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Abstract

In this paper, we propose a new approach for symbol recognition using structural signatures and a Ga-
lois Lattice as classifier. The structural signatures are based on topological graphs computed from segments
which are extracted from the symbol images by using an adapted Hough transform. These structural sig-
natures, that can be seen as dynamic paths which carry high level information, are robust towards various
transformations. They are classified by using a Galois Lattice as a classifier. The performances of the pro-
posed approach are evaluated on the GREC03 symbol database and the experimental results we obtain are
encouraging.
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1 Introduction

This paper deals with the symbol recognition problem. The literature is very abundant in this domain [1, 4, 10,
12]. Symbol recognition can be basically defined as a two-step process: signature extraction and classification.
Signature extraction can be achieved by using statistical-based methods or syntactic/structural approaches.
Most of the statistical-based methods use the pixel distribution. They are generally coupled with probabilistic
or connexionist classifiers. On the other hand, syntactic and structural approaches are generally based on
a characterization of elementary primitives that are extracted from the symbols (basic description, relations,
spatial organization, ...) In this paper, a new approach for symbol recognition is introduced. It is based on
the use of Galois lattices (also called concept lattices) [3] as classifier. The combined use of statistical-based
signatures and Galois lattices has already been introduced by Guillas et al. in [6]. Our proposed approach is
based on the use of structural signatures inspired by the work of Geibel et al. [4] and a Galois lattice classifier.
The paper is organized as follows. Section 2 describes the proposed technique. Section 3 gives experimental
results. Section 4 provides a conclusion and presents our future work.

2 Description of the Approach

The technique that is introduced in this paper is based on the combined use of structural signatures and of
a Galois lattice classifier. The elementary primitives are segments which are extracted by using the Hough
transform. For each symbol, we compute a topological graph. The signatures, which are constructed from the
topological graph, are classified using a Galois Lattice classifier.

2.1 Segments Extraction

The structural primitives we use for symbol description are segments. The segments extraction method we have
implemented is an adaptation of the Hough transform, initially defined for line extraction [7].

During the last thirty years different types of extraction methods have been proposed in the literature [13]:
skeletonization, contouring, tracking, run length encoding.... In this paper, we consider Hough Transform
(HT) based approach. Indeed, among the existing methods, these ones are known for their robustness property
[13], especially in the context of very noisy images. The HT has been introduced in years 60’s by [7]. Its
key idea is to project pixels of a given image into an parametric space where the shapes can be represented in
a compact way. This space is used to find curves that can be parameterized like straight lines, polynomials,



circles,. ... Thus, the line segmentation problem in a given image can be considered as a peak detection inside
the Hough space. Since the HT has been widely studied, a large number of papers is available [9]. It has been
applied to different purposes in image processing like image comparison, filtering . ...

For our work we are especially interested in the detection of straight lines. The Figure 1 shows how pixels of
an image, represented with their (x, y) coordinates, can be mapped in the Hough space where any straight line
of the image is represented by a couple (p;, 6;). This couple corresponds then to the polar coordinates of a line
obtained by its normal parameterization, defined by: p = x X cosf + y X sin 0.
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Figure 1: Straight Line Hough Transform (SLHT)

From a theoretical point of view the SLHT seems easy to apply to segment detection. Obviously, its practical
use raises different problems [9]. First of all the HT is of quadratic complexity, it is then necessary to use a
pre-processing step in order to decrease the number of pixels to map during the transform. Next, on real-life
images, the mapped points produce heterogenous sine curves in the Hough space and multiple crossing points
can appear. So, a peak detection algorithm is needed in order to group these crossing points and to detect their
corresponding mean line. At last, the end points of detected lines cannot be known from the analysis of the
Hough space. So, it is necessary to map the lines detected in the Hough space on their corresponding document
image in order to achieve the detection process. Based on these considerations an HT-based segment detection
system can be divided into four main steps:

1. Characteristic point selection: Some characteristic points are to be selected here, before performing
the HT, in order to reduce the number of pixels to map, and so the time processing. In our method, we
just use a mean filtering in combination with a skeletonization processing [7].

