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Abstract

Indexing methods play a very important role in finding information in large

image databases. They organize indexed images in order to facilitate, accel-

erate and improve the results for later retrieval. Alternatively, clustering may

be used for structuring the feature space so as to organize the dataset into

groups of similar objects without prior knowledge (unsupervised clustering)

or with a limited amount of prior knowledge (semi-supervised clustering).

In this paper, we introduce a new interactive semi-supervised clustering

model where prior information is integrated via pairwise constraints between

images. The proposed method allows users to provide feedback in order to im-

prove the clustering results according to their wishes. Different strategies for

deducing pairwise constraints from user feedback were investigated. Our ex-
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periments on different image databases (Wang, PascalVoc2006, Caltech101)

show that the proposed method outperforms semi-supervised HMRF-kmeans

(Basu et al., 2004).

Keywords: Semi-supervised clustering, Interactive learning, Image indexing1

1. Introduction2

Content-Based Image Retrieval (CBIR) refers to the process which uses3

visual information (usually encoded using color, shape, texture feature vec-4

tors, etc.) to search for images in the database that correspond to the user’s5

queries. Traditional CBIR systems generally rely on two phases. The first6

phase is to extract the feature vectors from all the images in the database and7

to organize them into an efficient index data structure. The second phase8

is to efficiently search in the indexed feature space to find the most similar9

images to the query image.10

With the development of many large image databases, an exhaustive11

search is generally intractable. Feature space structuring methods (normally12

called indexing methods) are therefore necessary for facilitating and acceler-13

ating further retrieval. They can be classified into space partitioning methods14

and data partitioning methods.15

Space partitioning methods (KD-tree (Bentley, 1975), KDB-tree (Robin-16

son, 1981), LSD-tree (Henrich et al., 1989), Grid-File (Nievergelt et al.,17

1988)...) generally divide the feature space into cells (sometimes referred18

to as “buckets”) of fairly similar cardinality (in terms of number of images19

per cell), without taking into account the distribution of the images in the20

feature space. Therefore, dissimilar points may be included in a same cell21
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while similar points may end up in different cells. The resulting index is there-1

fore not optimal for retrieval, as the user generally wants to retrieve similar2

images to the query image. Moreover, these methods are not designed to3

handle high dimensional data, while image feature vectors commonly count4

hundreds of elements.5

Data partitioning methods (B-tree (Bayer and McCreight, 1972), R-trees6

(Guttman, 1984; Sellis et al., 1987; Beckmann et al., 1990), SS-tree (White7

and Jain, 1996), SR-tree (Katayama and Satoh, 1997), X-tree (Berchtold8

et al., 1996)...) also integrate information about image distribution in the9

feature space. However, the limitations on the cardinality of the space cells10

remain, causing the resulting index to be non-optimal for retrieval, especially11

in the case where groups of similar objects are unbalanced, i.e. composed of12

different numbers of images.13

Our claim is that using clustering instead of traditional indexing to or-14

ganize feature vectors, results in indexes better adapted to high dimensional15

and unbalanced data. Indeed, clustering aims to split a collection of data16

into groups (clusters) so that similar objects belong to the same group and17

dissimilar objects are in different groups, with no constraints on the cluster18

size. This makes the resulting index better optimized for retrieval. In fact,19

while in traditional indexing methods it might be difficult to fix the number20

of objects in each bucket (especially in the case of unbalanced data), cluster-21

ing methods have no limitation on the cardinality of the clusters, objects can22

be grouped into clusters of very different sizes. Moreover, using clustering23

might simplify the relevance feedback task, as the user might interact with24

a small number of cluster prototypes rather than numerous single images.25
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Because feature vectors only capture low level information such as color,1

shape or texture, there is a semantic gap between high-level semantic con-2

cepts expressed by the user and these low-level features. The clustering3

results are therefore generally different from the intent of the user. Our work4

aims to involve users in the clustering phase so that they can interact with5

the system in order to improve the clustering results. The clustering meth-6

ods should therefore produce a hierarchical cluster structure where the initial7

clusters may be easily merged or split. We are also interested in clustering8

methods which can be incrementally built in order to facilitate the insertion9

or deletion of new images by the user. It can be noted that incrementality is10

also very important in the context of huge image databases, when the whole11

dataset cannot be stored in the main memory. Another very important point12

is the computational complexity of the clustering algorithm, especially in an13

interactive online context where the user is involved.14

In the case of large image database indexing, we may be interested in tra-15

ditional clustering (unsupervised) (Jain et al., 1999; Xu and Wunsch, 2005)16

or semi-supervised clustering (Basu et al., 2002; Dubey et al., 2010; Wagstaff17

et al., 2001; Basu et al., 2004). While no information about ground truth is18

provided in the case of unsupervised clustering, a limited amount of knowl-19

edge is available in the case of semi-supervised clustering. The provided20

knowledge may consist of class labels (for some objects) or pairwise con-21

straints (must-link or cannot-link) between objects.22

In (Lai et al., 2012a), we proposed a survey of unsupervised clustering23

techniques and analyzed the advantages and disadvantages of different meth-24

ods in a context of huge masses of data where incrementality and hierarchi-25
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cal structuring are needed. We also experimentally compared five methods1

