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Abstract. Since few years, Galois lattices (GLs) are used in data mining
and defining a GL from complex data (i.e. non binary) is a recent chal-
lenge [1,2]. Indeed GL is classically defined from a binary table (called
context), and therefore in the presence of continuous data a discretization
step is generally needed to convert continuous data into discrete data.
Discretization is classically performed before the GL construction in a
global way. However, local discretization is reported to give better clas-
sification rates than global discretization when used jointly with other
symbolic classification methods such as decision trees (DTs). Using a re-
sult of lattice theory bringing together set of objects and specific nodes of
the lattice, we identify subsets of data to perform a local discretization
for GLs. Experiments are performed to assess the efficiency and the ef-
fectiveness of the proposed algorithm compared to global discretization.

1 Discretization process

The discretization process consists in converting continuous attributes into dis-
crete attributes [3]. This conversion can induce scaling attributes or disjoint
intervals. We focus on the latter. Such a transformation is necessary for some
classification models like symbolic models, which cannot handle continuous at-
tributes [4]. Consider a continuous data set D = (O,F ), where each object in
O is described by p continuous attributes in F . The discretization process is
performed by iteration of attribute splitting step, according to a splitting cri-
terion (Entropy [3], Gini [5], χ2 [6], ...) until a stopping criterion S is satisfied
(a maximal number of intervals to create, a purity measure,...).
More formally for one discretization step, for selecting the best attribute to be
cut, let (v1, . . . , vN ) be the sorted values of a continuous attribute V ∈ F . Each
vi corresponds to a value verified by one object of the data set D. The set of
possible cut-points is CV = (c1V , . . . , c

N−1
V ) where ciV = vi+vi+1

2 ∀i ≤ N − 1.
The best cut-point, denoted c∗V , is defined by:

c∗V = argmaxci
V
∈CV

(gain(V, ciV , D)) (1)

where gain(V, c,D) denotes in a generic manner the splitting criterion com-
puted for the attribute V , the cut-point c ∈ CV and the data set D.
The best attribute, denoted V ∗, is the V ∈ F maximizing the splitting
criterion computed for its best cut-point (i.e. c∗V ):

V ∗(D) = argmaxV ∈F (gain(V, c∗V , D)) (2)
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Finally for one discretization step, the attribute V ∗ is divided into two intervals:
[v1, c

∗
V ∗ ] and ]c∗V ∗ , vn] and the process is repeated.

This process can be run using, at each step, all the objects in the training set.
This is global discretization. It can also be run during model construction con-
sidering, at each step, only a part of the training set. This is local discretiza-
tion. In [7], Quinlan shows that local discretization improves supervised
classification with decision trees (DTs) as compared with global discretiza-
tion. In DT construction, the growing process is iterated until S is satisfied.
Local discretization is performed on the subset of objects in the current node to
select its best attribute (V ∗(node)), according to the splitting criterion. Given
the structural links between DTs and Galois lattices (GLs) [8], we propose a lo-
cal discretization algorithm for GL and compare its performances with a global
discretization.