2. Hough Transform: Each point previously selected is mapped on the Hough space. This step corre-
sponds to the process shown in Figure 1. An accumulator array is commonly used during this step in
order to record the number of sine curve for a given point in the Hough space. We use the initial HT
implementation of [7].

3. Peak detection: It consists in identifying the points in the accumulator for which the number of sine
curves is important enough. Our peak detection algorithm is based on the analysis of the gravity centers
of the line sets.

4. Segments extraction: The lines detected in the Hough space are mapped on their corresponding doc-
ument image in order to extract segments (the begin and end points). It consists in detecting sequence
of strictly adjacent pixels along the scanned line. This is realized using the Euclidean distances d(p;, L)
between the line L and the crossing points of the image. During this detection stage we also perform a
gap verification. If a gap between two consecutive sequences is too small we merge them. Finally we
check the length of every line previously obtained. If a length is too small, we consider the line as being
produced by noise and we delete it. This step aims at avoiding false alarms (ie. lines that are detected but
do not exist), which are mainly met at the crossing areas of shapes.



Our algorithm performs robust extraction of maximal segments. An example of the obtained results is shown
in Figure 2. The maximal length of the segments implies a reduction of the possible junctions between adjacent
segments.

2.2 Topological Graph Computation

2.2.1 Description

Once the segments are extracted, each topological relation between two segments s and s’ is described by the
following triplet of information:

< relation type, relation value,length ratio > Q8

e relation type: We use the finite set of relations types X, Y, V, P, O as in [2, 10, 1, 8] to fully describe the
possible relations between pairs of segments (see Table 1).

Table 1: The different types of relations we consider (from left to right: X, Y, V, P, O).

e relation value: To be more exhaustive and to discriminate more precisely the relations, we add a value to
the relation. This value aims at precising topological relations between segments, such as angle between
intersecting segments (available for X, Y, V and O), or distance for parallel segments (relation P).

o length ratio: The last value of each triplet is a ratio between the length of the longest segment and the
shortest segment of each pair.

We build a topological graph per symbol where nodes are segments and edges are relations (see Figure 3). The
topological graph we obtain is a complete graph where each pair of segments is uniquely described.
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Figure 2: Example of extracted segments Figure 3: Associated topological graph



Restrictions In order to reduce the number of possible triplets (see Eq. 1), one may discretize them. After
performing a statistical analysis of the symbol shapes, we choose to limit the set of possible values for the
angles of junctions X, Y and V to the following set: {30°, 45°, 60°, 90°} (possibly, a relation value may be
assigned to the closest value in that set). It is also possible to discretize the distances between parallel segments
in groups (colinear, near, spaced and far for example). The length ratios can be separated into three groups
(equal, sligthly different or very different). We can also consider only the type of relation (or any of the pairs
<relation type, relation value> or <relation type, length value>), or reduce the set of types of relations we
consider.

2.2.2 Discussion

For each symbol, we obtain a set of triplets which fully describes the structural organization of the segments
(eg., the relation type differentiates a cross from a rhombus, the relation value a rhombus from a rectangle and
the length ratio a rectangle from a square). Moreover, the use of this triplet-based representation has three main
advantages:

e cach pair of segments is described by one unique triplet;

e cach symbol is characterized by one unique and complete graph;

o this description is invariant towards rotation, scale and vectorial distortion.
However, this representation has some drawbacks:

e It does not consider arcs

e We may need a lot of triplets to characterize one symbol (at most n2, where n is the number of segments)

2.3 Computation of the Structural Signatures
2.3.1 Description

Once the triplets are extracted from each pair of segments, they could characterize the paths of length 1 which
are equivalently described by the graph in Figure 3 or its associated adjacency matrix int Table 2, as in [1, 8].
However, we aim at characterizing the symbols by descriptors that discriminate different types of structures,
such as regular shapes (square, rectangle, triangle,. .. ).