(global k-means (Likas et al., 2003), AHC (Lance and Williams, 1967), R-tree2

(Guttman, 1984), SR-tree (Katayama and Satoh, 1997) and BIRCH (Zhang3

et al., 1996)) with different real image databases of increasing sizes (Wang,4

PascalVoc2006, Caltech101, Corel30k) (the number of images ranges from5

1,000 to 30,000) to study the scalability of different approaches relative to6

the size of the database. In (Lai et al., 2012b), we presented an overview of7

semi-supervised clustering methods and proposed a preliminary experiment8

of an interactive semi-supervised clustering model using the HMRF-kmeans9

(Hidden Markov Random Fields kmeans) clustering (Basu et al., 2004) on the10

Wang image database in order to analyze the improvement in the clustering11

process when user feedback is provided.12

There are three main parts to this paper. Firstly, we propose a new inter-13

active semi-supervised clustering model using pairwise constraints. Secondly,14

we investigate different methods for deducing pairwise constraints from user15

feedback. Thirdly, we experimentally compare our proposed semi-supervised16

method with the widely known semi-supervised HMRF-kmeans method.17

This paper is structured as follows. A short review of semi-supervised18

clustering methods is presented in Section 2. Our interactive semi-supervised19

clustering model is proposed in Section 3. Some experiments are presented20

in Section 4. Some conclusions and further works are provided in Section 5.21

2. A short review of semi-supervised clustering methods22

For unsupervised clustering only similarity information is used to orga-23

nize objects; in the case of semi-supervised clustering a small amount of prior24
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knowledge is available. Prior knowledge is either in the form of class labels1

(for some objects) or pairwise constraints between objects. Pairwise con-2

straints specify whether two objects should be in the same cluster (must-link)3

or in different clusters (cannot-link). As the clusters produced by unsuper-4

vised clustering may not be the ones required by the user, this prior knowl-5

edge is needed to guide the clustering process for resulting clusters which are6

closer to the user’s wishes. For instance, for clustering a database with thou-7

sands of animal images, an user may want to cluster by animal species or by8

background landscape types. An unsupervised clustering method may give,9

as a result, a cluster containing images of elephants with a grass background10

together with images of horses with a grass background and another cluster11

containing images of elephants with a sand background. These results are12

ideal when the user wants to cluster by background landscape types. But13

they are poor when the user wants to cluster by animal species. In this case,14

must-link constraints between images of elephants with a grass background15

and images of elephants with a sand background and cannot-link constraints16

between images of elephants with a grass background and images of horses17

with a grass background are needed to guide the clustering process. The18

objective of our work is to make the user interact with the system so as to19

define easily these constraints with only a few clicks. Note that the avail-20

able knowledge is too poor to be used with supervised learning, as only a21

very limited ratio of the available images are considered by the user at each22

step. In general, semi-supervised clustering methods are used to maximize23

intra-cluster similarity, to minimize inter-cluster similarity and to keep a high24

consistency between partitioning and domain knowledge.25
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Semi-supervised clustering has been developed in the last decade and1

some methods have been published to date. They can be divided into semi-2

supervised clustering with labels, where partial information about object3

labels is given, and semi-supervised clustering with constraints, where a small4

amount of pairwise constraints between objects is given.5

Some semi-supervised clustering methods using labeled objects have been6

put forward: seeded-kmeans (Basu et al., 2002), constrained-kmeans (Basu7

et al., 2002), etc. Seeded-kmeans and constrained-kmeans are based on the k-8

means algorithm. Prior knowledge for these two methods is a small subset of9

the input database, called seed set, containing user-specified labeled objects10

of k different clusters. Unlike k-means algorithm which randomly selects11

the initial cluster prototypes, these two methods use the labeled objects to12

initialize the cluster prototypes. Following this we repeat, until convergence,13