2 Local discretization for Galois lattices

A GL is generally defined from a binary relation R between objects O and bi-
nary attributes I - i.e. a binary data set also called a formal context - denoted
as a triplet T = (O, I,R). A GL is composed of a set of concepts - a concept
(A,B) is a maximal objects-attributes subset in relation - ordered by a general-
ization/specialization relation. For more details on GL theory, notation and their
use in classification tasks, please refer to [9,10]. To define a local discretization
for GL, we have to identify at each discretization step the subset of concepts
to be processed. Given a subset of objects A ∈ P (O), there always exists a
smallest concept M containing this subset and identified in lattice theory as a
meet-irreducible concept of the GL [11]. Moreover, it is possible to compute
the set of meet-irreducibles directly from the context, thus the generation of the
lattice is useless [12]. Consequently, local discretization is performed on the set
of meet-irreducible concepts MI which does not satisfy S. Attributes in MI are
locally discretized: the best attribute V ∗(M) for each M ∈ MI is computed
according to eq. (3); then the best one V ∗(MI) (eq. (4),(5)) for the whole set
MI is split into two intervals as explain before. The context T is then updated
with these new intervals; and its MI are computed. The process is iterated until
all M ∈ MI verify the stopping criterion S. The context T is initialized with,
for each continuous attribute, an interval -i.e. a binary attribute- containing all
continuous values observed in D; thus each object is in relation with every bi-
nary attributes of T . The GL of the inital context T contains only one concept
(O, I) being a meet-irreducible concept, which is used to initialize MI. See [13]
for more details on the algorithm.
The main difference with DT is that splitting an attribute in a GL impacts
all the other concepts of the GL that contain this attribute, and due to the
order relation between concepts ≤, the structure of the GL is also modified.
Whereas, when an attribute is split in a DT node, predecessors and others
branches are not impacted. In order to select the best V ∗(MI) over all the
concepts sharing this attribute, we introduce different computing of V ∗(MI).
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Let MI = {Dq = (Aq, Bq); q ≤ Q}} be the set of meet-irreducible concepts not
satisfying S. The best attribute V ∗(Dq) associated to its best cut-point is first
computed for each concept Dq ∈MI:

V ∗(Dq) = argmaxV ∈Bq
(gain(V, c∗V , Dq)) (3)

where c∗V is defined by (1) for Dq instead of D.
Let us define I∗MI = {V ∗(D1), . . . , V ∗(DQ)} the set of best attributes associated
to each concept in MI. The best attribute V ∗(MI) among I∗MI can be defined
in two different ways:
By local discretization: Local discretization selects the best attribute V ∈
I∗MI as the one having the best gain for MI:

V ∗(MI) = argmaxV ∗(Dq)∈I∗MI
(gain(V ∗(Dq), c∗V ∗(Dq)

, Dq)) (4)

By linear local discretization: Linear local discretization takes into account
that the split of one attribute V ∈ I∗MI in a concept Dq can impact the other
concepts. So we compute a linear combination of the criterion as the sum of
the gain for each concept Dq′ ∈ MI containing this attribute V . The selected
attribute is the one that gives the best linear combination:

V ∗(MI) = argmaxV ∈I∗
MI

(
∑

Dq′∈MI|V ∈Bq′

|Aq′ |∑
Dq∈MI |Aq|

∗ gain(V, c∗V , Dq′)) (5)

3 Experimental comparison

The study is performed on three supervised databases of the UCI Machine Learn-
ing Repository1: the Image Segmentation database (Image1), the Glass Identifi-
cation Database (GLASS) and the Breast Cancer Database (BREAST Cancer).
We also use one supervised data set stemming from GREC 2003 database2 de-
scribed by the statistical Radon signature (GREC Radon). Table 1 presents the
complexity of each lattice structure associated to each discretization algo-
rithm and the classification performance using each GL by navigation [14]
and using CHAID as DT classifier [6]. Discretization is performed in each case
with χ2 as a splitting and stopping supervised criterion.

4 Conclusion

The study [3] shows that for DTs, local discretization induces more complex
structures compared to global discretization; Table 1 shows that for GL, on
the contrary, local discretization allows to reduce the structures’ com-
plexity. In [7], Quinlan proves that local discretization improves classification
performance of DTs compared to global discretization; as in DTs, Table 1 shows
that local discretization improves GLs classification performances.

1 http://archive:ics:uci:edu/ml 2 www.cvc.uab.es/grec2003/symreccontest/index.htm
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Table 1. Structures complexity and Classification performance

Nb concepts Recognition rates
Local Linear Local Global Local Linear Local Global CHAID

Image1 527 649 12172 90.33 91.57 82.23 90.95

GLASS 1950 2128 2074 71.11 72.60 73.18 63.72

BREAST Cancer 3608 2613 7784 91.66 91.23 90.05 93,47

GREC Radon 69 92 2192 90.43 90.17 81.42 92.94
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