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Abstract. In this paper, we present a new statistical projection-based
face recognition method, called Bilinear Discriminant Analysis (BDA).
The proposed technique effectively combines two complementary versions
of Two-Dimensional-Oriented Linear Discriminant Analysis (2DoLDA),
namely Column-Oriented Linear Discriminant Analysis (CoLDA) and
Row-Oriented Linear Discriminant Analysis (RoLDA). BDA relies on
the maximization of a generalized bilinear projection-based Fisher cri-
terion. A series of experiments was performed on various international
face image databases in order to evaluate and compare the effectiveness
of BDA to RoLDA and CoLDA. The experimental results indicate that
BDA outperforms RoLDA, CoLDA and 2DPCA for face recognition,
while leading to a significant dimensionality reduction.

1 Introduction

In the eigenfaces [1] (resp. fisherfaces [2]) method, the 2D face images of size
h×w are first transformed into 1D image vectors of size h ·w, and then a Princi-
pal Component Analysis (PCA) (resp. Linear Discriminant Analysis (LDA)) is
applied to this high-dimensional vector space, where statistical analysis is costly
and may be unstable. To overcome these drawbacks, Yang et al. [3] proposed
the Two Dimensional PCA (2DPCA) method, that aims at performing PCA
directly using the face image matrices. It has been shown that 2D PCA is more
effective [3] and robust [4] than the eigenfaces method when dealing with face
segmentation inaccuracies, low-quality images and partial occlusions.

In [5], we proposed the Two-Dimensional-Oriented Linear Discriminant
Analysis (2DoLDA) approach, that consists in applying LDA to image matrices.
We have shown on various face databases that 2DoLDA provides better face
recognition results than both 2DPCA and the Fisherfaces method, and that it
is more robust to variations in lighting conditions, facial expressions and head
pose.

In this paper, we propose a novel supervised projection method called Bilin-
ear Discriminant Analysis (BDA) that outperforms 2DoLDA while substantially
reducing the computational cost of the recognition step.
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The remainder of the paper is organized as follows. In section 2, we remind
the theory and algorithm of 2DoLDA. In section 3, we describe the principle
and algorithm of the proposed BDA method, pointing out its advantages over
previous methods. In section 4, a series of three experiments, on different inter-
national data sets, is presented to demonstrate the effectiveness and robustness
of BDA and compare its performances with respect to RoLDA, CoLDA and
2DPCA. Finally, conclusions are drawn in section 5.

2 Two-Dimensional Oriented Linear Discriminant
Analysis (2Do LDA)

In [5], we introduced a version of 2DoLDA that will further be called Row-
Oriented Linear Discriminant Analysis (RoLDA). However, 2DoLDA may be im-
plemented in two different ways: RoLDA and Column-oriented LDA (CoLDA).
Let us first present RoLDA.

The model is constructed from a training set Ω containing n face images of
C people, with multiple views per person. The set of images corresponding to
one person is called a class. Let us denote Ωc the set of nc images belonging to
class c. Each face image is stored as a h×w matrix Xi, labelled by its belonging
class. Let us consider a w × k projection matrix P , and the following projection:

XP
i = Xi · P (1)

The matrix XP
i , of size h×k, is the signature of Xi using RoLDA. Our aim is to

determine, for a fixed size h × k, the optimal matrix P ∗ jointly maximizing sep-
aration between different classes and minimizing separation between signatures
from the same class. Under the assumptions of multinormality and homoscedas-
ticity of the image matrices rows, P ∗ maximizes the following generalized Fisher
criterion [5]:

J(P ) =
|PT SbP |
|PT SwP | (2)

Sw and Sb being respectively the generalized within-class and between-class co-
variance matrices of the training set:

Sw =
C∑

c=1

∑

Xi∈Ωc

(Xi − X̄c)T (Xi − X̄c) and Sb =
C∑

c=1

nc(X̄c − X̄)T (X̄c − X̄)(3)

with X̄c and X̄ being mean images, computed respectively from Ωc and Ω. If
Sw is non-singular (which is generally verified as w << n), the k columns of P ∗

are the eigenvectors of S−1
w Sb with largest eigenvalues. A numerically stable way

to compute them is given in [6].
Analogeously, CoLDA relies on the following projection: XQ

i = QT · Xi (4)
where Q is a h × k projection matrix, and the k × w matrix XQ

i is the signature
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of Xi using CoLDA. Under the assumptions of multinormality and homoscedas-
ticity of the image matrices columns, we can consider the following generalized
Fisher criterion:

