer | pa X
model trace | rc | ccc | icr | rci | rer | dc X pa | sal

(

receive update send update
(8 <_L Fequest (sun)
). (S

§
i e, siece |-od “TLPRG™
@ B e 4 s 8 «
1 2 uzi | e 6 o i—»l e
3 5
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Matrice Footprint
Token-Based Repl:

Alignment

Ssummary

eventlogtrace | rc | ccc | icr | rci

X

dc pa

model trace | rc | ccc | icr | rci

rcer

dc sal

pa

L

The decision on the claim (dc) was
taken before the claim was received
(rcr). The activities have been
executed in the wrong order.

The approval letter was
not sent as expected. The
activity was skipped.

recelve update send update
o) request (sur)

review daim
internally (re)

oo wien,

checkdaim
completeness
ficed

receive dlaim (1)

eview (rer)

R. Champagnat, M. Trabelsi, A. Hamdi et al Conformance Checking

send approval
letter (sal)
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letter (st

approvaletter
)

prepare
rejection letter
on)

decide on dlaim
Coverage (4e)
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Imagine we check a log with 1000 traces ...

send update

receive update
() request (sur)

review claim

Footprint
Repl

oken-B
Alignment

Summary

send approval

prepare

redwooul wiep

internally (rci

claim
complete

O j check claim
(cc)

invite claim
review (icr)

The claim was not checked
for completeness (ccc) in
152 cases (~15% of all
cases).

R. Champagnat, M. Trabelsi, A. Hamdi et al Conformance Checking

receive claim

review (rcr)

There was a decision
made on the claim (dc)

without having received
the claim review (rcr) in
234 cases (~23% of all
cases).

approval letter
(pa)

letter (sal)

decide on dlaim
coverage (dc)

send rejection

Tetter (st

prepare
rejection letter
or)

The approval letter was
not sent to the customer
in 52 cases (~5% of all
cases).
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> Let X denote the set of activities. |X| is the number of activities.

» YT is the set of all non-empty finite sequences of activities from . T ¢ ¥+
is a trace over ¥. |T| denotes the length of trace T

» The set of all n-length sequences over the alphabet ¥ is denoted by ¥". A
trace of length nis denotedas T"ie., T" € ¥, and |T"| = n.

» The ordered sequence of activities in 7" is denoted as T(1)T(2)T(3)...T(n)
where T (k) represents the k" activity in the trace

> 771 denotes the n — 1 length prefix of 7. In other words T = T"~1T(n)
» Anevent log, £, corresponds to a multi-set (or bag) of traces from £+,

R. Champagnat, M. Trabelsi, A. Hamdi et al. Conformance Checking 28/83
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Bose et al. Trace Alignment in Process Mining: Opportunities for Process
Diagnostics.

Trace alignment

Trace alignment over a set of traces T = {73, T, ..., Tp} is defined as a mapping
of the set of traces in T to another set of traces T = {Ty, T», ..., Tn} Where each
T e(zu{-})"forl<i<nand

> [Thl=[To| = ... = [Tal =m,

» T; by removing all “—" gap symbols is equal to T;,

> Bk, 1<k <msuchthat Vicicp, Ti(R) = —

For instance, with ¥ = {a, b, c,d,e} we can have T; = (a, —,d, b)

R. Champagnat, M. Trabelsi, A. Hamdi et al. Conformance Checking 29/83
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Alignme

Aligning a pair of traces is referred to as pair-wise trace alignment.
Let us consider the example of aligning the two traces T; = (a, b, ¢, a,c) and
T> ={(a,c,qa,c,a,d). We have three possible alignments:

T, a b ¢ ac — - T, a b ¢ a ¢ -
. a — ¢c a ¢ a d T a ¢ a ¢ a d

L a b cac - - - - =
» - - - — — a ¢ a ¢ a d

R. Champagnat, M. Trabelsi, A. Hamdi et al. Conformance Checking
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Alignment between a pair of traces, T; and T, can be considered as a
transformation of the trace T, to T» or vice versa through a set of editing
operations applied to one of the traces iteratively. Assuming that T; is written
over T, in the alignment the following edit operations are defined for any
columnj in the alignment:

» the activity pair (a,b),a,b € ¥, denotes a substitution of activity a in T; with
activity b in T,

> the activity pair (a, —) denotes the deletion of activity a in T3, and
» the activity pair (—, b) denotes the insertion of activity b in T;.

R. Champagnat, M. Trabelsi, A. Hamdi et al. Conformance Checking 31/83
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A. Adriansyah. Aligning Observed and Modeled Behavior. Phd thesis,
Eindhoven University of Technology, April 2014.

» Find the closest model trace in the model behavior for a given log trace

» Define an alignment between logs and a process model as a pairwise
comparison between executed activities in the logs and the activities
allowed by the model.

» Given a trace and a Petri net, if the trace perfectly fits the net each activity
in the trace can be mimicked by firing a transition in the net. Furthermore,
at the end of the trace the final state should have been reached.
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Log Trace gggb

Alignment

Process Model
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Token-Based Repl

Alignment

Summary
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Log Moves Deviation
. +adalb>
Alignment
P
Model Moves T
Deviation
Process Model
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» Synchronous Move : a step in which the event in the trace and the task in
the execution sequence of the model correspond to each other.

» Model Move : when a task and thus an activity should have been executed
according to the model, but there is no related event in the trace.

» Log Move : when an event in the trace indicates that an activity has been

executed, even though it should not have been executed according to the
model.
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Alignment

Summary

Log Trace ad

Alignment 1

Process Model
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A move is a pair (x, (y,t)) where the first element refers to the log and the
second element refers to the model.

For example,

N
LI

cancel

deliver

add items edit order

Figure 3.4: An online transaction for an electronic bookstore in Petri net.

R. Champagnat, M. Trabelsi, A. Hamdi et al.
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| add items | add items | cancel
add items | add items | cancel
th ta tg

A=

Figure 3.5: An alignment between o1 = (add items, add items, cancel) and the model in Figure 3.4.

| add items | cancel | finalize | > | finalize | pay | > | deliver |
Y2 =| add items finalize | edit order | finalize | pay deliver
t > t3 ty ts ts | ts | ta

Figure 3.6: An alignment between o3 = (add items, cancel, finalize, finalize, pay, deliver) and the model in
Figure 3.4.

» (additems, (additems, t;)) means that both log and model make an “additems move” and
the move in the model is caused by the occurrence of transition t;.

> (>, (editorder,t4)) means that the occurrence of transition t; with label editorder is not
mimicked by a corresponding move of the log.

> (cancel,>) means that the log makes an “cancel move" not followed by the model.
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(x, (v, 1)) is a legal move if one of the following four cases holds:
» x =y andyis the visible label of transition t (synchronous move),
> x => andy is the visible label of transition t (visible model move),
» x =>,y = 7 and transition t is silent (invisible model move), or
> x #£> and (y,t) => (log move).

Other moves such as (>, >) and (x, (v, t)) with x # y are illegal moves.
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Alignment
Let A C A be a set of activities. Let 0 € A* be a trace over A and let

N = (P,T,F,a,m;,ms) be a Petri net over A. An alignment v € (A> x T>)*
between o and N is a legal movement sequence such that:

> m1(7),4 = 0. i.e. its sequence of movements in the trace (ignoring >>) yields
the trace, and

> m; M my, i.e. its sequence of movements in the model (ignoring >)

yields a complete firing sequence of N.
I~ is the set of all alignments between a trace o and a Petri net N.

Note that alignments require termination of both trace and process model.
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We are interested in alignments with the least total likelihood cost according to
the assigned likelihood cost function. Such an alignment is called an optimal
alignment.

Standard likelihood cost function

Let A C Abe aset of activities. Let N = (P, T, F, o, m;, m¢) be a Petri net over A.
The standard likelihood cost function lc : A> x T> — R is the function that
maps all movements to real values, such that for all (x,y) € A> x T~
> lc((x,y)) =Oifeitherxe A,y e T,andx = a(y),orx =>,y € T,and
aly) =T,
> lc((x,y)) = +ooifeitherx e Ay e T, and x # a(y). or x =y =>, and
» lc((x,y)) = 1otherwise.
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> Assign zero cost to all synchronous moves of activities and transitions with
the same label, as well as to all moves on model of invisible transitions.

» Assign cost 1 to all moves on log/moves on model of normal (not
invisible) transitions.

> +oo to all synchronous moves whose transitions have different labels
than their activities.
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» The alignment technique aims to find the optimal alignment with the
lower cost.

> |t affects a standard positive cost for any type of move (ie. > symbols). in
case of multiple alignments,

> the Fitness metric is calculated on each alignment and the optimal one
with the best Fithess will be considered:

()
( Worst(t))

where, § is the cost function, XM (t) is the worst case where there are no
synchronous moves between the trace t and the process model M and
opt(t) are each cost obtained on each optimal alignment.
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Trace
<a,b,c,d,e,g>

Move log cost =6

Trace |a |b |c |d |>]e |>> g Fitness = 1- (4/(6+6))
Modeéle | a b [>> |d c |>|f g =0,67
Trace a |> |b |c d |e |>>|g
» Modele 12 1c b |>> |d |>|f |e | Cost=4 | | Fitness = 0,67
=» Trace |a [>> |b [c |d |e Fitness = 1- (2/(6+6))
Modéle | a c b [>> |d |e =0,83
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» An oracle function maps each trace in the log to a set of alignments
relating traces to paths in the model.

