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This paper deals with a supervised classi¯cation method, using Galois Lattices based on a

navigation-based strategy. Coming from the ¯eld of data mining techniques, most literature on

the subject using Galois lattices relies on selection-based strategies, which consists of selecting/
choosing the concepts which encode the most relevant information from the huge amount of

available data. Generally, the classi¯cation step is then processed by a classical classi¯er such as

the k-nearest neighbors rule or the Bayesian classi¯er. Opposed to these selection-based strat-

egies are navigation-based approaches which perform the classi¯cation stage by navigating
through the complete lattice (similar to the navigation in a classi¯cation tree), without applying

any selection operation. Our approach, named Navigala, proposes an original navigation-based

approach for supervised classi¯cation, applied in the context of noisy symbol recognition. Based

on a state of the art dealing with Galois Lattices classi¯cation based methods, including a
comparison between possible selection and navigation strategies, this paper proposes a

description of NAVIGALA and its implementation in the context of symbol recognition. Some

objective quantitative and qualitative evaluations of the approach are proposed, in order to
highlight the relevance of the method.

Keywords : Supervised classi¯cation; Galois (or concept) lattice; decision tree; graphical
documents; graphical symbols recognition.

1. Introduction

Galois lattices (or concept lattices) were ¯rst introduced in a formal way in the graph

and ordered structures theory.3,9 Later, it was developed in the ¯eld of Formal

Concept Analysis (FCA)13 for data analysis and classi¯cation. The concept lattice

structure, based on the notion of concept, enables data description while preserving

its diversity.

Galois lattice is a graph with a structure similar to that of a tree. It provides a

representation of all the possible correspondences between a set of objects (or

examples) O and a set of attributes (or features) I. Whereas in decision trees the path

from the root to a given leaf is unique, in Galois lattices there are multiple paths from
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the maximal boundary to a given terminal concept. The technological improvements

of the last decades enable the use of these structures for data mining problems though

they are exponential in space/time (worst case). It has to be noted that in practice, in

most cases, the size of the lattice remains reasonable. Recent studies realized by

Mephu Nguifo et al.22,20 provide a comprehensive review of some of the state-of-the-

art classi¯cation approaches based on concept lattices, which are generally based on

a selection of the most pertinent concepts in the lattice. This review shows that these

methods are able to catch up with (and sometimes even outperform) more classical

approaches such as decision trees. Multiple approaches have been proposed so far,

con¯rming the relevance of using a Galois lattice for a classi¯cation task. Among

these approaches, we can mention LEGAL and LEGAL-E,19 Galois,7 Zenou and

Samuelides',28 GRAND25 and RULEARNER27 which are based on a selection of the

concepts directly, the CIBLe approach21 which is based on object ¯ltering and the

CLNN and CLNB methods34 where contextual rules are used.

The ¯rst objective of this paper is to introduce an original supervised classi¯-

cation method that does not rely on a selection step, named Navigala. Indeed,

di®ering from the state-of-the-art approaches, Navigala relies on navigation through

the lattice. The second objective of this paper is to compare Navigala (both formally

and experimentally) to several other classi¯cation methods based on the Galois

lattice. Navigala has been developed in the ¯eld of content-based graphical docu-

ments indexing; it is dedicated to noisy symbol recognition. These symbols, which

are issued from digitized paper documents such as architectural or electrical plans,

are most often noisy. In the proposed scheme, each symbol image is represented by a

feature vector (signature), which may be statistical, structural or hybrid. The sig-

natures are discretized to obtain discrete attributes and then classi¯ed using the

Galois lattice.

This paper is organized as follows. In Sec. 2, we describe the Galois lattice

structure and its properties and provide a review of the state-of-the-art classi¯cation

approaches based on a Galois lattice. In Sec. 3, we present our navigation-based

approach named Navigala. Then, Sec. 4 proposes various experimental results

assessing the e®ectiveness of the proposed approach and an experimental compara-

tive study towards selection-oriented approaches and decision trees. The conclusion

and future works are presented in Sec. 5.

2. Description of a Galois Lattice

2.1. De¯nition

The concept lattice is a particular graph de¯ned and generated from a relation R

between objects O and attributes I. This graph is composed of a set of concepts

ordered by a relation verifying the properties of a lattice, i.e. an order relation

(transitive, re°exive and antisymmetric relation) such that, for each pair of concepts

in the graph, there exists both a lower bound and an upper bound.
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We associate to a set of objects A � O the set fðAÞ of attributes in relation R with

the objects of A:

fðAÞ ¼ fx 2 I j pRx 8 p 2 Ag
Dually, to a set of attributes B � I, we de¯ne the set gðBÞ of objects in relation with

the attributes of B:

gðBÞ ¼ fp 2 O j pRx 8 x 2 Bg
These two functions f and g de¯ned between objects and attributes form a Galois

correspondence. The relations between the set of objects and the set of attributes are

described by a formal context. A formal context C is a triplet C ¼ ðO; I;RÞ (or

C ¼ ðO; I; ðf; gÞÞ) represented by a table. Table 1 gives an example of a formal

context composed of a set of ten objects described by six attributes (a1, a2, b1, b2, c1
and c2). Additional information (class, feature and interval) is given in italics; for

more details about this additional information please refer to Sec. 3.1.

A formal concept represents maximal objects-attributes correspondences (fol-

lowing relation R) by a pair ðA;BÞ with A � O and B � I, which veri¯es fðAÞ ¼ B

and gðBÞ ¼ A. The whole set of formal concepts thus corresponds to all the possible

maximal correspondences between a set of objects O and a set of attributes I.

Two formal concepts ðA1;B1Þ and ðA2;B2Þ are in relation in the lattice when they

verify the following inclusion property:

ðA1;B1Þ � ðA2;B2Þ () A2 � A1

ðequivalent to B1 � B2Þ

����
The whole set of formal concepts ¯tted out by the order relation � is called

concept lattice or Galois lattice because it veri¯es the lattice property: the relation �

Table 1. Example of formal context and (in italics) the classes of the

objects and the features and intervals de¯ning the attributes (for more

details about the information in italics please refer to Sec. 3.1).

Attributes

Feature f1 Feature f2 Feature f3

a1 a2 b1 b2 c1 c2
Class Id [0�3] [6�20] [0�4] [12�20] [0�2] [11�20]

1 1 X X X

2 X X X

2 3 X X X

4 X X X

5 X X X

3 6 X X X

7 X X X

8 X X X

4 9 X X X

10 X X X
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is clearly an order relation, and for each pair of concepts ðA1;B1Þ and ðA2;B2Þ, there
exists a greatest lower bound (resp. a least upper bound) called meet (resp. join)

denoted ðA1;B1Þ ^ ðA2;B2Þ (resp. ðA1;B1Þ _ ðA2;B2Þ) de¯ned by:

ðA1;B1Þ ^ ðA2;B2Þ ¼ ðgðB1 \ B2Þ; ðB1 \ B2ÞÞ ð1Þ
ðA1;B1Þ _ ðA2;B2Þ ¼ ððA1 \ A2Þ; fðA1 \ A2ÞÞ ð2Þ

Therefore, a lattice contains a minimum (resp. maximum) element according to

the relation � called the bottom (resp. top) of the lattice, and denoted ?¼ ðO; fðOÞÞ
(resp. > ¼ ðgðIÞ; IÞ.) The Hasse diagram of a graph3 is the suppression on the graph

of both transitivity and re°exivity edges.