J(Q) =
|QT ΣbQ|
|QT ΣwQ| (5)

where Σw and Σb are respectively the within-class and between-class covariance
matrices of the set (XT

i )i∈{1...n}:

Σw =
C∑

c=1

∑

Xi∈Ωc

(Xi − X̄c)(Xi − X̄c)T and Σb =
C∑

c=1

nc(X̄c − X̄)(X̄c − X̄)T(6)

Let us denote Q∗ the optimal projection matrix of size h×k, maximizing criterion
(5). If Σw is non-singular, the columns of Q∗ are the k eigenvectors of Σ−1

w Σb

with largest eigenvalues.
For RoLDA and CoLDA, there are at most C −1 eigenvectors corresponding

to non-zero eigenvalues; their number k can be selected using the Wilks Lambda
criteria, which is also known as stepwise discriminant analysis [7]. This analysis
shows that the number k of eigenvectors required by both methods is comparable
and generally inferior to 15, even if the number of classes is large, as shown in
Fig. 2.(a), reporting on an experiment performed on 107 classes.

Recognition is performed by using the Euclidean distance between the sig-
natures of the face images, and the nearest neighbour rule.

3 Bilinear Discriminant Analysis (BDA)

3.1 Why Combine CoLDA and RoLDA?

We conducted four experiments highlighting the complementarity of RoLDA and
CoLDA. In the following, all the face images are centered and cropped to a size
of h × w = 75 × 65 pixels.

The first two experiments are performed on subsets of the Asian Face Data-
base PF01 [8] containing 107 people. They illustrate the fact that, depending on
the training and test data, RoLDA and CoLDA outperform each other. In the
first experiment, the training and test sets, illustrated in Fig. 1.(a-b), contain
respectively 5 near-frontal views per person (535 images) and 4 non-frontal views
per person (428 images). These two sets differ in the head pose. Fig. 2. (a) shows

(a) (b) (c) (d)

Fig. 1. Extracts of (a) the training set and (b) the test set used for the first experiment;
Extracts of (c) the training set and (d) the test set used for the second experiment.
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Fig. 2. Compared recognition rates of RoLDA, CoLDA and 2DPCA on a subset of the
PF01 database showing (a) head pose changes and (b) facial expression changes, when
varying the number k of projection vectors.

that both CoLDA and RoLDA are highly effective (recognition rates superior to
92 %), and outperform 2DPCA. However, RoLDA outperforms CoLDA, with a
4,5% improvement of the recognition rate between their respective maxima.

The second experiment is performed on a subset of the PF01 database con-
taining 107 people, with five different facial expressions. This subset is randomly
partitioned into a training set and a test set, illustrated in Fig. 1.(c-d). From
Fig. 2.(b) we can see that, even if RoLDA and CoLDA are not highly performing
(the recognition rates are inferior to 60%), both of them outperform 2DPCA.
However, CoLDA is more effective than RoLDA, with a 5,6% improvement of
the recognition rate between their respective maxima.

The third and fourth experiments provide further comparison of the perfor-
mances of CoLDA and RoLDA. They are performed on the Yale Face Data-
base [2], that contains 15 people and 11 views per person, with occlusions and
variations in lighting conditions and facial expressions. In the third experiment,
the Yale database is randomly partitioned into a training set containing four
views per person, and a test set containing six views per person. To ensure ho-
moscedasticity, the views of each set are consistent among the classes, e.g. all the
”wink” views are included in the test set, and all the ”neutral” in the training
set. This operation is repeated five times. From each partition, we compute a
confusion matrix with k = C−1 = 14 (see Table 1.) In each confusion matrix,
the top left cell contains the number of faces correctly classified by both RoLDA
and CoLDA. The top right entry is the number of faces correctly classified by

Table 1. Confusion matrices of RoLDA and CoLDA, computed from five random
partitions of the Yale Face Database

1611

1053

35

1171

64

872

1614

555

187

263

(a)              (b)             (c)              (d)          (e)
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Fig. 3. Extracts (a) of the training set and (b) of the seven test sets, taken from Yale
and used for the fourth experiment. Any subject not wearing eyeglasses in the training
set wears eyeglasses in the ”occlusion” set, and vice-versa. (c) Compared recognition
rates of CoLDA and RoLDA, computed from the seven test sets illustrated in (b).