» For any observed behavior a suitably chosen path through the model is
returned.

» An oracle function may use a likelihood cost function to assign probabilities
of alignments (may also need to look at the value of these attributes).

» The higher the probability of an alignment of a trace, the more likely the
alignment is the “best” representation of the trace.

» An oracle function gives the probabilities of all possible alignments
between a given trace and Petri net.
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tprint
d Repla

Alignment

Ssummary

Process Model

a|lblec|d|e|> a|>
h] Euent kog =alalalalala] Tlala
Trace |Frequency Figure 6.3: Left: An optimal alignment between o = (a,b,c,d, ¢) and the model of Figure 6.2, Right: An
abcdef 56 optimal alignment between o, = (a) indl.h:san\z. ‘model. .
abe | 40 Both optimal alignments
ah 24 . .
show exactly one deviation.
7y is much shorter than 4.
o At el setion, ight v iop ot B Intuitively, the quality of

Table 6.1: All optimal alignments between all traces and net N in Figure 6.2 using the standard likelihood
cost function.

o

o Label

(a,b,c,d,e, f)

(1,0), .50, (a, 0, (G, D, iy @), G, 1) |

(a,b,€)

{(a,t1), (b, t3), >, ta), (>, t5), (e, t6), >, t7)) 2

((a,11), (b,3), (>, 85), (>, 24), (e, 86), (>4 %0)) | 73

((a,t1), (b, t3), (> ta), C>, t5), (e, t6), >, ts) V4

((a,t1), (b, 23), >, %5), >, 14), (e,26), >, t8)) | w5

(a,81), C>, t9), (b, ), (¢,>) Y6

(a,21), (8,3, (,>), C>9)) | 7

(a,£1), (6,>), C>,t0), (&,>)) | 8

(a,h)

(e, t1), (h,to)) | 0
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Therefore, when comparing two alignments computed from two different
traces and the same Petri net, we also take into account the length of the
traces.

Alignment Quality

Let A C A be a set of activities. Let 0 € A* be a trace over A and let

N = (P, T,F,a,m;,m¢) be a sound Petri net over A. Let [c : (A> x T>) - Rbea
likelihood cost function for movements. The quality of alignment v € I, y with
respect to likelihood function [c is:

| Tpyele(y))
lim(m (7). N, [€)

aql(~,N,lc) =1 2)

where lim is the likelihood cost limit between o and N with respect to lc.
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The goal of conformance checking is to underline similarities and differences
between a modelled behavior (process models) and an observed behaviour
(event logs).

> Attention to the size of event log when applying conformance checking
» Other Applications of Conformance Checking:

» Repairing Models

» Evaluating Process Discovery Algorithms

» Connecting Event Log and Process Model
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Alignments in pm4py

Like token-based-replay, computing alignments in pm4py is rather straightforward:

pn, im, fm = pmdpy.discover_petri_net_inductive(df)
pmdpy.conformance_diagnostics_alignments(df_preblems, pn, im, fm)

aligning log, completed variants :: o%| | e/6 [@8:00<?, ?it/s]
[{'alignment': [('>>', 'register request'),

('>>', None),
('examine thoroughly’, 'examine thoroughly’),
('check ticket', 'check ticket'),
('decide’, 'decide'),
('>>', None),
('reject request’, 'reject request')],

'cost': 10002,

'visited states': 7,

'queued_states': 22,

'traversed_arcs': 22,

'lp_solved’: 1,

‘fitness': ©.8883888888888888,

'bwc': 90002},
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Like token-based-replay, alignments can also be used to quantify fitness"

pmdpy.fitness alignments(df_problems, pn, im, fm)

aligning log, completed variants ::  @%]| | e/6 [@@:80<?, ?it/s]
{'percFitTraces': 16.666666666666668,
"averageFitness': ©.8446623093681916,
'percentage_of fitting_traces': 16.666666666666668,
'average_trace_fitness': ©.8446623093681916,
"log_fitness': ©.843731855042718}

R. Champagnat, M. Trabelsi, A. Hamdi et al.

Conformance Checking 50/ 83



Introduction

Model-Based Process Analysis Mining Decision Point:
Event Data Analysis Mining Bottlenecks

Conformance Checking C 1al Mining

Business Process Analysis

Specific cases

La Rochelle

Université

e Business Process Analysis
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@ What is the most common process behavior that is executed?
@ Where do process instances deviate and what do they have in common?
© What are the contexts in which an activity is executed?

© What are the process instances that exactly or approximately capture a
desired behavior?

© Are there particular patterns (e.g., milestones, concurrent activities, etc.) in
my process?
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Decision points are OR-split (book flight or book hotel) or XOR-split (accept the

claim or reject the claim) in the log.
prepare send
4>{ approval approval
letter (pa) letter (sal)

Decide on
claim 0

(ccc) coverage (dc)

) Check claim
Receive
. completeness
claim (rc)

prepare send
rejection rejection - ,‘
letter (pr) letter (srl)
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ICheck| ClaimiD | EmplID | Complete | CheckDate CheckTime
1239 empl82 yes 06.04.2020 823
1234 empl86 yes 06.04.2020 823
1236 empl84 no 06.04.2020 8:28
1238 emp120 yes 06.04.2020 8:29
1235 empl82 yes 06.04.2020 829
1241 empl84 yes 14.04.2020 823
1240 emp120 no 14.04.2020 8:23
1237 empl82 yes 14.04.2020 8:28
1244 empl86 yes 14.04.2020 8:29
1242 empl84 yes 14.04.2020 8:32
1245 empl20 yes 14.04.2020 8:35
1243 empl82 yes 14.04.2020 8:40

%

Receive Check claim Decide on
i () completeness claim
(cce) coverage (dc)

Mining Decision Points
Mining Bottlenecks

ational Mining

prepare send
approval approval
letter (pa) letter (sal)
—
prepare send
rejection rejection
letter (pr) letter (srl)

R. Champagnat, M. Trabelsi, A. Hamdi et al Conformance Checking
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Decision mining aims to find rules explaining choices in terms of the
characteristics of the case

» Classification techniques can be used to find such rules

» Decision Trees

> Support Vector Machines G
> Neural Networks becision point /

> . -
o— »
,

» Let us consider a simple approach based on decision
trees

> Decision trees are intuitive and easy to explain

» Decision trees do not require normalization

> Decision trees can also deal with missing
values

R. Champagnat, M. Trabelsi, A. Hamdi et al. Conformance Checking 55783




Introduction

Model-Based Process Analysis
Event Data Analysis
Conformance Checking
Business Process Analysis
Specific cases

La Rochelle

Université

Definition

Decision Tree is a supervised learning
technique aiming at the classification of
instances based on predictor variables.

> Response variable (dependent variable)
> Predictor variables (independent variables)

Goal

Partitioning instances in increasingly smaller
groups

R. Champagnat, M. Trabelsi, A. Hamdi et al. Conformance Checking
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» Many trees are possible:
@ The treeis small and simple
@ The leaves are homogeneous in terms of the target feature

e2 @0

-y

2200

Does the person wear glasses?

Does the person wear glasses?

e [.:. 0

®. Q) Yes No
21| & 6 6
Brian Is it a man? Brian

Do they have long

2200

No

Is ita man?

D
D

fes No

T [a @} 6 @]
e N Does the person wear glasses?

& [ 6 o ] ) @ - -

John

Do they have long hair?
.
—
Do they have long hair?

Aphra

=)
6|

Q.
o. || e | & 2
& &)@ : :
Aphra Aoife John Aoife Brian John Aphra Aoife
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Decision trees aim to explain the target feature (class) in terms of descriptive

features
features
f, f, fs fon class
i Small
o |k Large
e is Medium
©
@ Small
c
- Small
i Medium
Descriptive features Target feature
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» A Decision tree consists of three types of nodes
@ Root node
@ Branch node
© Leaf node

» Tree generator determines

@ Which variable to split at a node and what will
be the value of the split?
@ Decision to stop (make a terminal note) or split ‘
again has to be made
© Assign terminal nodes to a label I oot node

Q Branch node

(] Leaf node
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Feel Temp. Humidity Wind Play Golf
1 sun warm  high false no
2 sun warm  high true no
3  cloudy warm high false yes -
4 rain good  high false  yes Descision Tree : steps
5 rain cool  normal  false yes @ calculate the entropy of the
6 rain cool normal true no whole dataset
7 cloudy cool normal true yes
8  sun good  high false no Q _calc_:glate the gntropy of each
9 sun cool  normal false  vyes individual attribute
10 rain good  normal false  yes @ calculate the information gain
11 sun good  normal true yes
12 cloudy good high true yes
13 cloudy warm normal false  yes
14 rain good  high true no
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Feel Temp. Humidity Wind Play Golf

1 sun warm  high false  no

2  sun warm  high true no

3  cloudy warm high false yes

4 rain good  high false yes Entropy

5 rain cool normal false  vyes

6 rain cool  normal  true no E=- Zf?zl p;i.logz(pi)
7 cloudy cool normal true yes : -

8 sun good  high false no while log, x = 13

9 sun cool normal false yes

10 rain good  normal false  vyes

11 sun good normal  true  vyes > E=—1logo 37 — 5 logo 33 = 0.94
12 cloudy good high true yes

13 cloudy warm normal false vyes

14 rain good  high true no
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Feel Temp. Humidity Wind Play Golf

1 sun warm  high false  no

2 sun warm  high true no .