the re-assignment of each object in the dataset to the nearest prototype14

and the re-computation of the prototypes with the assigned objects. The15

seeded-kmeans assigns objects to the nearest prototype without considering16

the prior labels of the objects in the seed set. In contrast, the constrained-17

kmeans maintains the labeled examples in their initial clusters and assigns18

the other objects to the nearest prototype. An interactive cluster-level semi-19

supervised clustering was proposed in (Dubey et al., 2010) for document20

analysis. In this model, knowledge is progressively provided as assignment21

feedback and cluster description feedback after each interactive iteration.22

Using assignment feedback, the user moves an object from one cluster to23

another cluster. Using cluster description feedback, the user modifies the24

feature vector of any current cluster (e.g. increase the weighting of some25
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important words). The algorithm learns from all the feedback to re-cluster1

the dataset in order to minimize average distance between points and their2

cluster centers while minimizing the violation of constraints corresponding3

to feedback.4

Among the semi-supervised clustering methods using pairwise constraints5

between objects, we can cite COP-kmeans (constrained-kmeans) (Wagstaff6

et al., 2001), HMRF-kmeans (Hidden Markov Random Fields Kmeans) (Basu7

et al., 2004), semi-supervised kernel-kmeans (Kulis et al., 2005), etc. The8

input data of these methods is data set X , a set of must-link constraints M9

and a set of cannot-link constraints C. In COP-kmeans, points are assigned10

to clusters without violating any constraint. A point xi is assigned to its11

closest cluster µj unless a constraint is violated. If xi cannot be placed in12

µj, we continue attempting to assign xi to the next cluster in the sorted list13

of clusters by ascending order of distances with xi until a suitable cluster14

is found. The clustering fails if no solution respecting the constraints is15

found. While the constraint violation is strictly prohibited in COP-kmeans,16

it is allowed with a violation cost (penalty) in HMRF-kmeans and in semi-17

supervised kernel-kmeans. The objective function to be minimized in the18

semi-supervised HMRF-kmeans is as follows:19

JHMRF Kmeans =
∑

xi∈X

D(xi, µli) +
∑

(xi,xj)∈M,li 6=lj

wij +
∑

(xi,xj)∈C,li=lj

wij (1)

where wij (wij) is the penalty cost for violating a must-link (cannot-link)20

constraint between xi and xj , li refers to the cluster label of xi, and D(xi, µli)21

measures the distance between xi and its corresponding cluster center µli .22

The violation cost of a pairwise constraint may be either a constant or a23
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function of the distance between the two points specified in the pairwise1

constraint as follows:2

wij = wD(xi, xj) (2)
3

wij = w(Dmax −D(xi, xj)) (3)

where w and w are constants specifying the cost for violating a must-link or4

a cannot-link constraint. Dmax is the maximal distance between two points5

in the data set. We can see that, to ensure the most difficult constraints are6

respected, higher penalties are assigned to violations of must-link constraints7

between points which are distant and to violations of cannot-link constraints8

between points which are close. The term Dmax in Equation (3) can make9

the cannot-link penalty term sensitive to extreme outliers, but all cannot-link10

constraints are treated in the same way, so even in the presence of extreme11

outliers, there would be no cannot-link constraint favored compared to the12

others. The objective function in Equation (1) is also sensitive to outliers.13

We can reduce this sensitivity by using an outlier filtering technique or by14

replacing the term Dmax by the maximum distance between two clusters.15

HMRF-kmeans first initializes the k cluster centers based on user-specified16

constraints, as described in (Basu et al., 2004). After the initialization step,17

an iterative relocation approach similar to k-means is applied to minimize the18

objective function. The iterative algorithm represents the repetition of the19

assignment phase of each point to the cluster which minimizes its contribution20

to the objective function and the re-estimation phase of the cluster centers21

minimizing the objective function. The semi-supervised kernel-kmeans (Kulis22

et al., 2005) is similar to the HMRF-kmeans, but calculates the objective23

function in a transformed space instead of the original space using a kernel24
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function mapping as follows:1

JSS Kernel Kmeans =
∑

xi∈X

‖φ(xi)−φli‖
2−

∑

(xi,xj)∈M,li=lj

wij+
∑

(xi,xj)∈C,li=lj

wij (4)

where φ(xi) is the kernel function mapping, φli is the centroid of the clus-2

ter containing xi and wij (wij) is the penalty cost for violating a must-link3

(cannot-link) constraint between xi and xj . In the second term of Equation4

(4), instead of adding a penalty cost for a must-link violation if the two points5