RoLDA, but misclassified by CoLDA. The bottom left cell contains the number
of faces correctly classified by CoLDA, but misclassified by RoLDA. The bot-
tom right entry is the number of faces misclassified by both methods. Table 1.(a)
shows that, on the first random partition of the Yale database, the performances
of RoLDA and CoLDA are comparable (the recognition rates are respectively

53+10
53+10+11+16 = 70% and 71,1%). However, classification results are very different:
21 samples (23,3% of the test set) are correctly classified by only one method.
Moreover, 82, 2% � max(70%, 71, 1%) of the query faces are recognized by at
least one of the two methods. Table 1.(b-c) illustrate the fact that RoLDA gener-
ally outperforms CoLDA. Table 1.(d-e) show that, in some configurations where
the rate of misclassification by both methods is high -respectively 16

90 = 17, 8%
and 20% for partitions (d) and (e)-, CoLDA outperforms RoLDA.

The fourth experiment provides further qualitative analysis. The training
set, illustrated in Fig. 3.(a), contains four views for each of the 15 subjects, with
variations in lighting conditions and facial expressions. Then, seven test sets,
illustrated in Fig. 3.(b) and corresponding to the remaining views, are built.
Fig. 3.(c) illustrates the fact that, even if RoLDA is generally more effective
than CoLDA, in some cases CoLDA drastically outperforms RoLDA, especially
when the test set contains dissimetries of the image following the vertical axis
(”leftlight” and ”rightlight”). CoLDA can also slightly outperform RoLDA when
the test set shows strong facial expression changes, e.g. ”surprised”. Choosing
between CoLDA and RoLDA therefore requires a preliminary qualitative analy-
sis of the training and test sets, which is a difficult task. As both RoLDA and
CoLDA have high performances but give different recognition results, appropri-
ately combining them can lead to a highly effective method.

In 2DoLDA, considering image matrices instead of vectors (as in the Fish-
erfaces method) when performing LDA leads to a reduced computational cost
when building the model, and to a reduced storage cost [5]. But the size of the
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signatures is h × k for RoLDA and k × w for CoLDA, and may be large. As
exposed in the following section, using BDA leads to a drastic reduction in the
signatures size, and therefore reduces the computational cost during the recog-
nition step, which is often online.

3.2 Description of Bilinear Discriminant Analysis

Let us consider two projection matrices Q ∈ R
h×k and P ∈ R

w×k, and the
following bilinear projection:

XQ,P
i = QT XiP (7)

where the k × k matrix XQ,P
i is the signature of Xi using BDA. For any fixed k,

let us search for the optimal pair of matrices (Q∗, P ∗), maximizing the following
generalized Fisher criterion:

(Q∗, P ∗) = Argmax
(Q,P )∈Rh×k×Rw×k

|SQ,P
b |

|SQ,P
w |

(8)

= Argmax
(Q,P )∈Rh×k×Rw×k

|
∑C

c=1 nc(X
Q,P
c − XQ,P )T (XQ,P

c − XQ,P )|
|
∑C

c=1
∑

i∈Ωc
(XQ,P

i − XQ,P
c )T (XQ,P

i − XQ,P
c )|

(9)

SQ,P
w and SQ,P

b being the within-class and between-class covariance matrices of
the signatures set (XQ,P

i )i∈{1,...,n}.
This objective function is biquadratic and has no analytical solution. We

therefore propose an iterative procedure that we call Bilinear Discriminant
Analysis. Let us expand the expression (9):

(Q∗, P ∗) = Argmax
(Q,P )∈Rh×k×Rw×k

[
|ΣC

c=1nc(P T (Xc−X)T QQT (Xc−X)P )|
|ΣC

c=1Σi∈Ωc (P T (Xi−Xc)T QQT (Xi−Xc)P )|

]
(10)

For any fixed Q ∈ R
h×k, using equation (10), the objective function (9) can be

rewritten:

P ∗=Argmax
P∈Rw×k

[
|P T

�
ΣC

c=1nc(XQ
c −XQ)T (XQ

c −XQ)
�
P |

|P T
�
ΣC

c=1Σi∈Ωc (XQ
i −XQ

c )T (XQ
i −XQ

c )
�
P |

]
= Argmax

P∈Rw×k

|P T SQ
b P |

|P T SQ
w P | (11)

SQ
w and SQ

b being respectively the generalized within-class covariance matrix and
the generalized between-class covariance matrix of the set (XQ

i )i∈{1...n}, each XQ
i

being computed using (4). Therefore the columns of the matrix P ∗ are the k

eigenvectors of SQ
w

−1
SQ

b with largest eigenvalues, obtained by applying RoLDA
on the set of the projected samples XQ

i . Let us denote A = PT (Xc − X)T Q,
matrix of size k × k. Given that, for every square matrix A, |AT A| = |AAT |, the
objective function (9) can be rewritten:

(Q∗, P ∗) = Argmax
(Q,P )∈Rh×k×Rw×k

[
|ΣC

c=1nc(QT (Xc−X)PP T (Xc−X)T Q)|
[ΣC

c=1Σi∈Ωc (QT (Xi−Xc)PP T (Xi−Xc)T Q)|

]
(12)
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For any fixed P ∈ R
w×k, using equation (12) the objective function (9) can be

rewritten Q∗=Argmax
Q∈Rh×k

|QT ΣP
b Q|

|QT ΣP
wQ| ,where ΣP

w and ΣP
b are respectively the general-

ized within-class and between-class covariance matrices of the set((XP
i )T)i∈{1...n},

each XP
i being computed using (1). Therefore, the columns of Q∗ are the k eigen-

vectors of (ΣP
w )−1

ΣP
b with largest eigenvalues, obtained by applying CoLDA on

the set of the projected samples XP
i .

3.3 Algorithm of the BDA Approach

Let us initialize P0 = Iw, the identity matrix of R
w×w, and k0=C−1. The proposed

algorithm for BDA is:

1. For i ∈ {1, . . . , n}, compute XPt

i = XiPt;
2. Apply CoLDA to (XPt

i )i∈{1,...,n}: compute ΣPt
w , ΣPt

b and, from (ΣPt
w )−1 ·ΣPt

b ,
compute Qt, of size h × kt;

3. For i ∈ {1, . . . , n}, compute XQt

i = (Qt)T Xi;
4. Apply RoLDA to (XQt

i )i∈{1,...,n}: compute SQt
w , SQt

b and, from (SQt
w )−1 ·SQt

b ,
compute Pt, of size w × kt;

5. Compute α = −(n − w+C
2 − 1) ln

[∏C−1
j=kt+1

1
1+λj

]
;

6. if α<p-value
[
χ2 ((w−kt)(C−kt−1))

]
, then t ← t+1, kt ← kt−1-1, and return to

step 1;
7. else kt ← kt−1, Q ← Qt−1 and P ← Pt−1.

The stopping criterion (steps 5.-7.) derives from the Wilks Lambda criterion,
testing the discriminatory power of the C-kt-1 eigenvectors of (SQt

w )−1·SQt

b re-
moved at step 4., by keeping in Pt only the kt eigenvectors with highest eigenval-
ues (λj)j∈{1...kt}. We consider the following test: H0: at least one of the eigenvec-
tors kt+1,. . . ,C-1 is discriminative, and H1: non H0. Under H0, it can be easily
shown that −(n − w+C

2 − 1) ln(
∏C−1

j=kt+1
1

1+λj
) corresponds to a χ2 distribution,

with (w-kt)(C-kt-1) degrees of freedom. The p-value can be chosen at a con-
fidence level of 5%. If α<p-value, the C-kt-1 last eigenvectors can be removed
and the stepwise analysis goes on. If α>p-value, the eigenvector kt+1=kt−1 is
discriminative and should be kept.

Recognition is performed in the BDA projection space, by using the Euclid-
ean distance between face image signatures, and the nearest neighbour rule.

We can note that the computational cost of one comparison is o(k2) for BDA,
versus o(h · k) for RoLDA and 2DPCA, and o(w · k) for CoLDA; therefore BDA
drastically reduces the computational cost of the recognition step.