3 cloudy warm  high false ves Attribute: Temperature

4 rain good  high false  yes values(temp.) = sun, cloudy, rain

5 rain cool normal false yes

6 ran cool normal true no

7 cloudy cool normal true yes |

8 sun good  high false no Warm_~"goad o0

9 sun cool normal false vyes

10 rain good  normal false  vyes [ } [ ) J { }
“P1-P2 Ps P1a Ps

11 sun good  normal true yes

12 cloudy good high true yes

13 cloudy warm normal false  vyes

14 rain good  high true no

R. Champagnat, M. Trabelsi, A. Hamdi et al. Conformance Checking 62/83



La Rochelle

Université

Model-Based Process Analysis

Introduction
Mining Decision Points

Event Data Analysis Min ecks

Conformance Checking
Business Process Analysis
Specific cases

Feel Temp. Humidity Wind Play Golf
1 sun warm  high false  no
2 sun warm  high true no
3 cloudy warm high false  vyes Attribute: Temperature
4 rain good  high false  vyes
5 rain cool  normal  false vyes > E=—%log, 5 —flog, 5 =1
6 rain cool normal true  no > E,=—%log, 2 — 2log, 2 = 0.918
7 cloudy cool normal true yes 3 s 1
8 sun good  high false no > E3 = —7logy 3 — 7log; 3 = 0.811
9 sun cool normal false  vyes E=#x1+£x0.918+ 4 x0.811 = 0.91
10 rain good  normal false  vyes
11 sun good  normal true yes Gl =0.94-0.91=0.03
12 cloudy good high true yes
13 cloudy warm normal false  vyes
14 rain good  high true no
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Feel Temp. Humidity Wind Play Golf
1 sun warm  high false  no
2 sun warm h!gh true no Attribute: Feel
3 cloudy warm high false vyes
4 rain good high false yes values(feel) = sun, cloudy, rain
5 rain cool normal false yes > Fi— —205.2 — 2oz, 2 = 0.97
6 rain cool  normal true  no ! i iz i Z ez 50 '
7  cloudy cool normal true  yes > Ep=—7log,; — zlog, 3 =0
8 sun good  high false no > F3=—2log, 2 — 2log, 2 =0.97
9 sun cool normal false vyes
10 rain good  normal false  yes E = £x0.971+ £ x0+5 x0.97 = 0.69
11 sun good  normal true yes . _ .
12 cloudy good high true  ves Gl=0.94-0.69=025
13 cloudy warm normal false  vyes
14 rain good  high true no
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Feel Temp. Humidity Wind Play Golf
1 sun warm  high false  no
2 sun warm  high true no - —
3  cloudy warm high false  ves Attribute: Humidity
4 rain good  high false  vyes values(feel) = high, normal
5 rain cool normal false yes
6 ran cool normal true no > £ = —% log, % - ; log, ; =
7 cloudy cool normal true yes 0.9852
8 sun good  high false no > £ = _g log; g_; log; % — 0.5916
9 sun cool normal false vyes > 7
10 rain good normal  false vyes E=1 x0.9852 + 3 x 0.5916 = 0.79
11 sun good  normal true yes Gl=0.94—0.79 = 015
12 cloudy good high true yes
13 cloudy warm normal false  vyes
14 rain good  high true no
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Feel Temp. Humidity Wind Play Golf
1 sun warm  high false  no
2 sun warm  high true no
3 cloudy warm high false vyes
4 rain good  high false  vyes
5 rain cool normal false yes
6 ran cool normal true no
7 cloudy cool normal true yes
8 sun good  high false no
9 sun cool normal false vyes
10 rain good  normal false  vyes
11 sun good  normal true yes
12 cloudy good high true yes
13 cloudy warm normal false  vyes
14 rain good  high true no

Attribute:; Wind

values(feel) = false, true

> £ = —g log, g — % log, % = 0.8113

> Eo=—2log,2 —2log, 2 =1
E=Z% x08113+ 5 x1=0.89
Gl =0.94 - 0.89 = 0.05
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Feel Temp. Humidity Wind Play Golf
1 sun warm  high false  no
2 sun warm  high true no
3 cloudy warm high false  ves Information Gain
4 rain good  high false  vyes > Gliemp = 0.03
5 rain cool normal false yes
6 rain cool normal true no > Gl = 0.25
7 cloudy cool normal true yes »  Glhumidgiyy = 0.15
8 sun good  high false no > Glyng = 0.05
9 sun cool normal false vyes
10 rain good normal false  ves Feel is the attribute with the maximum
11 sun good  normal true  ves gain — Root of the tree
12 cloudy good high true yes
13 cloudy warm normal false  vyes
14 rain good  high true no
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Adaptation to Process Mining:

» Response variable: the activity executed at decision points (OR-split or
XOR-split)

» Predictor variables: attributes of events (the context) and/or the previous
activities.
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Bottlenecks are points of congestion in any process that slow or delay the goal
being achieved. Bottlenecks are generally one process in a chain of processes,
which causes the process to slow down or fail.

Bottlenecks can be:

» Short-Term: These are the more obvious problems caused by temporary
circumstances. For example, if two employees call in sick and no one else
is available to cover their work, a backlog will build until their return.

» Long-Term: Long-term bottlenecks are more insidious in nature. They are
chronic issues that become accepted as part of the process over time,
instead of being identified as an ongoing problem needing a solution.
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A bottleneck occurs when there is not enough capacity to meet the demand
or throughput for a product or service.
How to identify bottlenecks:

» Add timing information to the discovered model
» |dentify long wait times or slow processing
» Visual inductive miner supports bottleneck analysis

R. Champagnat, M. Trabelsi, A. Hamdi et al. Conformance Checking 72783



Introduction
Model-Based Process Analysis Mining Decision Point
La Rochelle Event Data Analysis Mining Bottlenecks

Université

Conformance Checking ational Mining
Business Process Analysis

Specific cases

examine
casually

reject
request

reinitiate
request

Fig.9.11 Timed replay of the first three cases in the event log: case 1 starts at time 12 and ends at
time 54, case 2 starts at time 17 and ends at time 73, case 3 starts at time 25 and ends at time 98
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Fig. 9.12 Timeline showing the activity instances of the first three activities
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Organizational mining focuses on other perspectives:

» Social: identify interpersonal relationships in a process (regarding who is
performing a process activity and handovers)

» Organizational structure
The behavior of a resource can be characterized by a profile, i.e., a vector
indicating how frequently each activity has been executed by the resource.
Clustering algorithms can be used to discover similar resources.

» Resource behaviour
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» The model is Digital Twins. It can be used to simulate various parameters
to identify the benefits of decisions

» Explore: The combination of event data and models can be used to
explore business processes at run-time. Running cases can be visualized
and compared with similar cases that were handled earlier.

» Predict: By combining information about running cases with models
(discovered or hand-made), it is possible to make predictions about the
future, e.g., the remaining flow time and the probability of success.
Various techniques can be used to generate predictions. For example, the
supervised learning techniques
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» Recommend. The information used for predicting the future can also be
used to recommend suitable actions (e.g. to minimize costs or time). The
goal is to enable functionality similar to the guidance given by car
navigation systems.
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Fig. 10.12

Recommendations can be possible next state prediction
based on predictions. For

every possible choice, simply current state

predict the performance
indicator of interest. Then,
recommend the best one(s)
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@ Specific cases
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Analyzing “Lasagna Processes’

» |asagna processes have a clear structure and most cases are handled in a
prearranged manner.

> A process is a Lasagna process if with limited efforts it is possible to create
an agreed-upon process model that has a fitness of at least 0.8,

R. Champagnat, M. Trabelsi, A. Hamdi et al. Conformance Checking 80/83
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406 13 Analyzing “Lasagna Processes”
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Analyzing "Spaghetti Processes’

» The Spaghetti process comes
from unstructured process

» Use clustering

S
ks
Fig. 1412 Another Spaghetti process. The model is based on a group of 627 gynecological on-
cology patients. The event log contains 24331 events referring to 376 different activities
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Introduction

Process discovery (a-Algorithm)

Metrics and quality of discovered models
Raw traces/ modelled traces (case study)
Advanced process mining algorithms
Advanced process mining algorithms
Conformance checking

Decision mining in processes

Trace clustering

Trace profile

Case study

Case study defense
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@ Real life example

@ Gallica

@ The thesis key question
@ | ogs quality

@ Findings

e Conclusion
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What is Data Mining?