Figure 1 shows an example of concept lattice (represented by its Hasse diagram)

built from the formal context in Table 1. For more information, the reader can refer

to Ref. 33.

2.2. Generation algorithms

Numerous generation algorithms for concept lattices have been proposed in the

literature.5,7,12,15,23,24,29,32 Although all these algorithms generate the same lattice,

they propose di®erent strategies. Some of these algorithms are incremental.7,15,23

Ganter's NextClosure12 is the reference algorithm that determines the concepts in

lectical order (next, the concepts may be ordered by � to form the concept lattice)

while Bordat's algorithm5 is the ¯rst algorithm that computes directly the Hasse

diagram of the lattice. Recent work14 proposed a generic algorithm unifying the

existing algorithms in a unique framework, which facilitates the comparison of these

algorithms. A formal and experimental comparative study of the di®erent algorithms

has been published.18

Fig. 1. Example of concept lattice (Hasse diagram).
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All of these proposed algorithms have a polynomial complexity with respect to the

number of concepts (at best quadratic in Ref. 24). The complexity is therefore

determined by the size of the lattice, this size being bounded by 2 jOþIj in the worst case
and by jOþ Ij in the best case. Studies on average complexity are di±cult to perform

because the size of the concept lattice depends both on the dimensionality of the data

to classify and on their organization and diversity. However, in practice, the size of the

Galois lattice generally remains reasonable, as shown in various experiments.20,22

In Ref. 1, we introduced an extension of Bordat's algorithm, which has the

advantage of enabling on-demand concept generation. With this algorithm, only the

small portion of the lattice that is necessary for our particular classi¯cation task is

constructed during the recognition stage. This leads to a drastic decrease in the

complexity of the generation algorithm, as shown in Sec. 4.2.2, and is useful in many

contexts where incrementality is needed, or where the learning set is di®erent from

the gallery. In the latter case, we can imagine a system where discretization is per-

formed o²ine using a generic learning set, and then the set of symbols to recognize

(gallery) is given online to the system during the recognition stage. For instance, we

can imagine a generic symbol recognizer which has to be specialized online to a given

set of symbols (architectural symbols, road-signs…), the specialization including the

generation of the Galois lattice using the objects in the gallery and the attributes

obtained after discretization (performed using the learning set), and the recognition

of the query symbols itself.

2.3. Application to data mining

As most classi¯cation methods, both the selection-based and navigation-based

approaches rely on the three following stages: data preparation, learning and

classi¯cation itself, which are detailed in the following parts of this section.

2.3.1. Data preparation

The ¯rst step is feature extraction. In the context of graphic objects recognition,

many di®erent primitives may be extracted. The Galois lattice is de¯ned only for

primitives that can be organized using formal contexts, i.e. for discrete data.

Continuous-valued primitives must therefore be partitioned into a ¯nite set of

disjoint intervals (called attributes) which are referred to by using codes. This pro-

cedure is commonly called discretization. Discretization methods may be classi¯ed

according to three criteria11:

. supervised/unsupervised: while unsupervised discretization techniques only

use similarity between objects, supervised discretization methods also take into

account the classes of the objects;

. global/local: the data space may be partitioned into intervals before the con-

struction of the classi¯er (global discretization), or as the construction of the

classi¯er goes along (local discretization);
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. mono dimensional/multidimensional: while mono dimensional discretization

processes each primitive independently from the others, multidimensional dis-

cretization simultaneously uses all the primitives to partition the data space into

intervals. The main advantage of the latter technique is that it is capable of taking

into account the interactions between primitives. However, mono dimensional

discretization methods are the most widely used.

An experimental comparison of the e®ectiveness of various discretization techniques

for classi¯cation is provided in Ref. 11. The experimental results show that super-

vised discretization techniques slightly outperform unsupervised discretization

methods for a classi¯cation task.

Each of the global and local discretization methods has its own advantages and

drawbacks. While local discretization has the advantage of taking into account the

interactions between primitives, global techniques are more e±cient because they

process a feature space with lower dimensionality. The experimental comparisons

provided in Refs. 11 and 26 do not settle the question of which strategy is the best for

all circumstances; the choice of the technique is strongly related to the objective.

Depending on the application, the primitives may be continuous-valued and/or

discrete so the discretization stage is not described for every method in the literature.

In particular, the choice of the discretization strategy is not speci¯ed for the selec-

tion-based approaches described in Sec. 1. The discretization method we propose for

the Navigala approach is detailed in Sec. 3.1.

2.3.2. Learning

During the learning stage, the Galois lattice will be constructed as a classi¯er from

the set of discrete (or discretized) training data. For Galois lattice-based classi¯-

cation, the learning stage is supervised and therefore the training data consists of

training objects primitives labeled by their associated classes (desired outputs).

Preliminary to the training stage, we consider that the training data has been pre-

pared (i.e. continuous-valued primitives have been discretized). The di®erent steps

that are carried out during the learning stage depend on the type of classi¯cation

method.

For selection-based classi¯cation strategies, the learning stage includes three

steps:

. The lattice generation step and, possibly, a pruning step. Di®erent generation

algorithms are described in Sec. 2.2;

. The selection step. The objective is to reduce the learning space using di®erent

relevance criteria, such as the occurrence frequencies of the di®erent attributes.

The selection step may lead to ¯ltering out concepts,7,19,25,27,28 objects21 and/or

contextual rules34;

. Possibly the classi¯er's learning stage (e.g. the extraction of classi¯cation rules for

the GRAND25 and RULEARNER27 methods).
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The learning stage of navigation-based classi¯cation methods, detailed in Sec. 3.2,

only involves two steps:

. The lattice generation step;

. The labeling step: the nodes which are pure enough are labeled with their corre-

sponding class.

We can note that the lattice generation step may lead to a high complexity (expo-

nential complexity in the worst case). That drawback is counterbalanced by the fact

that the learning stage is o²ine and can be carried out before classi¯cation itself in

most applications. In some applications where the learning step cannot be performed

o²ine (for examples see Sec. 2.2), on-demand generation may be used (see

Sec. 3.3.2). Changes in the training set generally lead to a new learning stage, even

though some incremental solutions exist (see Sec. 2.2).