are in different clusters, Kulis et al. (2005) give a reward for must-link con-6

straint satisfaction if the two points are in the same cluster, by subtracting7

the corresponding penalty term from the objective function.8

3. Proposed interactive semi-supervised clustering model9

In this section, we present our proposed interactive semi-supervised clus-10

tering model. In our model, the initial clustering is carried out without any11

prior knowledge, using an unsupervised clustering method. In Lai et al.12

(2012a) we discussed the adequation between different unsupervised clus-13

tering methods and our applied context (involving user interactivity) as14

well as experimentally compared different unsupervised clustering methods15

(global k-means (Likas et al., 2003), AHC (Lance and Williams, 1967), R-16

tree (Guttman, 1984), SR-tree (Katayama and Satoh, 1997), BIRCH (Zhang17

et al., 1996)). Our conclusion was that BIRCH is the most suitable to our18

context. BIRCH is less sensitive to variations in its parameters. Moreover,19

it is incremental, it provides a hierarchical structure of clusters and it out-20

performs other methods in the context of a large database (best results and21

best computational time in our tests). Therefore, BIRCH is chosen for the22
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initial unsupervised clustering in our model. After the initial clustering, the1

user views the clustering results and provides feedback to the system. The2

pairwise constraints (must-link, cannot-link) are deduced, based on user feed-3

back; the system then re-organizes the clusters by considering the constraints.4

The re-clustering process is done using the proposed semi-supervised cluster-5

ing described in Section 3.2. The interactive process (user provides feedback6

and system reorganizes the clusters) is repeated until the clustering result7

satisfies the user. The interactive semi-supervised clustering model contains8

the following steps:9

1. Initial clustering using BIRCH unsupervised clustering.10

2. Repeat :11

(a) Receive feedback from the user and deduce pairwise constraints.12

(b) Re-organize the clusters using the proposed semi-supervised clus-13

tering method.14

until the clustering result satisfies the user.15

3.1. BIRCH unsupervised clustering16

Let us briefly describe the BIRCH (Balanced Iterative Reducing and17

Clustering using Hierarchies) unsupervised clustering method (Zhang et al.,18

1996). The idea of BIRCH is to build a Clustering Feature Tree (CF-tree).19

We define a CF-vector, summarizing information of a cluster including N20

vectors (−→x1, ...,
−→xN ), as a triplet CF = (N,

−→
LS, SS), where

−→
LS and SS are21

respectively the linear sum and the square sum of vectors (
−→
LS =

∑N

i=1
−→xi ;22

SS =
∑N

i=1
−→xi

2). From the CF-vectors, we can simply compute the centroid,23
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the radius (average distance from points to the centroid) of a cluster and also1

the distance between two clusters (e.g. the Euclidean distance between their2

centroids). A CF-tree is a balanced tree having three parameters B, L and3

T :4

• Each internal node contains, at most, B elements of the form [CFi, childi]5

where childi is a pointer to its ith child node and CFi is the CF-vector6

of this child.7

• Each leaf node contains, at most, L entries of the form [CFi], it also8

contains two pointers, prev and next, to link leaf nodes.9

• Each entry CFi represents the information of a group of points which10

are close together. Each entry CFi of a leaf node must have a radius11

lower than a threshold T (threshold condition).12

The CF-tree is created by successively inserting points into the tree. A13

new point is preferably inserted in the closest CFi of the closest leaf, if the14

threshold condition is not violated. If it is impossible, a new CFj is created15

for the new point. The corresponding internal and leaf nodes must be split16

if necessary. After creating the CF-tree, we can use any clustering method17

(AHC, k-means, etc.) to cluster all leaf entries CFi. In our work, we use18

k-means for clustering the leaf entries, as it is suitable to be used with our19

proposed semi-supervised clustering in the interactive phase.20

3.2. Proposed semi-supervised clustering method21

At each interactive iteration, our semi-supervised clustering method is22

applied after receiving feedback from the users for re-organizing the clusters23
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according to their wishes. Our semi-supervised clustering method considers1

the set of all leaf entries SCF = (CF1, ..., CFm) of the CF-tree. Supervised2

information is provided as two sets of pairwise constraints between CF entries3

deduced from user feedback: must-links MCF = {(CFi, CFj)} and cannot-4

links CCF = {(CFi, CFj)}. (CFi, CFj) ∈ MCF implies that CFi, CFj and5

therefore all points which are included in these two entries should belong to6

the same cluster, while (CFi, CFj) ∈ CCF implies that CFi and CFj should7

belong to different clusters. The objective function to be minimized is as8

follows:9

Jobj =
∑

CFi∈SCF

D(CFi, µli)

+
∑

(CFi,CFj)∈MCF ,li 6=lj

wNCFi
NCFj

D(CFi, CFj)