» Huge quantities of data are collected each second
» Data contains interesting patterns
» Patterns are more meaningful and important than data itself

» Data Mining is thus used to:

» Discover interesting patterns in large quantities of data
» Support human decision-making provided the discovered patterns

Data Mining is the exploration and analysis of large quantities of data to
discover meaningful patterns. @

9From Michael J.A. Berry, Gordon Linoff. Data mining techniques: for marketing, sales, and
customer relationship management /2nd ed, 2004
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Interpretatmn /
Data Mining
e — D\
Preprocessing
Selection I
. .
= Transformed
Preprocessed Data Data

Target Date

From Fayyad et al. 1996
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Data Mining Tasks and Techniques

» Descriptive Tasks (Unsupervised Learning)

» Goal: Find patterns in data
> Example:

» Cluster Analysis or Clustering
> Association Analysis

> Predictive Tasks (Supervised Learning)

» Goal: Predict unknown values of a variable, given some observations
» Example:

» Classification
> Regression

E-Learning, E-Commerce, Military, Marketing, Health, Fraud Detection, ...
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Spaghetti models!!

» Huge amount of data —> Process Mining techniques will discover complex
users' behaviors models.

» NEED FOR CLUSTERING!!

M. Trabelsi,

oudieh, R. Champagnat et al.
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What is Clustering?

Grouping objects such that objects in a group (cluster) are similar to one
another and different from the objects in other groups (clusters)

Inter-cluster
distances are
maximized

Intra-cluster
distances are
minimized

M. Trabelsi, dieh, R. Champagnat et al. Trace Clustering 11/122
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Clustering Types and Algorithms

There are different types of clustering:
> Partitional

» Dividing data objects into non-overlapping clusters such that each data
object is in exactly one subset

> Algorithms: K-Means, K-Medoids...
» Density-Based
» |dentifying distinctive groups in the data, based on the idea that a cluster in a
data space is a contiguous region of high point density, separated from other

such clusters by contiguous regions of low point density.
» Algorithms: DBSCAN, Meanshift, OPTICS, DENCLU....

» Hierarchical

> A set of nested clusters organized as a hierarchical tree (Dendrogram tree)
> Algorithms: Agglomerative, Divisive, ...

M. Trabelsi, N. Joudieh, R. Champagnat et al. Trace Clustering 12 /122
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(a) Partitional Clustering

udieh, R. Champagnat et al.
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(b) Density-Based Clustering

Trace Clustering

Clustering Evaluation

(c) Hierarchical Clustering
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What are the components needed to do clustering?

» Clustering Algorithm:

» Partitional

»> Density-Based
» Hierarchical
> .

» Proximity Measure (Similarity or Dissimilarity)
» Euclidean distance
» Cosine similarity
> .
» The Ultimate Goal
» Minimize intra-cluster distance
» Maximize inter-clusters distance
» Relevance of clustering with analysis aim

M. Trabelsi, N. Joudieh, R. Champagnat et al. Trace Clustering 14 7122



Introduction Proximity Measures
Clustering Overview Partit| Clusterin
La Rochelle Trace clustering
Real life example

Conclusion

Université

Proximity Measures

© Manhattan Distance

@ Euclidean Distance

©@ Cosine Measure

@ Jaccard Index

@ Edit Distance - Levenshtein Distance

M. Trabelsi ieh, R. Champagnat et al. Trace Clustering 15 /122
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Herman MinkowskKi
Generic Distance Metric for Euclidean and Manhattan.

X = (X17X2a"' 7Xf7) andy: ()/1,)/27"' ayl‘l)

Tl

dx,y) = (1 —yilP + x2a = yolP -+ X = ¥nlP)?, p>0

p = 1. Manhattan distance
d(x,y) = [x1 —y1| + [x2 = ya| -+ + [Xn — ¥l

p = 2 Euclidean distance

2 2 2
d(x,y) = /0 — Y12 + [x2 = yal? -+ + X — il
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Cosine Measure

» Determines the cosine of the angle between two vectors

X = (X17X2a"' ,Xn) andy: (Y17)/27"‘ vyl‘l)
X1Y1+ -+ XnYn

\/x12+---+x%\/y12+---+y,%
d(X, y) =1- COS(X7 y)

cos(X,y) =

where: O < d(x,y) <2

M. Trabelsi, N. Joudieh, R. Champagnat et al. Trace Clustering 17 7122
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YA
6 — A
5 —

Manhattan:
4— d,(A, B)=5
37 Euclidean:
2 <« B
1 Cosine:

(A, B) = 41.6°
] ] l ]
| | | | | >

l
|
1 2 3 4 5 6
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Jaccard Index

» Measures the similarity of two data sets, as their intersection divided by
their union
_|ANnB|
- JAuB|
» How to interpret the value of this index?
> Set a threshold of similarity ¢
> if J(A,B) > t, then sets A and B are said to be similar; else they are not similar

J(A,B)

M. Trabelsi, dieh, R. Champagnat et al. Trace Clustering 19 /122
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Edit Distance - Levenshtein distance

» Edit distance is a measure that quantifies how dissimilar two sequences
are from each other.
It is measured by counting the number of steps/operations needed to
transform one sequence into the other.

» The possible operations are delete, replace, or insert

> Levenshtein distance, a type of edit distance, measures the difference
between two sequences

> The Levenshtein distance between two sequences is the minimum
number of edits needed to change one sequence into the other.

M. Trabelsi, N. Joudieh, R. Champagnat et al. Trace Clustering 20/122
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Levenshtein Distance from: ‘abcdefg’ fo: ‘bcdefgh’

[ a [ o | ¢ | o [ e [ ¢ | g |
l‘ Step 1: Delete ‘a’

[ X | v [ e [ a [ e [ ¢ | o |
[ [ ¢ [ o« [ e T 1 g [Cn)]

- Levenshtein Distance = 2

M. Trabelsi udieh, R. Champagnat et al.
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Data Matrix

» For representing n data points/objects with p features/dimensions
» Each row represents a data point

» Each column represents a feature/attribute

X ... Xy ... Xp
X oo Xifo oo Xpp
Xn]_ . an . e an

M. Trabelsi, dieh, R. Champagnat et al. Trace Clustering
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Distance / Proximity Matrix

» A square symmetric/triangular matrix
» For representing the distance among the n data points

» Each entity represents the distance between the row and column data
point

M. Trabelsi, N. Joudieh, R. Champagnat et al. Trace Clustering
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Suppose we have this small dataset. It contains 4 data points and 2
features (x and y)

What will be the data matrix?
What will be the dissimilarity matrix for Manhattan Distance?

3 _
2 @pl
p3 p4
1 1 [ ®
p2
0 T . T T T 1

0 1 2 3 4 5 6
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point | x | y

pl [0 |2

p2 |20

p3 |3 |1

pd | 5|1

Table: Data Matrix

(a) Dissimilarity Matrix for Manhattan Distance  (b) Dissimilarity Matrix for Euclidean Distance

pl | p2 | p3 | p4 pl p2 p3 p4
pl{ O | 4 | 4 | 6 pl o 2.828 | 3.162 | 5.099
p2| 4 | O | 2 | 4 p2 | 2.828 (o) 1414 | 3.162
p3| 4 | 2 | 0 | 2 p3 | 3162 | 1414 o 2
pd| 6 | 4| 2 | O p4 | 5099 | 3162 2 (0]

M. Trabelsi, N. Joudieh, R. Champagnat et al. Trace Clustering 257122
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» Partitional Clustering Algorithm

» Each cluster has a centroid (central point)

» Each point is assigned to the cluster with the closest centroid
> Number of cluster k must be known and specified in advance

Algorithm 1 k-means algorithm
: Specify the number k of clusters to assign.
: Randomly initialize k& centroids.
repeat
expectation: Assign each point to its closest centroid.
maximization: Compute the new centroid (mean) of each cluster.
until The centroid positions do not change.

M. Trabelsi, N. Joudieh, R. Champagnat et al. Trace Clustering 26 /122
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Step 1.
» For k = 3, randomly pick 3 initial centroids
. * o
L 4 ‘0
o
3 o !
*
Y
°® L 2
¢ ke .
< . *
P L 4
* *
P *
X ® o+ *
k3 *
X
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Step 2:
» Assign each point to the closest centroid (using a distance measure)
. * o
* ‘0
O *
ki .
L 2
Y
‘ <
< k2 . .
* . *
P *
* *
P *
X O . ¢
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Proximity Measure:
Partitional Clustering

Densit
Hierar g
Clustering Evaluation

Step 3:
> Move the centroid to the mean of each cluster
TS * o
S S
—— ¢ <&
ki kie
*
Y
° IS
< k2 R .
< . ® ¢
.« O Kse
* k; .
.
XS ® o+ ¢
X
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Step 4:
» Reassign points to the suitable cluster, if they are now closer to a different
centroid
. * o
* *
¢ *
k10
*
Y
*
*
P L 2
< . e °
* . k30
o ko IS
PS *
.o ¢ ¢
*
X
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Step 4:
» The reassigned points are:
. * o
* ’0
/ .
Kie
*
Y,
//’
. *
S @ °
* ¢ k30
* Ko .
. *
X + .
X
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Step 5:
©@ Recompute cluster means
@ Move centroids to new cluster means