2.3.3. Classi¯cation

Once the classi¯er has been built from the training data, one can classify new

samples. The aim is to classify these new elements on the basis of their description

(primitives values). Di®ering from the learning stage which is generally performed

o²ine, the classi¯cation stage is generally performed online.

Selection-based methods rely on classical classi¯ers such as the k-nearest neigh-

bors or Bayesian classi¯ers.

Conversely, in navigation-based approaches, classi¯cation is based on the use of

the whole Galois lattice. This step is of very low complexity (for more information

about the computational times please refer to Sec. 4.2.2). Each object to be recog-

nized (denoted by p 2 A) progresses through the lattice from ? to > (see Sec. 2.1),

moving from a formal concept to one of its successors (connected by an edge), until it

reaches a labeled concept. At each concept Ci ¼ ðAi;BiÞ, the choice of the following
concept Ciþ1 ¼ ðAiþ1;Biþ1Þ is made among its direct successors according to the set

of attributes x 2 I where pRx and x 2 Ciþ1nCi. We must note that at each step, the

choice of the successor concept is unique thanks to the inclusion property (see

Sec. 2.1).

2.4. Comparison with a classi¯cation tree

At this point, the reader could naturally question the links between the decision tree

and the Galois lattice. Indeed the navigation step is quite similar to the one proposed

with a decision tree. The main di®erence lies in the existence of multiple paths to

reach a given concept in the lattice, contrary to the decision tree where there is a

unique path to reach a given node. This property confers °exibility to the recognition

process using a lattice and therefore noise robustness is increased. Experiments (see

Sec. 4.2.1) have shown that the navigation-based approach Navigala provides better

recognition rates than decision trees in a context of noisy symbols recognition.
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Moreover, we have recently shown the existence of structural links (inclusion and

fusion) between a particular type of concept lattices and decision trees. For more

details please refer to Ref. 2.

3. Description of the Proposed Approach: Navigala

We have developed a recognition system named Navigala (NAVIgation into GAlois

LAttice), where classi¯cation is navigation-based. This method is ¯tted to recognize

noisy graphical objects and especially symbol images. Such symbols appear in

technical documents such as architectural plans or electrical diagrams. The possible

origins of the noise are paper deterioration (stains, blotting out), scanning artefacts

or vectorial distortions in the context of handwritten symbols (for examples of noisy

symbols see Fig. 5).

Graphic objects may be described by various types of primitives. As statistical

features describe the spatial distributions of the pixel values of the symbol, structural

primitives describe the spatial or topological relations between certain subpatterns

extracted from the symbol images. In the following, the primitive vector of each

symbol is called the signature of this symbol.

Navigala is a supervised classi¯cation approach, whereas the discretization stage

can be performed by using either a supervised or unsupervised criterion. In this

section, we will describe the three steps of Navigala: data preparation, learning and

classi¯cation. We will also provide a comparison of Navigala with the existing

classi¯cation methods based on the use of a Galois lattice and mentioned in Sec. 1.

3.1. Data preparation

Firstly, several signatures are extracted from the symbol images: statistical sig-

natures (Fourier�Mellin invariants,10 Radon transform-based Radon transform,30

Zernike moments31), and a structural signature named °exible structural signature.8

As presented in Sec. 2.3.1, the continuous valued primitives must be discretized in

a preprocessing stage. Let us consider that the dataset is represented by an array of

data where each row corresponds to the feature vector of one symbol image and every

column corresponds to the (continuous) values of a given primitive fi in the feature

vector. The objective of the discretization stage is to obtain a formal context (as

illustrated in Table 1) where each column (attribute) corresponds to an interval that

separates the images corresponding to di®erent classes (symbols). For example, in

Table 1, the images of the ¯rst two symbols (classes 1 and 2) di®er following the

values of their second feature f2: while for the images of the ¯rst symbol f2 2 ½0; 4�,
the images of the second symbol verify f2 2 ½12; 20�.

Discretization is performed as follows. Initially, we consider that every column fi
in the data array is described by one interval Vi, the lower and upper bounds of which

are respectively the minimum and maximum values in the corresponding column. At

each iterative step of the discretization process, a criterion selects both the primitive
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to split into intervals and the optimal cutting point. At iteration t, let x 2 I be a

primitive interval, where Vx ¼ ðv1; . . . ; vnÞ are the values of x observed in the training

set and sorted by ascending order. The interval will be cut between the values vj and

vjþ1, where vj maximizes a given \cutting" criterion CðvjÞ. Numerous cutting criteria

can be proposed; these criteria may be supervised or unsupervised, global or local and

multidimensional or mono dimensional (see Sec. 2.3.1). The supervised, global and

mono dimensional criteria are among the most widely used. We experimented three

global and mono dimensional criteria (see Eqs. (3)�(5)): maximal distance, entropy

and Hotelling's coe±cient.17 While maximal distance is an unsupervised criterion

that aims at maximizing the gap between two consecutive values, entropy and

Hotelling's coe±cient are two supervised criteria which respectively minimize the

degree of mixture of the classes and jointly maximize the scatter between classes

while minimizing the within-class scatter.

. maximal distance:

CMDðvjÞ ¼ vjþ1 � vj ð3Þ

. entropy:

CEðvjÞ ¼ EðVxÞ �
j

n
Eðv1; . . . ; vjÞ þ

n� j

n
Eðvjþ1; . . . ; vnÞ

� �
ð4Þ

with EðV Þ ¼ �P jcðV Þj
k¼1

nk

n log2ðnk

n Þ, where n and cðV Þ are respectively the number of

images and the set of classes (symbols) corresponding to the values belonging to

interval V (in the training set). nk is the number of images, among the n images

with values in V , which belong to class k.

. Hotelling's coe±cient:

CHðvjÞ ¼ HðVxÞ �
j

n
Hðv1; . . . ; vjÞ þ

n� j

n
Hðvjþ1; . . . ; vnÞ

� �
ð5Þ

where HðV Þ ¼ �BðV Þ
�W ðV Þ.

With �BðV Þ ¼ 1
n

P jcðV Þj
k¼1 nkðgk � gÞ2 is the between-class variance and �W ðV Þ ¼

1
n

P jcðV Þj
k¼1 nkð

Pnk

i¼1 ðvki � gkÞ2Þ is the within-class variance, where g ¼ 1
n

Pn
j¼1 vj is

the mean of the values belonging to V , vki is the ith value in V corresponding to

class k and gk ¼ 1
nk

Pnk

i¼1 vki is the mean of the values of images from class k and

belonging to V .

The discretization process is iterated until a stopping criterion is met. In Navigala,

the stopping criterion is class separation, which is met when each set of images

sharing the same attributes is classi¯ed into one given class. In some cases where class

separation cannot be achieved, we stop the discretization process when Hotelling's

cutting criterion is less than a certain prede¯ned threshold.

In Navigala, the obtained intervals are then extended as fuzzy intervals, to be

more robust towards noise. During the classi¯cation stage, each query symbol image
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will be considered as corresponding to its set of nearest fuzzy intervals in the feature

space.