+
∑

(CFi,CFj)∈CCF ,li=lj

wNCFi
NCFj

(Dmax −D(CFi, CFj)) (5)

where:10

• The first term measures the distortion between each leaf entry CFi and11

the corresponding cluster center µli , li refers to the cluster label of CFi.12

• The second and the third terms represent the penalty costs for re-13

spectively violating the must-link and cannot-link constraints between14

CF entries. w and w are constants specifying the violation cost of15

a must-link and a cannot-link between two points. As an entry CFi16

represents the information of a group of NCFi
points, a pairwise con-17

straint between two entries CFi and CFj corresponds to NCFi
×NCFj

18

constraints between points of these two entries. The violation cost of19
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a pairwise constraint between two entries CFi, CFj is thus a function1

of their distance D(CFi, CFj) and of the number of points included2

in these two entries. Dmax is the maximum distance between two CF3

entries in the data set. Therefore, higher penalties are assigned to vio-4

lations of must-link between entries that are distant and of cannot-link5

between entries which are close. As in HMRF-kmeans, the term Dmax6

can make the cannot-link penalty term sensitive to extreme outliers,7

and could be replaced by the maximum distance between two clusters8

if the database contains extreme outliers.9

In our case, we use the most frequently used squared Euclidean distance as10

distortion measure. The distance between two entries CFi = (NCFi
,
−→
LSCFi

,11

SSCFi
), CFj = (NCFj

,
−→
LSCFj

, SSCFj
) is calculated as the distance between12

their means as follows:13

D(CFi, CFj) =

d
∑

p=1

(

LSCFi
(p)

NCFi

−
LSCFj

(p)

NCFj

)2

(6)

where d is the number of dimensions of the feature space.14

The proposed semi-supervised clustering is as follows:15

Input: Set of leaf entries SCF = {CFi}
m
i=1 which are clustered intoK clusters16

with the corresponding centroids {µh}
K
h=1,17

set of must-link constraints MCF = {(CFi, CFj)}18

set of cannot-link constraints CCF = {(CFi, CFj)}.19

Output: New disjoint K clusters of SCF such that the objective function in20

Equation (5) is locally minimized.21

Method:22

1. Set t← 023

14



2. Repeat until convergence1

(a) Re-assignment step: Given {µ
(t)
h }

K
h=1, re-assign cluster labels {l

(t+1)
i }mi=12

of entries {CFi}
m
i=1 to minimize the objective function.3

(b) Re-estimation step: Given cluster labels {l
(t+1)
i }mi=1, re-calculate4

the cluster centroids {µ
(t+1)
h }Kh=1 to minimize the objective func-5

tion.6

(c) t← t + 1.7

In the re-assignment step, given the current cluster centers, each entry8

CFi is re-assigned to the cluster µh which minimizes its contribution to the9

objective function as follows:10

Jobj(CFi, µh) = D(CFi, µh)

+
∑

(CFi,CFj)∈MCF ,h 6=lj

wNCFi
NCFj

D(CFi, CFj)

+
∑

(CFi,CFj)∈CCF ,h=lj

wNCFi
NCFj

(Dmax −D(CFi, CFj))(7)

We can see that the optimal assignment of each CF entry also depends on11

the current assignment of the other CF entries due to the violation cost of12

pairwise constraints in the second and third terms of Equation 7. Therefore,13

after all entries are re-assigned, they are randomly re-ordered, and the re-14

assignment process is repeated until no CF entry changes its cluster label15

between two successive iterations.16

In the re-estimation step, given the cluster labels {l
(t+1)
i }mi=1 of all CF17

entries, the cluster centers {µh}
K
h=1 are re-calculated in order to minimize18

the objective function of the current assignment. For simple calculation,19

15



each cluster center is also represented in the form of a CF-vector. By using1

the squared Euclidean measure, the CF-vector of each cluster prototype µh is2

calculated based on CF entries which are assigned to this cluster as follows:3

Nµh
=

∑

li=h

NCFi
(8)

−→
LSµh

=
∑

li=h

−→
LSCFi

(9)

SSµh
=

∑

li=h

SSCFi
(10)