0|12 3[4]5
0 P/ Y| V]Y |V
1| P ViY|V|O
2/Y |V P|V]Y
3| V|Y|P Y|V
4 Y|V | V]Y P
S|V|]O|Y |V |P

Table 2: Adjacency matrix (M) associated to the graph of Figure 2.

In order to integrate these different structures, as in [4], we compute the paths of different lengths by using the
adjacency matrix and its powers (see Tables 2 and 3). Let us denote the adjacency matrix as M. As M conveys
information about paths of length 1, M3 corresponds to 3-length paths (useful to describle triangles), M* to
4-length paths (squares and rectangles),. . .

The adjacency matrices we work with are not boolean, so we generalize the usual product of boolean matrices
(see Eq. 2) to the union of string concatenation (see Eq. 3):
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where L is the size of the matrix and + is the string concatenation operator. This product is restricted to
elementary paths only and the symmetric paths are grouped. For instance, two equivalent paths XV are grouped
as 2x XV and the symmetric paths POV and VOP are grouped as 2 x POV. The matrix M? corresponding to the
square of the matrix M (given in Table 2) is shown in Table 3.

0 1 2 3 4 5
0 4YV 2PV 2YV 2PY 1YY 1VV 2PV 2YV 2PY 1YY 1VV
1 4YV 2PY 1VV 1YY 2PV 2VY 2PY 1VV 1YY 2PV 2VY
2 2PV 2VY 2PY 1VV 1YY 4VY 1YY 1VV 2PY 2VY 2PV
3 | 2PY 1YY 1VV 2PV 2VY 4VY 2VY 2PV IVV 1YY 2PY
4 | IVY1YV2PV | IVV1YY2PY | 1YY 1VV 2PY 2VY 2PV 4VY
5 | 1YY 1VV 2PY 2VY 2PV 2VY 2PV IVV 1YY 2PY 4VY

Table 3: Matrix M? (where M is given in Table 2).

Once all the power matrices are computed, a set of paths (features) of different lengths is obtained. As in [10],
we organize the features in a hierarchical way to compute the signature. So for each symbol image, we compute
its structural signature by concatenating all the paths and their number of occurrences. Indeed, the presence of
a 4-length path is more discriminative than the presence of a 1-length path, but the distortions affect more the
longest paths. For each symbol image, we compute its structural signature by concatenating the type of path
and its number of occurrences in the topological graph associated to that symbol.

Restrictions There may be a lot of paths and therefore the signatures may be huge and contain much redon-
dant information. That is why we only consider paths of length inferior or equal to 4. In order to improve the
efficiency of this approach, we may also apply a dimensionality reduction method or a selection technique to
the lengths of paths to consider or to the paths directly (selection criterion associated to triplets).

2.3.2 Discussion

The structural signatures we obtain are not based on the search for predefined shape templates. Instead, we
dynamically compute the shapes observed from our sample images, which confers genericity to our approach.
Our method is inspired of the work of Geibel et al. [4] and is different on many points. First, we use a Galois
lattice instead of a decision tree. Secondly, we do not use the same set of topological relations. Finally, our
method is based on a Hough-based segments extraction method from images of symbols where [4] used datasets
of chemical compounds and do not use any primitive extractor.