The distance dðfi;V Þ between the value fi of the ith element in the query sig-

nature and an interval V obtained from the discretization of fi can be expressed as:

dðS;V Þ ¼ dðfi;V Þ ¼ 1� �ðfi;V Þ
where �ðfi;V Þ is the membership functional that speci¯es the level of membership of

fi 2 V .

We propose the extension of an initial interval ½b; c� to a fuzzy number (described

by a trapeze ½a; b; c; d� with ½a; d� as support and ½b; c� as kernel, see Fig. 2) by taking

into account both the closest intervals and the objects distribution in the interval:

a ¼ b� ��minðdV � ; dðg; cÞÞ
d ¼ cþ ��minðdV þ ; dðb; gÞÞ

where dV � (resp. dV þ) is the distance with the closest previous interval (resp. closest

next interval); g is the gravity center of the values in the initial interval ½b; c� and � is

a fuzzy parameter. Distances dV � and dV þ are necessarily positive since intervals are

disjoints. Each interval has at least one neighbor interval since undiscretized pri-

mitives are not selected. In the special case where the current interval has only one

neighbor, we replicate that distance so as to obtain a symmetrical fuzzy interval.

3.2. Learning

The discretized data (issued from the data preparation stage) will then be used as a

training set for the Galois lattice construction. Our algorithm1 is an extension of

Bordat's algorithm5 which computes directly the Hasse diagram of the lattice (see

Sec. 2.2). Indeed, during the classi¯cation, we use the successor relation to navigate

through the graph, so we have to compute the successors of a given concept starting

with the bottom concept.

Once the Hasse diagram of the discretized data is computed, we can label its

concepts by using the classes in the training set. The terminal concepts (direct

successors of the minimal boundary, located at the bottom of the Galois lattice) are

labeled by using the formal context used for its generation (for an example of a

formal context see Table 1). To each terminal concept, we associate the class that is

most frequently associated to its objects (symbol images) in the training set. The

labels associated to the terminal concepts will be used during the classi¯cation stage.

Fig. 2. Example of a fuzzy number.
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3.3. Classi¯cation

3.3.1. Navigation

New symbols can be classi¯ed by using the Hasse diagram of the Galois lattice.

Classi¯cation is performed by using the feature vector of the query symbol and

navigating through the graph, from the minimum concept ? until a terminal

(labeled) concept is reached. At each step of this navigation stage, the nearest fuzzy

interval is selected (according to a fuzzy distance and a choice criterion). Intuitively,

during the progression of a query image, the description of the query object is re¯ned,

until it is considered similar enough to a given set of objects belonging to the same

terminal concept. When the query symbol reaches a terminal concept, it is labeled

with the corresponding class.

More formally, at each step, given the current concept ðA;BÞ, one of its direct

successors ðA1;B1Þ; . . . ;ðAm;BmÞ in the lattice is selected by validating one (or more)

fuzzy intervals. Each set of attributes Bi corresponds to a set of intervals containing

the set of intervals B: B � Bi8i ¼ f1; . . . ;mg, because the concept (Ai;Bi) is a

successor of the concept (A;B) in the lattice. At the current concept ðA;BÞ, all the
intervals in the interval set B have been validated. Let us isolate, for each successor

concept ðAi;BiÞ, the set of intervals ~Bi that are candidates for validation (the set of

intervals that have not been previously validated in ðA;BÞ):
~Bi ¼ Bi � B

Let us further denote by ~B the family of sets of intervals which are candidates for

validation:

~B ¼
[m
i¼1

~Bi

The navigation elementary step therefore consists in selecting a set of intervals ~Bi

among the family of candidate interval sets ~B. This selection is performed according

to a choice criterion de¯ned using a fuzzy distance dðS; ~BiÞ between the signature

S of the query object and the candidate sets of intervals ~Bi , for every candidate

successor concept ðAi;BiÞ.
We have to de¯ne a choice criterion to select, among the candidate sets of

intervals ~B ¼ [m
i¼1

~Bi (corresponding to the successors of the current concept), the

set of intervals ~Bi that best correspond to the signature S of the query object. The

choice criterion relies on the use of the fuzzy distances dðS; ~BiÞi¼f1;...;mg between

the signature S and the candidate sets of intervals ~Bi. Several choice criteria are

possible, hereafter is a (nonexhaustive) list of these criteria:

(1) Choosing i where the sum of the distances between the signature S and the

intervals V constituting the set of intervals ~Bi is minimum. More formally,

i ¼ Argmini¼1;...;mð�V 2 ~Bi
dðS;V ÞÞ
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(2) Choosing i where the set of intervals ~Bi contains the maximum number of

intervals among the k nearest intervals from the signature S (according to the

fuzzy distance measure d). More formally,

i ¼ Argmaxi¼1;...;m
~Bi

\
fV ð1Þ; . . . ;V ðkÞg

��� ���
where the V ðjÞ are the intervals in ~B, sorted by descending order following the

distance dðS;V Þ and k is a parameter of the choice criterion.

(3) Choosing i where the set of intervals ~Bi contains the maximal number of

intervals located at a distance inferior to the threshold c for the given query

signature S. More formally,

i ¼ Argmaxi¼1;...;mjfV 2 ~Bi such that dðS;V Þ � cgj

We can note that the ¯rst criterion, de¯ned globally on all the intervals contained in
~Bi, has the drawback of \swallowing up" the noise. The second criterion relies on the

principle of the k-nearest neighbor rule. We can also note that the third criterion is a

particular case of the second criterion. All of these proposed criteria being local for

each i ¼ 1; . . . ;m, one can de¯ne more sophisticated criteria in order to bene¯t from

the advantages of the di®erent alternatives. In our case, we chose to use a combi-

nation of these criteria, which consists in:

. Applying criterion (3) with c ¼ 0, which is equivalent to de¯ning, for every

interval V in ~Bi, a rectangular fuzzy number whose support is de¯ned by the

boundaries of V .

. Then, in case of an ambiguity, we apply criterion (3) with 0 < c < 1. The support

of the fuzzy number is extended to the fuzzy boundaries of the fuzzy interval

V proportionally to its size.

. If the ambiguity remains, we apply criterion (1), which is equivalent to a sym-

metrical fuzzy number whose zero (center, gravity center or median) is the center

of the interval.

3.3.2. On-demand concepts generation

The Galois lattice construction algorithm used for Navigala1 presents several

advantages: it is quite easy to implement, and it enables an on-demand concepts

generation of the Galois lattice: concepts are generated only when they are proposed

for selection during the recognition process. This is interesting, especially in some

applicative contexts where the graph cannot be constructed o²ine (examples of such

applications are given in Sec. 2.2). Indeed, it avoids the construction of the whole

graph, which can be of an exponential complexity in the worst case. Indeed, recog-

nition is performed by exploring only a small region of the lattice. As shown in

Sec. 4.2.2, it leads to a slight increase in the complexity of the classi¯cation step but it

considerably reduces the complexity of the learning stage.
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3.3.3. Iterative classi¯cation

In the ¯eld of symbols classi¯cation, we also developed an iterative recognition

system (see Ref. 16), which takes advantage of the complementarity of statistical and

structural approaches. Indeed, this method can integrate several descriptions of

various types for a more e®ective classi¯cation.