We can see that in each re-assignment step, each entry CFi moves to4

a new cluster µh if its contribution to the objective function is decreased5

with this re-assignment. Therefore, the objective function Jobj is decreased6

or unchanged after the re-assignment step. And in each re-estimation step,7

the mean of the CF-vector of each cluster µh corresponds to the mean of8

the CF entries (and therefore the points) in this cluster, that minimizes9

the contribution of µh to the component
∑

CFi∈SCF
D(CFi, µli) of Jobj . The10

penalty terms of Jobj are not functions of the centroid, thus they do not11

take part in cluster center re-estimation. Therefore, the objective function12

Jobj will decrease or remain the same in the re-estimation step. Since Jobj13

is bounded below and decreases after each re-assignment and re-estimation14

steps, the proposed semi-supervised clustering will converge to a (at least15

local) minimum in each interactive iteration.16

After each interactive iteration, new constraints are given to the system.17

These new constraints might be in contradiction with some of the ones pre-18

viously deduced by the system from the earlier user interactive iterations.19

For this reason and also for computational time matters, our system omits20

16



at each step some of the constraints deduced at earlier steps. Therefore, the1

objective function Jobj may be different between different interactive itera-2

tions. And the convergence of the interactive semi-supervised model is thus3

not guaranteed. But we can verify the convergence of the model, practically,4

by determining, at the end of all interactive iterations, the global objective5

function which considers all feedback given by the user in all interactive it-6

erations and then by verifying if this global objective function has improved7

or not after different interactive steps. This is a part of our current work.8

3.3. Interactive interface9

In order to allow the user to view the clustering results and to provide10

feedback to the systems, we implement an interactive interface as shown in11

Figure 1.12

The rectangle at the bottom right corner of Figure 1 is the principal13

plane representing all presented clusters by their prototype images. In our14

system, the maximum number of cluster prototypes presented to the user on15

the principal plane is fixed at 30. The prototype image of each cluster is the16

most representative image of that cluster chosen as follows. In our model,17

we use the internal measure Silhouette-Width (SW) (Rousseeuw, 1987) to18

estimate the quality of each image in a cluster. The higher the SW value19

of an image in a cluster, the more representative this image is for the clus-20

ter. The prototype image of a cluster is thus the image with the highest21

SW value in the cluster. Any other internal measure could be used instead.22

The position of the prototype image of each cluster in the principal plane23

represents the position of the corresponding cluster center. It means that, if24

two cluster centers are close (or distant) in the n-dimensional feature space,25

17



their prototype images are close (or distant) in the 2D principal plane. For1

representing the cluster centers which are n-dimensional vectors in 2D plane,2

we use Principal Component Analysis (PCA) (Pearson, 1901); the principal3

plane consists of the two principal axes associated with the highest eigen-4

values. The importance of an axis is represented by its inertia (the sum of5

the squared elements of this axis (Abdi and Williams, 2010)) or by the per-6

centage of its inertia in the total inertia of all axes. In general, if the two7

principal axes explain (cumulatively) greater or equal to 80% of the total8

inertia, the PCA approach could lead to a nice 2D-representation of the pro-9

totype images. In our case, the accumulated inertia explained by the two10

first principal axes is about 65% for the Wang and PascalVoc2006 databases11

and about 20% for the Caltech101 and Corel30k image databases. As only a12

maximum of 30 clusters (and therefore 30 prototype images) can be shown13

to the user in an interactive iteration, a not very nice 2D-representation of14

prototype images does not influence on the results as long as the user can15

distinguish between the prototype images and have a rough idea of the dis-16

tances between the clusters. When there are some prototype images which17

overlap each other, a slight modification of the PCA components can help to18

separate these images.19

By clicking on a prototype image in the principal plane, the user can view20

the corresponding cluster. In Figure 1, each cluster selected by the user is21

represented by a circle:22

• The prototype image of this cluster is located at the center of the circle.23

• The 10 most representative images (images with the highest SW val-24

ues), which have not received feedback from the user in the previous25

18



Figure 1: 2D interactive interface. The rectangle at the bottom right corner

represents the principal plane consisting of the two first principal axes (obtained

by PCA) of the prototype images of all clusters. Each circle represents the details

of a particular cluster selected by the user.
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iterations, are located in the first circle of images around the prototype1

image, near the center.2

• The 10 least representative images (images with the smallest SW val-3

ues), which have not received feedback from the user in the previous4

iterations, are located in the second circle of images around the proto-5

type image, close to the cluster border.6

By showing, for each iteration, the images which have not received user feed-7

back in previous iterations, we wish to obtain feedback for different images.8

The user can specify positive feedback and negative feedback (images in9

Figure 1 with blue and red borders respectively) for each cluster. The user10

can also change the cluster assignment of a given image by dragging and11

dropping the image from the original cluster to the new cluster. When an12

image is changed from cluster A to cluster B, it is considered as negative13

feedback for cluster A and positive feedback for cluster B. Therefore, after14

each interactive iteration, the process returns a positive image list and a15

negative image list for each cluster with which the user has interacted.16

3.4. Pairwise constraint deduction17

In each interactive iteration, user feedback is in the form of positive and18

negative images, while the supervised input information of the proposed semi-19

supervised clustering method are pairwise constraints between CF entries.20

Therefore, we have to deduce the pairwise constraints between CF entries21

from the user feedback.22

At each interactive iteration and for each interacted cluster, all positive23

images should be in this cluster while negative images should move to another24
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cluster. We consider that each image in the positive set is linked to each image1