4 Experimental Results

Three experiments are performed on the Asian Face Database PF01 [8], the
FERET [9] 1 face database, and the ORL Database [10], to assess the effective-
ness of BDA and compare it with RoLDA, CoLDA and 2D-PCA.
1 Portions of the research in this paper use the FERET database of facial images

collected under the FERET program.
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Fig. 4. Compared recognition rates of BDA, RoLDA, CoLDA and 2DPCA, on the
subset of PF01 with expression variations, when varying the number k of eigenvectors.
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Fig. 5. Extracts (a) of the training set and (b-c) of the two test sets to be matched.
(d) Compared recognition rates of BDA, RoLDA, CoLDA and 2DPCA, when matching
the test sets (b) and (c).

The training and test sets used for the first experiment, differing in the
facial expressions, were used for the second experiment reported in section 3.1
and are illustrated in Fig. 1.(c-d). From Fig. 4., we can see that BDA strongly
outperforms RoLDA, CoLDA and 2DPCA.

The second experiment, performed on FERET, aims at evaluating the gen-
eralization power of BDA. Indeed, LDA-based methods are known to be more
effective when comparing faces of known people, but provide worse generaliza-
tion results than unsupervised methods. The training set, illustrated in Fig. 5.(a),
contains 818 images of 152 people with at least four views per person, taken on
different days and under different lighting conditions. Two test sets, each one
containing 200 people with one view per person and illustrated in Fig. 5.(b-c),
are compared. The test sets are taken from FERET, but none of the 200 people
is registered in the training set. From one test set to the other, the facial expres-
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sions vary. From Fig. 5.(d) we can conclude that, when the training set contains
many classes with important variations inside the classes, BDA provides better
generalization than the other methods.

For the third experiment, the ORL database is randomly partitioned into a
training set containing five views, and a test set containing the five remaining
views, for each of the 40 persons. This operation is repeated seven times and
BDA, RoLDA and CoLDA are applied. Fig. 6. shows that BDA provides bet-
ter recognition rates than RoLDA and CoLDA on all the random partitions,
whenever RoLDA outperforms CoLDA (partitions (a-b) and (d-g)) or CoLDA
outperforms RoLDA (partition (c)). The results are computed from the optimal
number of projection vectors, which is k = 14 for the three methods. For fur-
ther analysis, the contingency table summed up over partitions (a-g) is given in
Table 2. The total number of query faces is 7 · 200 = 1400. The logical symbol
”�” stands for ”not”, i.e. the entry in the second row and first column of the
table is the number of faces recognized by RoLDA, but misclassified by CoLDA.
The logical symbol ”∩” stands for ”and”: the entry in the second row and second
column is the number of samples correctly classified by RoLDA and BDA, but
misclassified by CoLDA. From Table 2. we can see that BDA correctly classifies
1292
1297 = 99, 6% of the samples that were recognized by both RoLDA and CoLDA.
Moreover, it recognizes the major part of the samples that were recognized by
only one of the two methods (72,7% for RoLDA and 63,6% for CoLDA). It also
correctly classifies 35,4% of the samples that were misclassified by both methods,
which shows the effectiveness of the BDA iterative algorithm. It should be noted
that, as the face images have been cropped to a size of 75 × 65 pixels, the size
of one sample signature is 75 · 14 = 1050 for RoLDA, 65 · 14 = 910 for CoLDA,
and only 142 = 196 for BDA.

5 Conclusion

In this paper, we have proposed a new supervised statistical projection based
technique, named Bilinear Discriminant Analysis, that can be successfully
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applied to face recognition. This method effectively combines two complementary
versions of 2DoLDA, through an iterative algorithm maximizing a generalized
Fisher criterion relying on bilinear projections.

A series of experiments, performed on various international databases, have
shown the complementarity of the two versions of 2DoLDA and highlighted
that the proposed iterative algorithm outperforms 2DoLDA and 2DPCA; as a
consequence it also outperforms the fisherfaces and eigenfaces methods. More-
over, BDA provides image signatures of reduced size compared to 2DoLDA and
2DPCA, which results in an important computational gain during the recogni-
tion step.

Acknowledgement. This research was supported by the European Commis-
sion under contract FP6-001765 aceMedia.
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