. * o
* ‘0
-~ .
ki o
*
Y
*
*
° ¢ ‘
. TR N *
Kse
+ O 3
* ko IS
P *
*e + ¢
*
X
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Step 5:
» The new centroids ( which are the cluster means):
® LN
° ®
Oklo o
@ @
Y
®
¢
° ¢ ¢
¢ Tk N A
* o ¢
L 4 k3 *
* ¢ .
L X 2 <® °
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When do we stop? -> Convergence

no (or minimum) change of centroids
no (or minimum) reassignments of data points to different clusters
stopping after a predefined number of iterations

setting a goal value for an evaluation metric (ex: minimum decrease in the
sum of squared errors (SSE))

vVvyyvyy
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Sum of Squared Errors (SSE)
For each point, the error is the distance to the nearest centroid

k
SSE =Y distance(x, m;)?
J=1 xeG;
where:
> C;is the ! cluster
> m; presents the centroid of C;
> distance(x,m;) is the distance between a data point x and the centroid my;

Given several clusterings (groupings), the one with the smallest SSE is the most
preferable
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Elbow Method

» Elbow method is used to find the optimal number of clusters for a given
dataset

» The method works by plotting the SSE as a function of the number of
clusters and picking the elbow to be the number of clusters

Elbow Method

1400

1200

1000

800

SSE

600

400

200

2 4 6 8 10
Number of clusters
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Graph Based

» Plotting any evaluation metric as a function of the number of clusters
» Choose the number of clusters that optimizes the metric

Silhouette Coefficient

2 3 4 5 6 7 8
Number of Clusters

o
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@ Import the needed Libraries

# Import needed Libraries

from
from
from
from
from
from

M. Trabelsi

matplotlib import pypleot as plt
sklearn.datasets import make blobs
sklearn.cluster import KMeans
sklearn.metrics import silhouette_score
sklearn.metrics import davies bouldin score
sklearn.preprocessing import StandardScaler

dieh, R. Champagnat et al. Trace Clustering
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@ Create a sample dataset (or upload one)

# Creating a sample datasets
X, y = make_bleobs(n_samples=7@8, centers=4, cluster_ std=2.75, random_state=42)
plt.scatter(X[:,8], X[:,1])

20 1 L]

-5 4
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© Scale using StandardScaler from sklearn

#5cale the features
scaler = StandardScalear()
scaled X = scaler.fit_transform(X)

@ Perform the elbow method and choose the optimal k value

558
for

plt.
plt.
plt.
plt.
plt.

M. Trabelsi

=[]

i in range(1l, 11):

kmeans = KMeans(n_clusters=i).fit(scaled_X)
sse.append(kmeans.inertia )

plot(range(l, 11), sse)

title('Elbow Method')

xlabel( 'Mumber of clusters')

ylabel( 'SSE")

show()

ieh, R. Champagnat et al. Trace Clustering
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@ Apply K-means

kmeans = KMeans(n_clusters=3, init="k-means++', max_iter=3e0, n_init=1@, random_state=0)
pred_y = kmeans.fit_predict(X)

plt.scatter(X[:,08], X[:,1])

plt.scatter(kmeans.cluster_centers_[:, @], kmeans.cluster_centers_[:, 1], s=30@, c="red")
plt.show()
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© Evaluate the resulting clusters

Evaluate the clustering results - Silhouette

silhouette_score = silhouette_score(scaled_X, kmeans.labels_)

Evaluate the clustering results - SSE - Inertia

sse_score = kmeans.inertia_

Evaluate the clustering results - Davies Bouldin Score
db_score = davies_bouldin_score(scaled X, kmeans.labels )
M. Trabelsi,

Joudieh, R. Champagnat et al. Trace Clustering 437122
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Meanshift Clustering

» Density-Based Clustering

= L= Density Based Clusterin
Université ’ o

» In simple words: Shifting to higher density regions by shifting to the mean,
in an iterative process

» Sliding Window algorithm. A circular sliding window with radius r is used.
(the radius is referred to as bandwidth or kernel)

» Density of a sliding window is represented by the number of points inside
the window

» Meanshift is a centroid-based algorithm used to find dense areas of data
points and locate the center points of each group

» Result of Meanshift: Final set of center points and their corresponding
clusters.

A complete example on Meanshift with Code in Python

M. Trabelsi, N. Joudieh, R. Champagnat et al. Trace Clustering 44 /122
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Algorithm

© Begin with a circular sliding window with a radius r, centered at a random
data point.

Q@ At each step, shift the center of the sliding window to the mean of all
points inside the window (thus to regions of higher density)

© Stop shifting, when we are no longer adding more points to the window
(i.e. we are no longer increasing the density in the window). At this point,
we have found the center of the future cluster.

Q@ Steps1to 3, are in fact done with multiple sliding windows until all points
become in one window:

» W¥hen multiple sliding windows overlap, the one having the greatest number
of points is preserved (the most dense window)
> Data points are then clustered according to the sliding window they reside in.

M. Trabelsi, N. Joudieh, R. Champagnat et al. Trace Clustering 45 /122
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Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
» DBSCAN eliminates noise points and returns the clustering of the
remaining points
» The Parameters of DBSCAN:

@ minPts: The minimum number of points clustered together for a region to
be considered dense

Q@ epsle): Adistance, used to locate the points in the neighborhood of any point
» Some Concepts in DBSCAN

@ Eps-neighborhood of a point p (Ng,s(p)): is defined by

(Neps(p) = {q € D|dist(p,q) < Eps}

'From A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with
Noise, Ester et al., 1996
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DBSCAN

» Density: Number of points within a specific radius Epsilon (¢)
» Divides data points into 3 types:

» Core Point: A point that has at least a specified number of neighboring
points (MinPts) within the specified radius

> The point itself is counted as well
> These points form the interior of a dense region (cluster)
» Border Point: A point with fewer points than MinPts within ¢, but is the
neighborhood of a core point
» Noise Point: Any point that is neither a core point nor a border point

DBSCAN in Action

M. Trabelsi, N. Joudieh, R. Champagnat et al. Trace Clustering 47 7 122
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Pick a random data point p as your first point.

Mark p as visited

Extract all points present in its neighborhood (up to eps distance from the
point), and call it a set nb

If nb > minPts, then

Q@ Consider p as the first point of a new cluster

Q@ Consider all points withing eps distance (members of nb) as other points in
this cluster

Q@ Repeat step b. for all points in nb

Else, label p as noise

Repeat steps 1-5 till the entire dataset is labeled. Thus the clustering is
complete.
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© DBSCAN
from sklearn.cluster import DBSCAN

db = DBSCAN(eps=8.4, min_samples=28)
db.fit(X)

@ Meanshift

from sklearn.cluster import MeanShift
mshift = Meanshift().fit(x)
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Hierarchical clustering produces a set of nested clusters organized as a tree
called dendrogram

Dendrogram: All what you need to know! (1)

» The core concept of hierarchical clustering lies in the construction and
analysis of the resulting dendrogram.

» Tree like structure that shows the sequence of merges or splits applied to
the data points.

» The diagram is either constructed in a bottom-up manner (agglomerative
algorithm) or in the opposite manner, top-bottom (divisive algorithm).

» Once constructed, the diagram is analyzed by slicing it horizontally.
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Dendrogram: All that you need to know! (2)

» The core concept of hierarchical clustering lies in the construction and
analysis of the resulting dendrogram.

» Tree-like structure that shows the sequence of merges or splits applied to
the data points.

» The diagram is either constructed in a bottom-up manner (agglomerative
algorithm) or in the opposite manner, top-bottom (divisive algorithm).

» Once constructed, the diagram is analyzed by slicing it horizontally.

v

All the possibilities of clusters are provided through the dendrogram

» The final clustering is picked by a horizontal cut through the dendrogram
(search for large gaps to cut ...)
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© Records the sequence of clustering.

Dendrogram
0.15
01}
0.05f
0 1 3 2 5 4 6
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© Records the sequence of clustering.
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@ Analyzed by slicing it horizontally

|l e
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@ Analyzed by slicing it horizontally (search for larger gaps)

the value of the linkage DENDROGRAM

criterion between {1,2} and value of the

{34} is C, they are merged linkage criterion

third

\a C he gan hetween B and

the gap between B and C
is the st (much larger
than the

the value of the linkage
criterion between 3 and
4is B, they are merged

AL

the value of the linkage
criterion between 1 and 1 2 3 4
2is A, they are merged

first IK 't A j

the 4 points to be clustered

and A or the gap betwee
AandB

Auxiliary Reference
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© Constructed in a top-bottom manner (divisive) or bottom-up manner
(agglomerative)

Agglomerative
Step 0 Step 1 Step 2 Step 3 Step 4

Divisive
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This algorithm starts with the points as individual clusters, and at each step, the
closest pairs of clusters are merged until only one final cluster is left

Q Compute the proximity matrix
Q Let each data point be a cluster
QO Repeat

@ Merge the two closest clusters
@ Update the proximity matrix (But how? Measuring proximity between clusters?)