in the negative set by a cannot-link, while all images in the positive set are2

linked by must-links. If we assume that all feedback is coherent between3

different interactive iterations, we try to group images, which should be in4

the same cluster according to the user feedback of all interactive iterations,5

in a group called neighborhood. We define:6

• Np = {Npi} is the neighborhood list, each neighborhood Npi = {xj}7

including a list of images which should be in a same cluster.8

• CannotNp = {cannotNpi}, each element cannotNpi = {nj} including9

labels of the neighborhoods which should not be in the same cluster as10

Npi. Two neighborhoods Npi and Npj are called cannot-link neigh-11

borhoods if there is at least one cannot-link between a point of Npi12

and a point of Npj .13

After receiving the list of feedback in the current iteration, the lists Np and14

CannotNp are updated as follows:15

1. Update based on positive feedback: For each cluster µh which receives16

interaction from the user:17

(a) Initialize nh ← −1, nh indicates the neighborhood including pos-18

itive images of the cluster µh.19

(b) If all positive images of µh are not included in any neighborhood20

→ create a new neighborhood for these positive images and assign21

nh as the index of this neighborhood.22
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(c) If some positive images of µh are already included in one or mul-1

tiple neighborhoods → merge these neighborhoods (in the case of2

multiple neighborhoods) into one single neighborhood, insert the3

other positive images which are not included in any neighborhood4

to this neighborhood and update nh as the index of this neigh-5

borhood. Also update the set CannotNp to signify that neighbor-6

hoods that had cannot-link with one of the neighborhoods which7

has merged, now have cannot-link with the new neighborhood.8

2. Update based on negative feedback: For each negative image xj of each9

cluster µh which receives interaction from the user:10

(a) If xj is not included in any neighborhood → create a new neigh-11

borhood for xj .12

(b) If xj is already included in the neighborhood Npnj
, and Npnh

13

is the neighborhood corresponding to the positive images of the14

cluster µh, update the corresponding cannotNpnj
and cannotNpnh

15

to signify that Npnj
and Npnh

have cannot-link.16

As we assume that the user feedback is coherent among different inter-17

active iterations, all images in a same neighborhood should be in a same18

cluster and images of cannot-link neighborhoods should be in different clus-19

ters. There may be cannot-link images belonging to the same CFi. There20

may also be simultaneous must-link and cannot-link between images of CFi21

and images of CFj. In such cases, these CF entries should be split into purer22

CF entries. To do so, we define a seed of an entry CFi as a subset of images23

of CFi so that the images of this seed are included in a same neighborhood.24
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Therefore, an entry CFi may contain some seeds corresponding to different1

neighborhoods and other images which are not included in any other neigh-2

borhood. Cannot-link may or may not exist between seeds of a CF entry.3

With each CF entry that should be split, we present the user with each pair4

of seeds, which do not have cannot-link between them, to demand more in-5

formation (for each seed, the image which is closest to the center of the seed6

is presented):7

• If the user indicates that there is must-link between these two seeds,8

these seeds and also their corresponding neighborhoods are merged.9

• If the user indicates that there is cannot-link between these two seeds,10

update the corresponding cannotCF lists specifying that their two cor-11

responding neighborhoods have cannot-link between them.12

An entry CFi is split as follows: if CFi has p seeds, it should be split into13

p different CF entries; each new CF entry contains all points of a seed; ev-14

ery other point of CFi which is not included in any seed is assigned to the15

CF entry corresponding to the closest seed. By splitting the necessary CF16

entries into purer CF entries, we can eliminate the case where cannot-link17

exists between images of a same CF or where must-link and cannot-link ex-18

ist simultaneously between images of two different CF entries. Subsequently,19

pairwise constraints between CF entries can be deduced based on pairwise20

constraints between images as follows: if there is must-link (or respectively21

cannot-link) between two images of two CF entries, a must-link (or respec-22

tively cannot-link) is created between these two CF entries.23

Concerning pairwise constraints between images, a simple and complete24
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way to deduce them is to create must-link between each pair of images of a1