During navigation in the Galois lattice, in the case of uncertainty regarding the

symbol to be recognized, it is possible to stop the progression and thus avoid certain

classi¯cation errors. For example, let C1 and C2 be two successor concepts of the

current concept C, where C1 and C2 contain objects of di®erent classes whose

descriptions are very similar to the query object. To avoid any doubt, the descrip-

tions of the objects in C1 and C2 can be replaced by new descriptions issued from

another type of feature extractor. In the iterative process, these new descriptions are

then used to build a new Galois lattice especially designed to discriminate the objects

from concepts C1 and C2 according to their classes.

3.4. Comparison with other Galois lattice-based methods

This section is dedicated to a comparison between selection-based methods and

Navigala: a synthesis of the similarities and the di®erences between the various

approaches is provided. For an experimental comparison see Sec. 4.3.

Figure 3 provides a comparison of the di®erent classi¯cation methods based on a

Galois lattice. Selection-based methods can be gathered depending on the elements

used: concepts only, concepts and rules, concepts and prototypes or rules only. The

Navigala approach is characterized by the use of the whole Galois lattice with an

object classi¯cation by navigation.

Moreover, Table 2 proposes a comparison of the computational complexities of

the construction stages of these di®erent methods, and a synthesis of the exper-

imental results obtained by the authors of those methods. In this table we have

added the characteristics of Navigala. We can see that Navigala's complexity is very

low compared to other lattice-based methods, especially when our applicative con-

text enables the use of on-demand generation. We can see that its experimental

results are encouraging.

In the following, we discuss the behavior of these eight methods when classes are

weakly represented, in the presence of noise, and when the number of classes is large.

3.4.1. Weakly represented classes

In most selection-based approaches, the learning stage is limited to the most rep-

resented objects (in the learning set). That is why, with LEGAL-E for example, some

objects may not be recognized even though they are very similar to a learning sample

(if this learning sample is not representative enough of the learning set to be learnt).

The opposite of this is Navigala, where the whole learning set of objects is learnt

without favoring the most represented, which enables us to be exhaustive. However,
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Fig. 3. Comparison of some Galois lattice-based classi¯ers. The acronym NN stands for \Nearest

Neighbor", while NB stands for \Naive Bayes".

Table 2. Synthesis of the properties of the classi¯cation methods based on lattices.

Methods Construction Complexity Experimental Comparison

GRAND Oð2 ll4Þ with l the minimum between the
number of examples and the number

of attributes

Performances similar to Assistant,

AQ15, AQR, Bayes and CN2

LEGAL OððjLjnð1� �ÞÞ with jLj the number of

concepts in the lattice

Performances similar to GLUE and

superior to C4.5
GALOIS Oð3m2mnÞ < Oð32mnÞ with m the

number of attributes and n the
number of examples

Performances similar to other methods

in the literature

RULEARNER idem GRAND Performances similar to C4.5 and

CN2, or even slightly better

CIBLe Oðmin ðn� 1;m� 1Þhþ1m3Þ (sup-semi

lattice construction)

þOðmin ðn� 1;m� 1Þhþ1Þ
(threshold search)

Better performances than IBi, K � and
Pebls

CLNN and CLNB OðjLjjEj3 þ jLjmþ jL 0jÞ þOðjL 0jmÞ:O
ðNN=NBÞ with jEj the maximal

number of successors of a concept
jL 0j < jLj et OðNN=NBÞ the com-

plexities of NN or NB classi¯ers

Better performances than NBTree,

CBA and C4.5 Rules
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while selection-based methods enable outlier detection (and further suppression),

Navigala cannot detect them and they will be integrated in the Galois lattice.

Nonetheless, Navigala is designed to be robust enough to accommodate these out-

liers, as detailed in the following section.

3.4.2. Noise robustness

The navigation enables avoiding the in°uence of a noise carried on several attributes.

Indeed, the attributes are successively validated, as opposed to selection-based

approaches where the validation is given by an average. Moreover, the validation order

of the attributes is modi¯able depending on their robustness to noise. The most rep-

resented attributes are proposed at the beginning of the navigation within the lattice

and the frequency decreases during the progression within the graph. Finally, the fuzzy

distance measure softens the interval boundaries and absorbs the disturbances due to

noise. Noise robustness is a problem for a selection-based approach: while LEGAL-E

resists quite well to noise using the validity quasi-coherence criteria, the thresholds'

choice of validity and quasi-coherence can require considerable working time.19

3.4.3. Large number of classes

Some selection algorithms are not designed to manage a large number of classes. For

instance, CIBLe has di±culties characterizing data containing a large number of

classes especially with complex data.21 With navigation, it is possible to perform

classi¯cation at di®erent levels, using di®erent signature types (using iterative

classi¯cation, see Sec. 3.3.3) and therefore to discriminate between a higher number

of classes.

4. Experimental Results

In this section, we present various experimental results. Firstly, we study the e®ects

of variations in the parameters required for Navigala (for a symbol recognition task).

Second, we provide a comparative study of Galois lattice selection-based methods

and Navigala.

4.1. Setting the parameters of Navigala for symbol recognition

The main objective of this ¯rst experimental study is to tune the parameters of the

proposed approach for a symbol recognition task. For experimentations, we use two

Table 2. (Continued )

Methods Construction Complexity Experimental Comparison

Zenou Oð3m2mnþ jLj2mþ jLjmÞ Encouraging performances

Navigala (OðjLjn3) optional lattice þ) Oðnm2Þ
(classi¯cation)

Performances similar to Bayesian

classi¯er and greater than CART
(see Sec. 4.2.1)
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di®erent symbols image databases: GREC 2003a and GREC 2005 (Graphics

RECognition).b These databases were developed for international symbol recog-

nition contests organized by the IAPR TC 10 committee.c

Each database contains onemodel symbol image per class (where the model image

does not contain any noise) and noisy versions of these model symbols. The noise

mimics deteriorations generated when scanning or copying paper documents. GREC

2003 database contains 35,139 symbol images from 39 classes, with exactly 901

symbol images per class. Each class contains one model symbol and 900 noisy

symbols (ten symbol images for each of the nine types of deterioration). GREC 2005

database contains 175 symbol images from 25 classes (one model symbol and a

varying number of noisy symbols per class). The noisy symbols are distinguished

among six types of deterioration. Figures 4 and 5 respectively show samples of model

symbols and noisy symbols extracted from these two databases.