Unitl only a single cluster is left

The key operation and additional step here is the computation of the proximity
between two clusters
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Linkage Criteria

» The linkage criteria refers to how the distance between clusters is
measured
» The distance between two clusters, In:

@ Single Linkage: is the shortest distance between an element in one cluster
and an element in the other

@ Complete Linkage: is the longest distance between an element in one
cluster and an element in the other

© Average Linkage: is the average distance between each point in one cluster
to every point in the other cluster. This compromises between single and
complete linkage, as it is less sensitive to noise and outliers than single
linkage.

@ Ward Linkage: is the sum of squared differences within all clusters
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Single Linkage
1(A,B) =min{d(a,b):a € A,b € B}

Complete Linkage
1(A,B) = max{d(a,b):a e A,be B}
Average Linkage
1
1(A,B)= ——— d(a,b
(A, B) |Ay.|B|ZZ (a,b)

acA beB
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Ward Linkage

» \Xard Criterion defines the distance between 2 clusters A and B as how
much the sum of squares will increase when we merge them.

» Ward tries to minimize A as it moves forward in clustering
2 2 2
AAB) = > lIx—mausl® =Y lla—mal* =Y b —ms]|
XEAUB acA beB
» where
> m, is the center of cluster x

» Ward is known to be used with Euclidean Distance

Helper Note™: To simplify the equation, it is the intra-cluster of the merged cluster minus the
intra-cluster of the first cluster minus the intra-cluster of the second cluster
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Simpler equation for Ward's Method
AAB) = > Ix—mausl? =) lla—mal? = [Ib—mg|?

XEAUB a€eA beB
Na.Ng 2
= —IMyg—M
n e Ima = ma

» where:

> m, is the center of cluster x
» n, is the number of points in cluster x

M. Trabelsi,
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Centroid linkage Single linkage Complete linkage

Variable 2
Variable 2
Variable 2

Variable 1 Variable 1 Variable 1

Average linkage Ward's method

Variable 2
Variable 2
Variable 2

Variable 1 Variable 1 Variable 1
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Given the following dataset with 5 points, and one feature.

alblc|d]|e
fl112|4|5|6

Consider we have 2 clusters: C; = {a,b} and C; = {c,d, e}

© Draw and fill the proximity matrix of the provided dataset using Euclidean
distance

Q@ Calculate the 4 different cluster distances between C; and C, (single,
complete, average, ward) using Euclidean distance
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The proximity matrix:

AWMNOIRT
= Ol = w Al

N~ O W o
Ol N lo1 O

oo 0T
Ol N W~ Olw

dist (C1,C2) = min{(a, ), (a,d), (a,e), (b,c),(b,d),(b,e)}
=min{3,4,5,2,3,4} =2
M. Trabelsi,
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dist (Cy, C) = max{(a,c), (a,d), (a,e), (b,c), (b,d),(b,e)}
=max{3,4,5,2,3,4} =5

d(a,c),d(a,d),d(a,e),d(b,c),d(b,d),d(b,e)

dist (Cl, Cg) = Ny % No
_3+4+5+2+3+4
2x3
21
=5 = 3.5
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A(C1,Co) = =T Ime — me, P

Ne, + Ne,

6 >
=—|15-5

2 115 -5

6 2
— — ||-3.

2 1-35]

6

=g X 1225 =147
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For this example, we will use the Wholesale customer data.csv

© Import Libraries

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
Zmatplotlib inline

M. Trabelsi ieh, R. Champagnat et al. Trace Clustering
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@ Load and Visualize your data

data = pd.read_csv("Wholesale customers data.csv™)
data.head()

Channel Region Fresh Milk Grocery Frozen Detergents_Paper Delicassen

0 2 3 12669 9656 7561 214 2674 1338
1 2 3 7057 9810 9568 1762 3293 1778
2 2 3 6353 8808 7634 2405 3516 7844
3 1 3 13265 1196 4221 6404 507 1788
4 2 3 22615 5410 7198 3915 1777 5185

M. Trabelsi, dieh, R. Champagnat et al. Trace Clustering 707122
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© Normalize your data - preprocessing step

from sklearn.preprocessing import normalize

scaled_data = normalize(data)

scaled_data = pd.DataFrame(scaled_data, columns=data.columns)
scaled_data.head()

Channel Region Fresh Milk  Grocery Frozen Detergents_Paper Delicassen
0 0.000112 0.000168 O0.708333 0.539874 0422741 0.011965 0.149505  0.074809
1 0.000125 0.000188 0442198 0.614704 0599340 0.110409 0.205342 0.111286
2 0.000125 0.000187 0.396552 0.549792 0.479632 0.150119 0.2194567  0.489619
3 0.000065 0.000194 0.856837 0.077254 0.272650 0.4135659 0.032749 0.115494
4 0.000079 0.000119 0.895416 0.214203 0.284997 0.155010 0.070358  0.205294

@ Find the optimal number of clusters using dendrogram (horizontal cut at
the largest distance)

M. Trabelsi udiel Champagnat et al. Trace Clustering 717122




Introduction Proximity Me
Clustering Overview St
= L= Trace clustering Densit Clustering
Universite Real life example Hierarchical Clustering
Conclusion Clustering Evaluation

La Rochelle

import scipy.cluster.hierarchy as sch

plt.figure(figsize=(1e, 7))

plt.title("Dendrogram”)

dend = sch.dendrogram(sch.linkage(scaled_data, method="ward"))

Dendrogram
12
10
8
&
4
2
T RN e '«uf» u-'ﬁ.rr.. o Corra b,
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@ Apply Agglomerative Clustering with the optimal value (2 in this case)

from sklearn.cluster import AgglomerativeClustering

cluster = AgglomerativeClustering(n_clusters=2, affinity='euclidean', linkage='ward"')
cluster.fit_predict(scaled_data)

© Visualize the resulting clusters

plt.figure(figsize=(18, 7))
plt.scatter(scaled data[ "Milk'], scaled data['Grocery’], c=cluster.labels )
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@ Evaluate your clustering results

from sklearn.metrics import davies bouldin_score
db_score = davies_bouldin_score(scaled_data, cluster.labels_)
db_score

@.8166647229622314
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@ Sum of Squared Errors (SSE)
Q@ Silhouette Score
© Davies Bouldin Index

M. Trabelsi
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Evaluation Metrics
@ Silhouette Score:

> A metric used to evaluate the goodness of clustering (and to find the optimal
number of clusters)

» Silhouette Score = {11 3 where:

max(i,n
> n: the mean distance between a sample and all other points in the next nearest
cluster

> j: the mean distance between a sample and all other points in the same cluster
» The silhouette score for a set of samples is the mean of the silhouette scores
for each sample.
» Range [-11] -> How to interpret Silhouette Score?
» Closer to 1: Clusters are clearly distinguished and well apart
> Closer to O: Distance between clusters is not significant
»> Closer to -1: Clusters are assigned in the wrong way (incorrect clustering)
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ysis for

The silhouette plot for the various clusters.

Cluster label
Feature space for the 2nd feature.

-100

04 06
The silhouette coefficient values

M. Trabelsi, N h, R. Champagnat et al. Trace Clustering
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clustering on sample data with n_clusters = 4

The visualization of the clustered data.

— -6 -4 -2 °
Feature space for the 1st feature
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Evaluation Metrics

© Davies Bouldin Index
» Introduced by David L. Davies and Donald W. Bouldin in 1979

> This index captures if the clusters are well spaced from each other and if the
data points in the clusters are dense enough

» Defined as the average similarity measure of each cluster with its most
similar cluster.
Similarity is the ratio of within-cluster (intra-cluster) distances to
between-cluster (inter-cluster) distances

M. Trabelsi, N. Joudieh, R. Champagnat et al. Trace Clustering 797122
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Evaluation Metrics
© Davies Bouldin Index

> Range is [0,00]. The smaller the value of this index, the better is the clustering.
> The index is calculated as follows:

DB =13 max (M)
n < j# \d(ci,q)
where:

» nnisthe number of clusters
> g;is the average distance of all points in cluster i from the cluster centroid ¢;
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Imported Libraries

from sklearn.metrics import silhouette_score

from sklearn.metrics import davies_bouldin_score

Evaluate the clustering results - Silhouette

silhouette_score = silhouette_score(scaled_X, kmeans.labels_)

Evaluate the clustering results - SSE - Inertia

sse_score = kmeans.inertia_

Evaluate the clustering results - Davies Bouldin Score

db_score = davies_bouldin_score(scaled_X, kmeans.labels_ )
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e Trace clustering
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i Process Discove
' i
Event Log Process Model

Terminology

» Event log: an event log L = {f, 5, ..., t,} is a set of k traces

> Trace: each tracet; (1 </ < R)is a set of n; consecutive events
ti =< en, ep, ...ej, > made by the same user.
» Event: an event e is an activity performed by the user of the information

system. Each event is characterized by its frequency f. which is the
number of times it occurs in L.
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Caseld User Timestamp Activity
1 user; 2016-01-12T10:34:25 home index
1 user;  2016-01-12T10:34:27 home languages
1 user;  2016-01-12T10:34:28 language selection
1 user;, 2016-01-12T10:34:31 catalog show
2 user, 2016-01-12T10:34.26 home index
2 user,  2016-01-12T10:34:29 home periods
2 user, 2016-01-12T10:34:30 catalog show
’ usen ‘ ’ home-index H home-languages H language-selection H catalog-show

‘ user, ‘ ‘ home-index }—»‘ home-periods H catalog-show ‘
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Spaghetti models ?

