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Abstract. In this paper, we aim at evaluating the robustness of 2D-
PCA for face recognition, and comparing it with the classical eigenfaces
method. For most applications, a sensory gap exists between the images
collected and those used for training. Consequently, methods based upon
statistical projection need several preprocessing steps: face detection and
segmentation, rotation, rescaling, noise removal, illumination correction,
etc... This paper determines, for each preprocessing step, the minimum
accuracy required in order to allow successful face recognition with 2D-
PCA and compares it with the eigenfaces method. A series of experiments
was conducted on a subset of the FERET database and digitally-altered
versions of this subset. The tolerances of both methods to eight different
artifacts were evaluated and compared. The experimental results show
that 2D-PCA is significantly more robust to a wide range of preprocessing
artifacts than the eigenfaces method.

1 Introduction

During the last decade, automatic recognition of human faces has grown into a
key technology, especially in the field of multimedia indexing and video surveil-
lance. In this context, the views of the face to recognize can differ from the
training set in the exact location of the face, the head pose, the distance to
the camera, the quality of the images, the lighting conditions and partial face
occlusions due to the presence of accessories such as eyeglasses or scarf. These
different factors can affect the matching process.

Many face recognition algorithms [1,2,3] have been developed. Most of these
techniques need accurate face detection / localization [4,5] and normalization
[6]. This last step ensures that the face to recognize is aligned with those used
for training. Normalization is a critical step that can generate many artifacts.

Statistical projection methods, such as the eigenfaces method [1] are among
the most widely used for face recognition. The eigenfaces method is based on
Principal Component Analysis (PCA), and have shown good performance on
various databases. Very recently, Yang et al. [3] have introduced the concept of
Two-Dimensional PCA (2D-PCA), and have shown that it provides better results
than the eigenfaces method on three well-known databases. Lemieux et al. [7]
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have evaluated the robustness of the eigenfaces method to normalization artifacts
on the AR Face Database [8]. They have shown that the eigenfaces method is
robust up to a certain point over a representative range of errors. Passed this
point, the performances can decrease dramatically. They have also shown that
the eigenfaces method hardly deals with usual artifacts such as translation errors.
Indeed, a misalignment of 5% can reduce the recognition rates by 40%.

The aim of this paper is to evaluate the robustness of 2D-PCA and compare
it to the robustness of the eigenfaces method on a subset of the FERET1 [9] face
database. The following parameters are tested: image rotation, scaling, vertical
and horizontal translations, gaussian blurring, addition of white noise and partial
occlusions of the face. The first four parameters model the effects of an inaccurate
localization of the facial features, while gaussian blurring and addition of white
noise simulate respectively poor resolution and low quality images.

The paper is organized as follows. Section 2 details the 2D-PCA method.
Section 3 describes our experimental protocol. Experimental results and in-depth
analysis are given in Section 4. Section 5 concludes this paper.

2 Brief Description of Two-Dimensional PCA

While the eigenfaces method [1] is a baseline technique, Two-Dimensional PCA
[3] is a very recent approach that we propose to describe in this section. The
model is constructed from a training set containing n images. While the eigen-
faces approach considers an image with h rows and w columns as a vector of
size h · w (by concatenating its rows of pixels), 2D-PCA keeps the 2D structure
of an image by considering it as a matrix of pixels, with h rows and w columns.
The goal is to obtain a set of k vectors P = [P1, . . . , Pk], of size w, so that the
projection of the training set on P explains the best the scatter of the training
set. These vectors Pi will be referred to as 2D-components in the following. The
h × k projected matrix X̂i of Xi on P is X̂i = Xi · P , where Xi is the h × w
matrix of the ith image of the training set and P is the w × k matrix whose
columns are the k 2D-components.

Yang et al. [3] introduced the maximization criterion J(P ) = trace(Ŝ), where
Ŝ is a generalized covariance matrix of the n projected image matrices X̂i:

Ŝ =
1
n

n∑

i=1

(X̂i − ¯̂
X)(X̂i − ¯̂

X)T (1)

with ¯̂
X = 1

n

∑n
i=1 X̂i. Yang shows that the criterion J(P ) equals PT SP , where

S is a generalized covariance matrix of the n image matrices Xi:

S =
1
n

n∑

i=1

(Xi − X̄)T (Xi − X̄). (2)

where X̄ is the mean matrix of all the n images of the training set.
It can be shown [3] that the vectors (Pi)i=1...k maximizing the criterion J(P )

are the k eigenvectors of S with largest eigenvalues.
1 Portions of the research in this paper use the FERET database of facial images

collected under the FERET program.
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Face images are compared after projection on P . Yang et al. proposed the
following distance between projected face images X̂a and X̂b:

d(X̂a, X̂b) =
k∑

j=1

‖X̂a
j − X̂b

j‖2 (3)

where ‖ · ‖2 denotes the Euclidian norm and X̂i
j

= XiPj is the projected vector
of image matrix Xi on the jth projection vector Pj .

3 Description of the Experiments

In this section, we propose to compare the robustness of 2D-PCA using distance
(3), with the robustness of the classical eigenfaces approach using L2 distance.