Fig. 4. Ten examples of model symbols (without noise) from GREC 2003.

Fig. 5. Six examples of noisy symbols of the GREC 2005 database.

awww.cvc.uab.es/grec2003/SymRecContest/index.htm

bhttp://www.cs.cityu.edu.hk/ grec2005

chttp://iapr-tc10.univ-lr.fr
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4.1.1. Cutting criterion

In this experiment, we choose to test the adequacy of the cutting criteria (maximal

distance, entropy or Hotelling's coe±cient) to our recognition system (see Sec. 3.1).

To evaluate these criteria, we use a subset of the GREC 2003 database. Learning

is performed by using only ten symbols per class and performance evaluation is made

by using 90 noisy symbols per class. Figure 6 provides the recognition rates and Fig. 7

gives the size of the Galois lattice for each cutting criterion. The three statistical

signatures presented in Sec. 3.1 are studied: Fourier�Mellin invariants, R-signature

(Radon) and Zernike moments.

From these experimental results, we show that Hotelling's coe±cient almost

always provides the best results, no matter which signature is used. Moreover, we can

see that the size of the lattice can explode using the maximal distance criterion as

shown in Fig. 7. For the sake of e®ectiveness and e±ciency, we therefore chose to use

Hotelling's coe±cient criterion.

Fig. 6. Recognition rates depending on the cutting criterion.

Fig. 7. Number of concepts in the Galois lattice depending on the cutting criterion.
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4.1.2. Signatures comparison

In this subsection, we compare the e®ectiveness of certain statistical and structural

signatures for our recognition system Navigala. We use a subset of the GREC 2003

database. The learning set is composed of eight classes (ten symbols per class) and

performance characterization is performed by using a test set containing 90 noisy

symbols per class. The recognition rates are presented in Fig. 8, and Galois lattice

sizes in Fig. 9.

From these ¯gures (and we can consider additionally Figs. 6 and 7) we can see

that the R-signature (Radon) is the most interesting option both in terms of rec-

ognition rates and lattice size.

4.2. Performance characterization for symbol recognition

This section shows the results of di®erent experiments.

Fig. 8. Recognition rates depending on the signature.

Fig. 9. Number of concepts in the Galois lattice depending on the signature (obtained by using the
Hotelling cutting criterion).
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Firstly, we compare the performances of Navigala and other standard classi¯-

cation approaches. Navigala is compared to a probabilistic classi¯er (Bayesian

classi¯er), a statistical classi¯er (SVM) and a symbolic classi¯er (decision tree).

Secondly, we provide computational results when using on-demand generation

algorithm.

4.2.1. Comparison with other standard classi¯cation approaches

In this subsection we show the results of two experiments where the performance of

the proposed approach is compared to other standard classi¯cation approaches.

In the ¯rst experiment, we compare the recognition rates obtained using Navigala

with those of the naive Bayesian classi¯er and a SVM classi¯er. We consider a

dataset composed of symbol images from the two GREC databases: we use two sets

of ten classes of symbols from the GREC 2003 database (named cl1-10 and cl11-20)

and one set of 25 classes of symbols from the GREC 2005 database (named cl1-25),

where the noise is stronger. The symbols are described by the statistical Radon

signature (R-signature) composed of 50 values.

The classi¯ers are evaluated using cross-validation with varying sizes of the

learning and test data: 5 blocks of 182 symbols from GREC 2003 (Test1), 10 blocks of

91 symbols from GREC 2003 (Test2), 26 blocks of 35 symbols from GREC 2003

(Test3), and 5 blocks of 35 symbols from GREC 2005 (Test4). The average recog-

nition rates are given in Fig. 10.

While the naive Bayesian classi¯er is more e®ective than Navigala in the presence

of only ten classes and of a limited noise (Test1 and Test2), Navigala outperforms the

Bayesian classi¯er in more di±cult situations where the number of images is

increased (Test3) or where the noise is signi¯cant and the number of classes to be

discriminated is increased (Test4). As a consequence, we can consider that our

approach is more robust towards noise and towards an increase of the number of

Fig. 10. Compared recognition rates of the four classi¯ers using cross-validation.
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classes than the Bayesian classi¯er. In the experiment Test4, our approach even

outperforms the SVM classi¯er.

Furthermore we can note that, Navigala performs feature selection prior to

classi¯cation (during the discretization stage) and only uses 6 to 15 of the 50

elements of the feature vectors whereas the other classi¯ers use all of the 50 elements.

For these reasons, we can consider that these results are encouraging.

In the second experiment, we compare the performances of Navigala and decision

trees. The experimental protocol is the following. We consider ten classes from

GREC 2003 dataset (10 model symbols for learning and 900 noisy symbols for test).

This data is prepared as presented in Sec. 3.1: the Radon signature is extracted from

the images, and then the signatures are discretized by using the proposed dis-

cretization approach (based on the Hotelling coe±cient). From the discretized

training signatures we generate both the concept lattice (the Navigala classi¯er is

then built) and the decision tree using CART algorithm.6

The recognition rates we obtain are 57% for the decision tree versus 72% for the

lattice. One of the main di®erences between a concept lattice and a decision tree is

that in decision trees the path from the root to a given leaf is unique whereas in

Galois lattices there are multiple paths from the maximal boundary to a given

terminal concept (see Fig. 1). The improvement of the recognition rates when using

the lattice shows that the existence of multiple paths gives the lattice better noise

robustness.

In return, the size of the lattice is generally greater than the size of the decision

tree. In our experiment, the number of discretization steps is 9 and the number of

discretized intervals is 17. The number of concepts in the lattice is 70 against (only)

18 nodes for the decision tree. Thus, we can see that, when using the same discretized

data, the size of the lattice is greater than the size of the decision tree. But this

drawback may be counterbalanced by the possibility of generating the lattice on-

demand.

4.2.2. On-demand generation

As presented in Sec. 3.3.2, the Galois lattice generation algorithm used for Navigala 1

enables an on-demand concepts generation of the Galois lattice. Recognition is

performed by exploring only a small region of the lattice. The experimental results

presented in Table 3 show the processing times for the learning and classi¯cation

steps when using a 1.83GHz processor with 512MB RAM. It also gives the number

of generated concepts. The learning set is composed of 25 model symbols (one per

Table 3. Processing times (using a 1.83GHz processor with 512MB RAM)
and number of concepts generated.

Learning Classi¯cation Number of Concepts

Whole lattice 430.2 sec 2 sec 3185

On-demand generation 0.5 sec 9.8 sec 282

468 M. Visani, K. Bertet & J.-M. Ogier



each of the 25 classes) from GREC 2003. The test set is composed of 250 noisy

symbols: ten symbols per class.