» Huge amount of data —> Process Mining techniques will discover complex
users' behaviors models.

M. Trabelsi

Joudieh, R. Champagnat et al.
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Complete
event log

Inaccurate and highly
complex process model

Sub event Jog 1 Sub cvent log 2 Sub event log 3
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Trace clustering has been used as a method to partition event logs in a

way that more homogeneous sublogs are obtained, with the hope that

process discovery techniques will perform better on the sublogs than if
applied to the original log.

Existing PM techniques perform well on structured processes

Processes for each users types (novice users, professional users..) or
research tasks.

Process enhancement (by proposing different types of processes for
users).

How can we identify groups of behaviorally similar traces in an event
log?
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Trace-based Feature-based Model-based
clustering clustering clustering

Similarity between two Converting each trace Process models are
traces can be into a vector of features considered as input for
measured using the based on defined the clustering in order

syntax similarity. characteristics. to structure traces.

» Hybrid based clustering : combines the previous methods.
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Trace-based clustering, is the first category that cluster the traces using
the syntax similarity.

It is inspired from the Levenshtein distance between two strings.

A trace can be edited into another trace by substituting, adding or
removing events.

The edit distance between two traces is the minimum number of edit

operations required to transform one trace to the second. Less the edit
distance is, more the traces are similar.
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For two traces or sequences t; et t,, the following edit operations are
considered on the activities A U {—} where — denotes a gap. For a,b € A,
the pair

(a,a) denotes a match of activities between t; and t, at some position t;(/)

and t>(j). A match can be considered as a substitution of an activities with
itself.

(a,—) denotes the deletion of a in t; at some position (/)
(—, b) denotes the insertion b in (/)

(a,b) denotes the replacement/substitution of a in t; with b at some
position t1(/) where a # b

M. Trabelsi, N. Joudieh, R. Champagnat et al. Trace Clustering 90 /122
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> Bose, R. J. C. and Van der Aalst, W. M. (2009 a), Context aware trace
clustering : Towards improving process mining results, in "Proceedings
of the 2009 SIAM International Conference on Data Mining", SIAM,
401-412

» They propose a context-aware approach to trace clustering based on
generic edit distance.

» They tackle the sensitivity of the cost function of edit operations in the
process.

» They determined the cost by taking into account the context of an event
within a trace.
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» Chatain, T., Carmona, J. and Van Dongen, B. (2017), Alignment-based
trace clustering, in "International Conference on Conceptual Modeling",
Springer, 295-308.

» The clustering approach of this paper assumes an additional input: a
process model that describes the current process

» The idea of their algorithm is to group log traces according to their
closeness to representative full runs of a given model. Those
representative full runs act as centroids for the clusters.

» This way, even in case of deviations, incomplete or noisy traces, or even
drifts in the process model, a process explanation of the traces in each
cluster is available, so that stakeholders can relate them more reliably to
the underlying process.
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~ N
o Traces preparation Distances measures —» Trace clustering
Event logs
S g

» Feature-based clustering, is the second category that consists in
converting each trace into a vector of features based on defined
characteristics before the clustering.

» Various distance metrics in data mining are reused to estimate the
similarity between the corresponding traces vectors.

» Subsequently, distance-based clustering algorithms are deployed, such as
k-means or agglomerative hierarchical clustering algorithms.
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» Song, M., Glinther, C. W. and Van der Aalst, W. M. (2008), Trace clustering
in process mining, in “International Conference on Business Process
Management", Springer, 109-120.

» The paper presents an approach based on log profiles, using trace

clustering, i.e., the event log is split into homogeneous subsets and for
each subset a process model is created.

» Each trace is transformed into a vector of features based on, for example,

the frequency of activities, the frequency of directly-followed relations,
the resources involved, etc.
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Case ID log events
i (A,John), (B,Mike), (D,Sue), (E,Pete), (F,Mike)}, (G, Jane), (I, Sue)

(A,John), (B,Fred), (C,John), (D,Clare), (E,Robert), (G,Mona), (I,Clare)
(A,John) , (B,Pete), (D,S5ue), (E,Mike), (F,Pete) , (G, Jane) , (I,Sue)
(A,John), (C,John), (B,Fred), (D,Clare), (H,Clare), (I,Clare)
(A,John), (C,John), (B,Robert), (D,Clare), (E,Fred) , (G,Robert), (I,Clare)

(A,John), (B,Mike), (D,Sue), (H,Sue), (I,S5ue) |

O | | W3] 8D

Table 1. Txample process logs (A: Receive a item and repair request, B: Check the
item, C: Check the warranty, D: Notify the customer, E: Repair the item, F: Test the
repaired product, G: Issue payment, H: Send the cancellation letter, I: Return the item)

Case TD Activity Profile Originator Profile
A A|BIC|DIE[F|G]H]T][.John|Mike|Sue|Pete|Jane| Fred|Clare| Robert|Mona
1 Lj{Ljojrir{1jrjojn 1 2 211 1 0 0 0 0
2 L{L|1|{1|1jo(L{O|L 2 0o |00 0 1 2 1 1
3 L{Ljo{1{1{1|rjojn 1 1 2| 2 1 0 0 0 0
4 L{L|1|{1joj0(ojr|{n| 2 0|00 0 1 3 0 0
5 {1jif{rfajo(rjrjof 2 0 l0|0 0 1 2 2 0
6 1{1joj1(o0of|y 1 1 310 0 0 0 0 0
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> Bose, R. J. C. and van der Aalst, W. M. (2009 b), Trace clustering based on
conserved patterns: Towards achieving better process models, in

“International Conference on Business Process Management", Springer,
170-181.

» The basic idea is to consider k-gram of activities that are conserved across
multiple traces (variable k).

» Finding similar regions (sequence of activities) common within a trace
and/or across a set of traces in an event log signifies some set of common
functionality accessed by the process.

» The observed k-grams are the different patterns such as the Maximal
Repeat Set, as well as the Super Maximal Repeat Set and the Near Super
Maximal Repeats Set to constitute the vector of a particular trace.
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» Maximal Repeat: A maximal repeat in a sequence, T, is defined as a
subsequence « that occurs in a maximal pair in T.

» Super Maximal Repeat: A super maximal repeat in a sequence is defined
as a maximal repeat that never occurs as a substring of any other maximal
repeat.

> Near Super Maximal Repeat: A maximal repeat « is said to be a near
super maximal repeat if and only if there exists at least one instance of « at

some location in the sequence where it is not contained in another
maximal repeat

T5|aaacdedecbedbee—
badbdebdc

{a, b, c.d, e, aa, bd,
cb, db, de, ede}

{e, aa, bd, cb, db,
ede}

Id | Trace Maximal Repeat Set|Super Maximal|Near Super Max-
Repeat Set imal Repeat Set

77 [aabedbbeda {a, b, bed} {a, bed} {a, b, bed}

T3 |dabedabebb {b, dabe} {dabe} {b, dabc}

T3 |bbbedbbbecaa {a, b, ¢, bb, bbbe} |{a, bbbec} {a, ¢, bbbe}

Ti|aaadabbeee {a, b, ¢, aa, cc} {b, aa, cc} {a, b, aa, cc}

{a, ¢, e, aa, b4,
¢cb, db, de, ede}
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» Trabelsi, M., Suire, C., Morcos, J. and Champagnat, R. (2021 a), A new
methodology to bring out typical users interactions in digital libraries, in
"2021 ACM/ IEEE Joint Conference on Digital Libraries (JCDL)", 11-20.

» Frequent Sub-Sequences (FSS) in the traces can contribute to distinguish
users and tasks.

» Grouping the traces based on the frequent sub-sequences (FSS).

» AnFSS = < eq,...,e, > contains a finite set of events e of length n (n > 1)
where their events are executed in the order at least two time.

» Converting traces using a particular (FSS) encoding.
» Each identified (FSS) in a trace is replaced by its encoding.
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» The FSS encoding itself has to consider many factors to effectively
distinguish traces from different clusters.

» The length of the FSS: is the number of events in the FSS.

» The frequency of the FSS: is the number of times the FSS occurs in the
whole event logs. The FSS with the highest frequency frss is important.

» The frequency of events in the FSS: The difference between two FSS with
same frequency and length is underlined by the frequency of their events.

» The direct succession relation between events in the FSS: The encoding
takes into consideration the frequency of direct relations between events in
the FSS.
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> [rssis the frequency of the FSS
» nisits length
Encoding (FSS) = L > [ is the frequency of the event

-1
frss Z;‘1:1 feife e/+1f fii+1

> [r.., is the frequency of the direct
relation between events

» FSS Encoding value € [0, 1]
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Trace id; Trace FSS identifier; FSS; FSS frequency Trace id; FSS encoding vector
t;a, b, acd FSS;;ab; 2 t; [FSS,;, FSS;, 1]
t;face :> FSS;ac; 2 :> t;; [1, FSS;, 1]
tya,b,c,ae -: -:1 ts; [FSS, 1,1, 1]

> The Prefixspan? algorithm was used to extract the sequential patterns FSS.