2.4 Classification

We developped a recognition system named NAVIGALA (NAVIgation into GAlois LAttice), dedicated to noisy
symbol recognition [11]. As denoted by its name, this system is based on the use of a Galois lattice as classifier.
A Galois lattice is a graph which represents, in a structural way, the correspondences between a set of symbols
and a set of attributes. These correspondences are given by a binary table (see Figure 4 where each attribute
correspond to an interval of occurences for a given path) where crosses are membership relations. In the Galois
lattice, nodes are denoted concepts and contain a subset of symbols and a corresponding subset of attributes
and edges represent an inclusion relation between the nodes (see Figure 5). The principle of classification is to
navigate through the lattice from the top of the graph to the bottom by validating attributes and thus reduce the
possibilities of matching symbols. This navigation is similar to the one used for classification with a decision
tree. However, in the Galois lattice, several ways are proposed to reach the same node of the graph. We noticed
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Figure 4: Example of binary table used for lattice construction
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that this property is interesting for noisy symbols because, experimentally, concept lattice is more effective than
decision tree in the presence of noise.

X[1] PP [1] V [3-4] WV [4]

X[11 PP [1] V [3-4] VW [3] W [4]

Figure 5: Example of a concept lattice used for classification.

3 Experimental Results

We perform our experiments on the GREC03 database of symbol images [5]. We evaluate the effectiveness
of the proposed approach on symbols extracted from 8 classes (see Figure 6) and 9 levels of deterioration (see
Figure 7). We use the original symbol, more one symbol per level of deterioration (ie. 10 symbols per class)
for training. The recognition results are computed from 72 deteriorated query symbol images per class. Tables
4 and 5 provide the recognition rates we obtain by using a) only the relation types and not the full triplet given
in (1) (Table 4) and b) the full triplet (Table 5).
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Class 0 | Class 1 | Class 2 | Class 3 Level O | Level 1 | Level 2 | Level 3
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Class 4 | Class 5 | Class 6 | Class 7 Level 4 | Level 5 | Level 6 | Level 7
Figure 6: 8 classes of symbol models used for tests. Figure 7: Different levels of noise for class 0.

Lengths of paths | 1and2 | 2and3 | 3and4 | 1,2 and 3
Recognition rate 84% 84,3% | 85,6% 83,8%
Number of paths 7 28 161 759

Table 4: Experimental results using partial triplets.

Lengths of paths 1 2 3 4 23 1,2and 3 | 1,2,3and 4

Recognition rate 94,4% | 81,9% | 82,6% | 80,6% | 80,4% 90,6% 92%

Number of paths 38 407 3293 | 16656 | 3700 3738 20388
Number of attributs 20 20 20 26 20 18 16
Number of concepts | 452 685 672 6450 689 262 172

Table 5: Experimental results using full triplets.

For comparison, we perform tests on the same sets of symbols (for learning and recognition) with a method
based on the use of statistical signatures (Radon Transform) and a Galois lattice as classifier [6]. The recognition
rate we obtain is 98.9%. 14 attributes and 96 concepts were created in the lattice for recognition. We can see
that the use of statistical signatures gives a better global recognition rate. But, for the symbols from class 6,
it leads to confusions with classes 0 or 3. Using the structural signatures, we recognize symbols from class
6 without any ambiguity with classes 0 and 3 (structural signature induces confusion between classes 6 and 7
for 2 symbols among 81). We can infer that structural and statistical signatures are complementary in terms of
recognition results and therefore the may be used jointly in order to improve the performances.

4 Conclusion and Future Work

In this paper, we propose a new structural signature dedicated to symbol recognition using a Galois lattice
as classifier. The structural primitives are segments extracted by using an adapted Hough transform. For each
symbol, we compute a topological graph from which we can extract the structural signature of that symbol. The
signatures are further classified using a Galois Lattice classifier. The experiments we perform on the GRECO03
database show the robustness of the proposed approach towards various sources of noise. The structural signa-
tures we obtain are not based on the search for predefined shape templates. Instead, we dynamically compute
the shapes observed from our sample images, which makes our approach generic.

In order to ameliorate this structural signature, we are further working on the extraction of circle/ellipse arcs and
on their integration into our structural signatures. Next, we aim at evaluating the performances of the proposed
approach not only on single symbols, but in real-life applications. Finally, a procedure based on an iterative
combination of statistical and structural signatures may enhance the performances of the proposed approach.
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