From this table we can see that the number of concepts generated on-demand

(282) is signi¯cantly reduced compared to the construction of the whole lattice

(3185), while the recognition (navigation) path is identical. Therefore, we can note

that on-demand generation gives the same performances as o²ine generation of the

lattice and reduces the size of the structure to be generated. Table 3 also shows that

when using on-demand generation the computational cost of the generation step is

partially moved from the learning stage to the classi¯cation stage (compared to

o²ine generation). Nevertheless, the computational time is globally reduced while

remaining reasonable.

4.3. Comparison with other Galois lattice-based methods

This section is dedicated to experimental comparisons between selection-based

methods and Navigala on certain databases from the UCI Repository4: Breast-cancer

(BC), Iris (IR), Soybean-small (SS) and Zoo (ZO). Table 4 provides a description of

these databases: number of records, number of continuous attributes, number of

discrete attributes and number of classes to distinguish.

We consider experimental results available in the papers describing the methods:

RULEARNER,27 CIBLe,21 CLNB — CLNN and C4.5Rules.34 This is why our ex-

perimentation results are not exhaustive. Table 5 gives the classi¯cation error rates

obtained using cross-validation.

Table 4. UCI Repository databases.

Number of Attributes

Database Number of Objects Continuous Discrete Number of Classes

BC 699 9 0 2

IR 150 4 0 3
SS 47 0 35 4

ZO 101 1 15 7

Table 5. Results obtained using cross-validation on certain databases of the UCI

Repository.

Classi¯cation Error Rates

DB Cross-Validation Navigala Cible21 CLNB34 CLNN34 C4.5R34

BC 10 fold 5.4% 3.1% 3.4% 5.0%

5 fold 5.5% 4.6%

IR 10 fold 7.4% 5.3% 5.3% 4.7%
5 fold 4.1%

SS 10 fold 2.5%

5 fold 2.3% 8%

ZO 10 fold 4.0% 3.9% 3.9% 7.8%
5 fold 4.9% 6.1%

NAVIGALA: An Original Symbol Classi¯er Based on Navigation Through a Galois Lattice 469



In general, Navigala provides classi¯cation error rates relatively close to those

obtained by other classi¯ers. It has to be noted that Navigala catches up with and

even outperforms the other methods when the number of classes is increased, as in

the Soybean-Small and Zoo databases. Therefore, we can note that Navigala is

somewhat generic, as it has been designed for a very speci¯c task of symbol recog-

nition using statistical (continuous) signatures, and can be successfully applied to

other types of data.

5. Conclusion and Discussion

The twomain contributions of this paper are: ¯rstly, the introduction of a classi¯cation

method named Navigala dedicated to noisy symbol recognition and its experimental

assessment and secondly, a comparative study (both formal and experimental) of eight

classi¯cation methods based on Galois lattices (including Navigala).

Contrary to most of the previously proposed approaches, which use the Galois

lattice as a selection tool, Navigala classi¯es the symbols by navigating through the

lattice. While most selection-based approaches are well-suited for data mining

applications with little noise and a limited number of classes, Navigala is dedicated to

a task of noisy symbol image recognition, where the number of classes may be huge.

By using the whole lattice as a classi¯er, Navigala has the advantage of being

exhaustive and proposing multiple paths to reach a given class-labeled concept,

which makes Navigala more robust towards noise. It has to be noted that the

inherent complexity is limited thanks to our on-demand generation algorithm.

We are now working on the structural links between Galois lattices and classi¯-

cation trees in order to propose a new classi¯cation method based on a Galois lattice

with local discretization, similar to the discretization stage of decision trees.

Aknowledgments

Grateful acknowledgement is made for ¯nancial support by the Poitou-Charentes

Region (France). We would also like to aknowledge Dr. St�ephanie Guillas for her

work on this subject in the context of her PhDs.

References

1. K. Bertet, S. Guillas and J. M. Ogier, Extensions of Bordat's algorithm for attributes, in
Fifth Int. Conf. Concept Lattices and Their Applications (CLA'2007) (Montpellier,
France, October 24�26, 2007), pp. 38�49.

2. K. Bertet, M. Visani, J. M. Ogier and N. Girard, Some links between decision trees and
dichotomic lattices, Sixth Int. Conf. Concept Lattices and Their Applications (CLA'2008)
(Olomouc, Czech Republic, October 2008), pp. 193�205.

3. G. Birkho®, Lattice Theory, Vol. 25, 3rd edn. (American Mathematical Society, 1967).
4. C. Blake, E. Keogh and C. Merz, UCI repository of machine learning databases, 1998.
5. J. P. Bordat, Calcul pratique du treillis de Galois d'une correspondance, Math. Sci. Hum.

96 (1986) 31�47.

470 M. Visani, K. Bertet & J.-M. Ogier



6. L. Breiman, J. H. Friedman, R. A. Olshen and C. J. Stone, Classi¯cation and Regression
Trees (Wadsworth Inc., Belmont, California, 1984).

7. C. Carpineto and G. Romano, Galois: An order-theoretic approach to conceptual clus-
tering, Proc. Int. Conf. Machine Learning (ICML'93) (Amherst, July, 1993), pp. 33�40.

8. M. Coustaty, S. Guillas, M. Visani, K. Bertet and J. M. Ogier, Flexible structural sig-
nature for symbol recognition using a concept lattice classi¯er, Seventh IAPR
Int. Workshop on Graphics Recognition (GREC'07) (Curitiba, Brazil, September, 2007),
pp. 20�21.

9. B. A. Davey and H. A. Priestley, Introduction to Lattices and Orders, 2nd edn.,
(Cambridge University Press, 1991).

10. S. Derrode, M. Daoudi and F. Ghorbel, Invariant content-based image retrieval using a
complete set of Fourier�Mellin descriptors, Int. Conf. Multimedia Computing and Sys-
tems (ICMCS'99) (1999), pp. 877�881.

11. J. Dougherty, R. Kohavi and M. Sahami, Supervised and Unsupervised Discretization of
Continuous Features (Morgan Kaufman, 1995).

12. B. Ganter, Two basic algorithms in concept analysis, Technische Hochschule Darmstadt
(Preprint 831) (1984).

13. B. Ganter and R. Wille, Formal Concept Analysis, Mathematical Foundations (Springer-
Verlag, Berlin, 1999).

14. A. Gely, A generic algorithm for generating closed sets of binary relation, Third Int. Conf.
Formal Concept Analysis (ICFCA 2005) (2005), pp. 223�234.

15. R. Godin, R. Missaoui and H. Alaoui, Learning algorithms using a Galois lattice
structure, Third Int. Conf. Tools for Arti¯cial Intelligence (San Jose, California, 1991)
pp. 22�29.

16. S. Guillas, K. Bertet and J. M. Ogier, Concept lattice classi¯er: A ¯rst step towards an
iterative process of recognition of noised graphic objects, Fourth Int. Conf. Concept
Lattices and their Applications (CLA'2006) (2006), pp. 257�263.