» The extracted FSS with a different length n are sorted at first according to
their lengths and secondly according to their frequencies frss

®https://pypi.org/project/prefixspan/
M. Trabelsi
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Algorithm 1: The FSS Encoding algorithm

Data: Original logs file R

Resuli: Logs Files F' generated according the found clusters

begin

Convert the original event logs R to sequence of traces [

From L, find frequent sub-sequences F'SS based on defined
features;

For cach clement in L, lind the most freguent F'S'S and replace
found F'S5 by their encoding;

Remove elements in /. where no F'SS found;

For each element in L, Gaps between 'S5 encoding will be
replaced by "17;

Do distance measurement between trace vectors Lo

Do clustering of L;

Generate Logs Files £ according to the found clusters;

Return 7

M. Trabelsi dieh, R. Champagnat et al. Trace Clustering
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Model-based clustering, is the third category that assumes that accurate
models are discovered from homogeneous sub-logs.

The focus is directly on the quality of discovered models and the
distribution of traces among clusters.

The process model is considered as input for the clustering in order to
structure traces. These traces are used back to mine process models.

The obtained clusters strongly depend on the conformance-checking
measures used for evaluating the accuracy of discovered process models.
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» Veiga, G. M. and Ferreira, D. R. (2009), Understanding spaghetti models
with sequence clustering for prom, in “International conference on
business process management”, Springer, 92-103.

» Authors combined trace clustering with First order Markov models using a
hierarchical approach.

» Initially, random clusters are built, and traces are distributed among them.
Consequently, the cluster models (state transition probabilities of the
Markov chain of each cluster) are evaluated.

» Then iteratively, traces are re-assigned to the clusters and evaluation is

done again until the algorithm converges, and cluster models do not
change.
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» De Weerdt, J., Vanden Broucke, S., Vanthienen, J. and Baesens, B. (2013),
"Active trace clustering for improved process discovery”, IEEE
Transactions on Knowledge and Data Engineering 25(12), 2708-2720

> Authors tried to find the optimal distribution of traces between clusters
that leads to maximum quality of process models of clusters.

» They do not aim to find the similarity between traces, but rather they
cluster traces that fit in a certain process model.

» A new approach based on active learning that first takes unique cases and,
based on their distance or frequency, they are clustered together as primal
clusters.

» Clusters accept members only if the fitness is optimized, otherwise traces
are allocated to a thrash cluster or are distributed equally between other
clusters.
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» Hybrid clustering, is the last category...
» Combining existing trace clustering categories.

M. Trabelsi
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» Hompes, B., Buijs, J., Van der Aalst, W., Dixit, P. and Buurman, J. (2015),
Discovering deviating cases and process variants using trace clustering,
in "Proceedings of the 27th Benelux Conference on Artificial
Intelligence (BNAIC), November", 5-6.

» Combines the model-based and feature vector-based approaches.

» Traces are transformed into vectors using a trace profiling approach and a
similarity matrix is calculated by applying the Cosine similarity measure.

» Eventually, similarity matrix is the input of the MCL algorithm? (Markov
Cluster Algorithm).

» The graph clustering algorithm is able to find variations and deviations of a
process based on a set of selected perspectives.

Shttps://towardsdatascience.com/markov-clustering-algorithm-577168dad475
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» De Koninck, Pieter, and Jochen De Weerdt. "Scalable mixed-paradigm
trace clustering using super-instances.”" 2019 International Conference
on Process Mining (ICPM). IEEE, 2019.

» General idea;

»> Combine the strengths of the two most prominent trace clustering

paradigms (Trace similarity-driven (or distance-driven) techniques and
Model-driven techniques)

> Two-step approach:

> Learn super-instances using a simple distance-driven clustering (e.g.
k-means)

» Apply a model-driven clustering technique to the super-instances to obtain a
final clustering
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Algorithm 1 Algorithm TraCluSI (Trace Clustering using Super-Instances)
Input: G := a Grouped Event Log. k:= the desired number of clusters

: Configuration: n:= the number of super-instances. Strategy:= a super-instance selection strategy, PD:= a process
overy lechnique, m:= a process model quality metric , etvi= clustering threshold for the quality metric
Output: {C; }j‘ = An ordered set of clusters
1: {Super;} @ % Initialize super-instances empty
2. {Sub.}? Initialize sub-insiances cmpt
3 X := Featurize(G) % X is a clusterable dataset representing the traces
Phase 1 .n) % O is clustering of X
& if Strategy="Frequency’ then
7 Super; = Most frequent distinct process instance in O,
&: Sub; := Set of all other distinct process instances
Phase 2 9 else if Strategy="Centrality’ then
10 Super; = Most central distinct process instance in O; % Closest distance to cluster centroid
1 Sub; := Set of all other distinct process instances
12 end if
aend for
14: {SC; }jZI:: ActiTraC(S, k, PD, m, ctv) % Cluster the super-instances in an active manner
15: for j := (1 — |k|) do % For each cluster
Phase 3 16 for i := (1 — |SC;|) do % For each super-instance
17 {Cj}= C; U Supersc, U Subsc, % Add the super-instance and its corresponding sub-instances to the final
clusters
1 4 (
19 end for
200 return C'

111 /122
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Hybrid clustering
Clustering Evaluation

Trace-based Feature-based Model-based Hybrid

Method Dataset Traces processing Clustering

bose et al,, 2009 Telephone repair | Edit distance Hierarchical clustering
Di Francescomarino et al.,2016 | Healthcare Edit distance DBSCAN

Chatain et al,, 2017 Synthetic Edit distance Closeness-centroids
Song et al, 2008 Healthcare Frequent features Multiple algorithms
bose et al., 2009 Healthcare n-gram Hierarchical clustering
Ceravolo et al.,2017 Industry Frequent features Multiple algorithms
Trabelsi et al., 2021 Digital Libraries Frequent subsequences | DBSCAN/Meanshift
Veiga et al., 2009 Administration Marcov chains Hierarchical clustering
De Weerdt et al., 2013 Insurance Active learning k-clusters

Hompes et al., 2015 Healthcare Cosine distance Markov algorithm

De Koninck et al,, 2019 Municipality Frequent features Active learning

M. Trabelsi, N. Joudieh, R. Champagnat et al.
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Logs clustering
evaluation level

Process Models
evaluation level

M. Trabelsi, N. Joudieh, R. Champagnat et al
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Clustering evaluation measures
- ~ o P Silhouette

Logs clustering ) )
Lclum ldusterj {clusﬁ:rj evaluation level > Davies-Bouldin

Process Process evaluation measures
Discovery > Fit
ithess
» Precision

Process Models L
evaluation level > Generalization

> F-measure
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Process Mining for modeling Digital Library users' behaviors

Is process mining appropriate to extract knowledge from DL users' journeys?

Digital Library Logs Transformation

How to transform real logs into logs compatible with process mining techniques?

Exponential number of events in Digital Library logs

P s clustering a solution for the huge number of logs?
> Can we find representative clusters (users types/tasks)?
» \Which clustering method should be proposed for a large, complex and unstructured logs?

Handling Digital Library users' logs

How many logs are required to generate relevant models for both users and designers?
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1) Data visualization
» ELK services to visualise queries.

» Global view of users' queries.

> Web design queries (Javascript,
» ~ 500M every month. CSS..)

> April 2017. » HTML queries (static web pages —

collections navigation..)

» SRU queries (Search and Retrieve via
URL — search engine)

» ARK queries (Collections
identification)

ELK services refers to https://www.elastic.co/fr/elastic-stack/
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1) Data visualization 2) Outliers Detection

> ELK services to visualise queries. > Filtering queries from the
bots-crawlers

» Global view of users' queries.
» ~ 500M every month.
> April 2017.

> Deleting irrelevant queries: css, js
> Deleting ~ 60% of the queries
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1) Data visualization 2) Outliers Detection

> ELK services to visualise queries. > Filtering queries from the
. , : bots-crawlers

» Global view of users' queries.

» ~ 500M every month.

> April 2017.

> Deleting irrelevant queries: css, js
> Deleting ~ 60% of the queries

3) Users’ Queries Tagging
» Standard convention to tag queries.

» Normalisation using standard
activity's name.

» 9 activity names.
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Logs quality
Findings

2) Outliers Detection

> Filtering queries from the
bots-crawlers

1) Data visualization

» ELK services to visualise queries.
» Global view of users' queries.

» D ing i ies: J
o~ SEEM Ve e eleting irrelevant queries: css, js

> Deleting ~ 60% of the queries

> April 2017,
> Standard convention to tag queries. » Dividing all the users’ queries into

» Normalisation using standard sessions.

activity's name. > Session: a 1-hour navigation of the

> 9 activity names. same user (IP address).
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» Trace clustering techniques improve both quality of process models, as
well as reduces the amount of time needed to discover a single model.

» Data clustering algorithms group data points based on their distance in a

feature vector space. However, they are unable to perform strongly under
process-oriented event logs.

» Researchers attempted to overcome this deficiency by adopting data
clustering ideas in the process mining context.
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