Yang et al. [3] have proven that image feature extraction is computationally
more efficient using 2D-PCA than using the eigenfaces method. They have also
shown that 2D-PCA gives better recognition rates than the eigenfaces method
in the presence of variations over time, variations in the sample size, facial ex-
pressions, lighting conditions and pose. They experimented on three correctly
normalized face databases excluding FERET. In order to study independently
the effects of inaccuracies in the normalization steps, we performed our exper-
iments on a subset of the FERET database, and digitally-modified versions of
this subset.

The subset used for training contains 200 pictures of 200 persons (one view
per person). Most of the subjects have a neutral facial expression. None of them
wear eyeglasses. An example is given in Fig.1(a). For each image, the positions
of the eyes are known; they are used to perform face normalization, in five steps:
1. detecting and localizing the eyes in the image;
2. rotating the image so that the eyes are horizontally aligned;
3. scaling the image so that the distance between the eyes is set to 70 pixels;
4. cropping the image to a size of 130 pixels wide by 150 pixels high;
5. equalizing the histogram of the face image.

A successful normalization is illustrated in Fig.1(b). To simulate the effects
of disturbing events, we have defined 8 parameters illustrated in Fig.1(c-j). The
first four parameters simulate the effects of imprecise eye localization.
– Vertical and horizontal translations: when cropping the images, an in-

accurate feature detection can lead to translations of the face in the image.
Horizontal translation varies from -30 to 30 pixels (23% of the total width),
positive values corresponding to translations to the right. Vertical transla-
tion varies from -19 to 19 pixels (12.7% of the total height), positive values
corresponding to translations to the top.

– Rotation: a central rotation whose center is located exactly at the middle
of the eyes is applied after face normalization. The rotation angle varies from
1 to 19 degrees, clockwise;

– Scaling: the difference between the observed inter-eye distance and the tar-
get distance (i.e. 70 pixels) is varied from -20% to 20%; positive values cor-
respond to zooming in and negative values to zooming out.
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(a) (j)(i)(h)

(d)(c)

(g)

(e) (f)(b)

Fig. 1. (a) Original image (FERET database). (b) Correctly normalized image (size
150×130). (c) Horizontal translation (22 pixels). (d) Vertical translation (4 pixels). (e)
Rotation (8 degrees clockwise). (f) Scaling (-7%). (g) Blurring (σ = 5.5). (h) Additive
Gaussian white noise (σ = 90). (i) Scarf (47 pixels). (j) Glasses (β = 0.2)

In an uncontrolled environment, depending on the distance between the cam-
era and the subject, the resolution of the face image to recognize can be much
lower than the resolution of the training images. One solution is to digitally
zoom on the corresponding face. Zoom results in an interpolation of the missing
pixels leading to blur the image; this phenomenon is simulated by the following
parameter.
– Blurring: the image is convolved with a gaussian filter, whose standard

deviation σ is varied from 0.5 to 9.5.

Images acquired through real cameras are always contaminated by various
noise sources, but if the systematic parts of the measurement error are com-
pensated for, the error can be assumed to be additive Gaussian white noise,
simulated by the following parameter.
– White noise: Gaussian White noise is added to the whole face image; its

standard deviation σ is varied from 1 to 90.

Let us finally consider the effects of occlusions. Some of the most usual oc-
clusions are due to the presence of eyeglasses or of a scarf hiding the inferior part
of the face. The glasses can be more or less dark, and the scarf can be more or
less raised on the face. The following two parameters simulate these occlusions.
– Scarf: a black strip is added to the face image. It covers all the surface of the

image from the bottom to a given height, varied from 1 to 80 pixels (more
than 53% of the total height).

– Glasses: two black ellipses of width 3 pixels, whose centers are the centers
of eye pupils and whose axial lengths are 28 and 18 pixels, are added to the
face image. They are connected by a black strip of size 3×17 pixels. Each
pixel I(x, y) inside one of these ellipses is replaced by I ′(x, y) = (1 − β) ·
I(x, y) − βIm, where Im is the mean of all the pixels of the original image.
β is varied from 0 to 1; its increase results in darkening the interior of the
ellipses. Near β = 1, the glasses are completely black.



Comparing Robustness of Two-Dimensional PCA 721

Our aim is to study the effects of each of these parameters separately. There-
fore, for a given experiment, only one parameter is tuned. The training set is
the subset of the FERET database previously described, correctly normalized
thanks to precise eye positions. Each test set corresponds to a fixed value of a
given parameter applied to the training set, and therefore contains 200 digitally
modified images of the training set, of the same size 150 × 130 pixels.

4 Experimental Results

In order to obtain the best performances, for both techniques and for each pa-
rameter, we first studied the number k of projection vectors providing the best
recognition rates. The projection vectors are sorted by their associated eigen-
value in descending order, and the first k are selected. In Fig.2-3, the number of
selected projection vectors is systematically given after the name of the algorithm
used (eg. 2D-PCA(6) means that 6 2D-components have been selected to imple-
ment the 2D-LDA algorithm). Even though most of our experiments highlighted
an optimal number of projection vectors, it can be noticed that, for some pa-
rameters, recognition rates grow with k. This phenomenon, often observed with
eigenfaces, is illustrated in Fig.2(a). Concerning horizontal translations, the best
results were obtained with only one 2D-component and decreased dramatically
when using more 2D-components. This phenomenon, illustrated in Fig.2(b), is
very interesting and opens the way to a normalization process using 2D-PCA.