17. H. Hotelling, Relations between two sets of variates, Biometrika XX-VIII (1936)
321�377.

18. S. Kuznetsov and S. Obiedkov, Comparing performance of algorithms for generating
concept lattices, J. Exper. Theor. Artif. Intell. 14(2�3) (2002) 189�216.

19. E. Mephu Nguifo, Galois lattice: A framework for concept learning. design, evaluation
and re¯nement, Proc. IEEE Int. Conf. Tools with Arti¯cial Intelligence (IEEE-ICTAI-
94) (New-Orleans, November 1994), pp. 461�467.

20. E. Mephu Nguifo, V. Duquenne and M. Liquiere, Concept lattice-based knowledge dis-
covery in databases: Introduction, J. Exper. Theor. Artif. Intell. 14(2/3) (2002) 75�79.

21. E. Mephu Nguifo and P. Njiwoua, Using lattice-based framework as a tool for feature
extraction, Proc. European Conf. Machine Learning (ECML-98) (Chemnitz, Allemagne,
April 1998), LNCS 1398 (Springer Verlag), pp. 304�309.

22. E. Mephu Nguifo and P. Njiwoua, Iglue: A lattice-based constructive induction system,
Int. J. Intell. Data Anal. (IDA) 4(4) (2000) 1�49.

23. E. Norris, An algorithm for computing the maximal rectangles in a binary relation, Revue
Roumaine de Math�ematiques Pures et Appliqu�ees 23(2) (1978).

24. L. Nourine and O. Raynaud, A fast algorithm for building lattices, Third Int. Conf.
Orders, Algorithms and Applications (Montpellier, France, August 1999).

25. G. Oosthuizen, The Use of a Lattice in Knowledge Processing, PhD thesis, University of
Strathclyde, Glasgow, 1988.

26. J. R. Quinlan, Bagging, Boosting and C4.5 (AAAI Press, Menlo Park, CA, 1996).

NAVIGALA: An Original Symbol Classi¯er Based on Navigation Through a Galois Lattice 471



27. M. Sahami, Learning classi¯cation rules using lattices, eds. N. Lavrac and S. Wrobel,
Proc. European Conf. Machine Learning (ECML'95) (Heraclion, Crete, Greece, April
1995), pp. 343�346.

28. M. Samuelides and E. Zenou, Learning-based visual localization using formal concept
lattices, 2004 IEEE Workshop on Machine Learning for Signal Processing (Sao Luis
(Brasil), September 29�October 1st 2004), pp. 43�52.

29. G. Stumme, R. Taouil, Y. Bastide, N. Pasquier and L. Lakhal, Computing iceberg
concept lattices with TITANIC, Data Know. Engin. 42(2) (2002) 189�222.

30. S. Tabbone, L. Wendling and J. P. Salmon, A new shape descriptor de¯ned on the Radon
transform, Comput. Vis. Imag. Underst. 102(1) (2006) 42�51.

31. M. Teague, Image analysis via the general theory of moments, J. Opt. Soc. America
(JOSA) 70 (2003) 920�930.

32. P. Valtchev, R. Missaoui and P. Lebrun, A partition-based approach towards
constructing Galois (concept) lattices, Discr. Math. 3(256) (2002) 801�829.

33. R. Wille, Restructuring lattice theory: An approach based on hierarchies of concepts,
Ordered sets, ed. I. Rival (Dordrecht-Boston, Reidel, 1982), pp. 445�470.

34. Z. Xie, W. Hsu, Z. Liu and M. Lee, Concept lattice based composite classi¯ers for high
predictability, J. Exper. Theoret. Artif. Intell. 14(2/3) (Taylor and Francis Ltd, 2002),
pp. 143�156.

Muriel Visani received
in 2005 her PhD in com-
puter science from the
Institut National des Sci-
ences Appliques of Lyon,
France. During this period,
she worked on face recog-
nition from images for
Orange Labs Company. In
2006, she joined as an
Associate Professor in the

Computer Science Laboratory (L3i) of the Uni-
versity of La Rochelle (France).

Her research activities focus on image analysis
and recognition, especially the recognition of
complex objects in images, enriching image
description for better indexing and retrieval. For
more details please refer to http://perso.univ-lr.
fr/mvisani.

Karell Bertet received
her PhD degree in com-
puter science from the
University of Paris 7,
France, in 1998. During
her PhD thesis (1995�
1998), she worked on
some algorithmical and
structural aspects of lat-
tices. Since 1999, she is
Assistant Professor at the

University of La Rochelle, working on the links
between fundamental aspects of lattice theory
and their applications, such as symbolic classi¯-
cation methods and knowledge based represen-
tation for document images. Her present research
interests focus on and knowledge based rep-
resentation.

472 M. Visani, K. Bertet & J.-M. Ogier



Jean-Marc Ogier recei-
ved his PhD degree in
computer science from
the University of Rouen,
France, in 1994. During
this period (1991�1994),
he worked on graphic rec-
ognition for Matra Ms & I
Company. From 1994 to
2000, he was an Associate
Professor at theUniversity

of Rennes 1 during the ¯rst period (1994�1998)
and at the University of Rouen from 1998 to 2001.
Currently he is full professor at the University of
La Rochelle.

Dr Ogier's works in the L3i laboratory in
which hemanages a research group (12 permanent
sta®, 20 PhD) dealing with document analysis.
He manages several French and European pro-
jects dealing with historical document analysis,
either with public institutions, or with private
companies. He is a DeputyDirector of the GDR I3
of the French National Research Center (CNRS).
He is also Chair of the Technical Committee
10 (Graphic Recognition) of the International
Association for Pattern Recognition (IAPR).
Finally, he is also Vice Rector of the University of
La Rochelle.

NAVIGALA: An Original Symbol Classi¯er Based on Navigation Through a Galois Lattice 473


	NAVIGALA:
	1. Introduction
	2. Description of a Galois Lattice
	2.1. Definition
	2.2. Generation algorithms
	2.3. Application to data mining
	2.3.1. Data preparation
	2.3.2. Learning
	2.3.3. Classification

	2.4. Comparison with a classification tree

	3. Description of the Proposed Approach: Navigala
	3.1. Data preparation
	3.2. Learning
	3.3. Classification
	3.3.1. Navigation
	3.3.2. On-demand concepts generation
	3.3.3. Iterative classification

	3.4. Comparison with other Galois lattice-based methods
	3.4.1. Weakly represented classes
	3.4.2. Noise robustness
	3.4.3. Large number of classes


	4. Experimental Results
	4.1. Setting the parameters of Navigala for symbol recognition
	4.1.1. Cutting criterion
	4.1.2. Signatures comparison

	4.2. Performance characterization for symbol recognition
	4.2.1. Comparison with other standard classification approaches
	4.2.2. On-demand generation

	4.3. Comparison with other Galois lattice-based methods

	5. Conclusion and Discussion
	Aknowledgments
	References