To evaluate the robustness of both methods, we studied the variations of
the recognition rates when each parameter is tuned independently. From Fig.3,
we can extract the tolerance ranges to each parameter, given in Table 1. The
tolerance range to a parameter is the variation range of this parameter within
which the recognition rates are greater than 95%.

Concerning horizontal translations (see Fig.3(a)), 2D-PCA is much more ro-
bust to horizontal translations than the eigenfaces method. The tolerance range
for 2D-PCA with only the first 2D-component is [−20, 22] (about 17% of the
total width) and only [−6, 6] (4,6%) for 70 eigenfaces. When adding more 2D-
components (see Fig.2(b)), the recognition rates decrease but are still better
than the recognition rates provided by the eigenfaces method.

Fig.3(b) shows that, for vertical translations, the optimal number of projec-
tion vectors is 90 eigenfaces against only 13 2D-components; however 2D-PCA
achieves much greater recognition rates. 2D-PCA’s tolerance range is [−4, 4]
(2.7% of the total height) against [−3, 3] (2%) for the eigenfaces method.

Tolerance range to rotation (see Fig.3(c)) for 2D-PCA is [0, 8] with only 4
2D-components and [0, 6] with 90 eigenfaces. The recognition rates of 2D-PCA
are significantly greater than those of the eigenfaces method with the rotation
angle varying from 1 to 19 degrees.

When studying the robustness to scaling (see Fig.3(d)), we can notice that
both methods appear to be as robust to zooming in as to zooming out. 2D-PCA is
more robust to scaling than the eigenfaces method. Using only 13 2D-components
provides better results than using 90 eigenfaces: 2D-PCA has a tolerance of ±7%
to scaling, while the eigenfaces method’s tolerance is ±6%.
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Fig. 2. (a) Effects of scaling on PCA. Recognition rates grow with the number k of
selected eigenfaces, until k reaches 90. (b) Effects of horizontal translation on 2D-
PCA. The best recognition rates are obtained with the first 2D-component only. The
recognition rates decrease when more 2D-components are added.

Table 1. Tolerance ranges to the eight parameters tuned independently.

[0 , 0.15][0 , 1]Glasses (β)

15 %31 %Scarf (% of total height)

[0 , 90][0 , 90]Additive white noise (σ)

[0, 4][0 , 5,5]Blurring (σ)

± 6 %± 7 %Scaling (%)

[0 , 6][0 , 8]Rotation (degrees)

± 2 %± 2,7 %Vertical Translations (% of total height)

± 4,6 %± 17 %Horizontal Translations (% of total width)

Eigenfaces2D-PCA

Fig.3(e) shows that 2D-PCA is much more robust to blurring, with a toler-
ance of 5.5, than the eigenfaces method for which tolerance is only 4.

Fig.3(f) shows that both techniques are very robust to additive white noise.
Recognition rates for both techniques are very close to 100% with σ varying from
0 to 90, which corresponds to a strong additive noise, as shown in Fig.1(h).

From Fig.3(h-i) we can conclude that 2D-PCA is significantly more robust
to partial occlusions than the eigenfaces approach. While 2D-PCA tolerates a
47 pixel scarf, the eigenfaces only tolerate a 22 pixel occlusion (improvement of
about 114%). Concerning glasses, from 9 2D-components to 20, the recognition
rates are 100% when β is varied from 0.05 to 1, while the tolerance range of the
eigenfaces method is at most 0.15, with the optimal number of 90 eigenfaces.
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Fig. 3. Compared recognition rates of 2D-PCA and eigenfaces when each parameter is
tuned independently.
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5 Conclusion

Two-Dimensional PCA has proven to be efficient for the task of face recogni-
tion as well as computationally more efficient than the eigenfaces method [3].
However, like every statistical projection technique, it requires several prepro-
cessing steps, that can generate various artifacts. Our aim was to determine the
minimum accuracy required for 2D-PCA to provide efficient recognition. The ro-
bustness of 2D-PCA was compared to the robustness of the classical eigenfaces
method, on a subset of the well-known FERET database.

Experimental results have shown that 2D-PCA is more robust than the eigen-
faces method over a wide range of normalization artifacts, overall translations,
rotation of the face in the plane of the image, scaling, blurring and partial occlu-
sions of the face. Some of our very recent experiments tend to show that 2D-PCA
is also more robust to in-depth rotations than the eigenfaces method (recognition
rates are improved of about 9% until a 30 degree rotation). Therefore, assuming
that the efficiency of the preprocessing algorithm is within the tolerance ranges
given in this paper, 2D-PCA can be applied successfully to face recognition in
an unconstrained environment such as video indexing or video surveillance.
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