same neighborhood, and to create, for each pair of cannot-link neighborhoods2

(Npi, Npj), cannot-link between each image of Npi and each image of Npj .3

By deducing pairwise constraints between images in this way, the number4

of constraints between images can be very high, and therefore the number5

of constraints between CF entries could also be very high. The processing6

time of the semi-supervised clustering in the next phase could thus be very7

high due to the high number of constraints. There are different strategies for8

deducing pairwise constraints between images that could reduce the number9

of constraints and also the processing time. One of them is presented in10

Figure 2 and others are described and tested in Section 4. In Figure 2,11

must-links are created between positive images of each cluster while cannot-12

link are created between positive and negative images of each cluster (note13

the displacement feedback corresponding to a negative image of the source14

cluster and a positive image of the destination cluster).15

4. Experiments16

In this section, we present some experimental results of our interactive17

semi-supervised clustering model. We also, experimentally, compare our18

semi-supervised clustering model with the semi-supervised HMRF-kmeans.19

When using the semi-supervised HMRF-kmeans in the re-clustering phase,20

the initial unsupervised clustering is k-means.21
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Figure 2: Example of pairwise constraint deduction between images from the user

feedback.

4.1. Experimental protocol1

In order to analyze the performance of our interactive semi-supervised2

clustering model, we use different image databases (Wang1 (1000 images di-3

vided into 10 classes), PascalVoc20062 (5304 images divided into 10 classes),4

Caltech1013 (9143 images divided into 101 classes)). Note that in our ex-5

periments we use the same number of clusters as the number of classes in6

the ground truth. As presented in Section 3.3, the cluster prototype images7

are shown to the user on the principal plane; users can choose to view and8

interact with any cluster in which they are interested. For databases which9

1http://wang.ist.psu.edu/docs/related/
2http://pascallin.ecs.soton.ac.uk/challenges/VOC/
3http://www.vision.caltech.edu/ImageDatasets/Caltech101/
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have a small number of classes, such as Wang and PascalVoc2006, all proto-1

type images can be shown on the principal plane. For databases which have2

a large number of classes, such as Caltech101, only a part of the prototype3

images can be shown for visualization. In our system, the maximum number4

of cluster prototypes shown to the user in each iteration is fixed at 30. We use5

two simple strategies for choosing clusters to be shown for each iteration: 306

clusters chosen randomly or iteratively chosen pairs of closest clusters until7

there are 30 clusters.8

The external measures compare the clustering results with the ground9

truth, thus they are compatible for estimating the quality of the interactive10

clustering involving user interaction. As different external measures analyze11

the clustering results in a similar way (see Lai et al. (2012a)), we use, in this12

paper, the external measure V-measure (Rosenberg and Hirschberg, 2007).13

The greater the V-measure values are, the better the results (compared to14

the ground-truth).15

Concerning feature descriptors, we implement the local descriptor rgSIFT16

(van de Sande et al., 2008), an extension for color image of the SIFT descrip-17

tor (Lowe, 2004), that today is widely used for its high performance. The18

SIFT descriptor detects interest points from an image and describes the local19

neighborhood around each interest point by a 128-dimensional histogram of20

local gradient directions of image intensities. The rgSIFT descriptor of each21

interest point is computed as the concatenation of the SIFT descriptors calcu-22

lated for the r and g components of the normalized RGB color space (van de23

Sande et al., 2008) and the SIFT descriptor in the intensity channel, resulting24

in a 3×128-dimensional vector. The “Bag of words” (Sivic and Zisserman,25
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2003) approach is chosen to group local features of each image into a single1

vector. It consists in two steps. Firstly, K-means clustering is used to group2

local features of all images in the database according to a number dictSize3

of clusters. We then generate a dictionary containing dictSize visual words4

which are the centroids of these clusters. The feature vector of each image5

is a dictSize dimension histogram representing the frequency of occurrence6

of the visual words in the dictionary, by replacing each local descriptor of7

the image by the nearest visual word. Our experiments in (Lai et al., 2012a)8

show that local descriptors are better than global descriptors regarding the9

external measures and the value dictSize = 200 is a good trade-off between10

the size of the feature vector and the performance. Therefore, in our experi-11

ments, we use the rgSIFT descriptor together with a visual word dictionary12

of size 200.13

In order to undertake the interactive tests automatically, we implement a14

software agent, later referred to as “user agent” that simulates the behavior15

of the human user when interacting with the system (assuming that the agent16

knows all the ground truth containing the class label for each image). At each17

interactive iteration, clustering results are returned to the user agent by the18

system; the agent simulates the behavior of the user giving feedback to the19

system. For simulating the user behavior, we suggest some rules:20

• At each interactive iteration, the user agent interacts with a fixed num-21

ber of c clusters.22

• The user agent uses two strategies for choosing clusters: randomly23

chosen c clusters, or iteratively chosen pairs of closest clusters until24

there are c clusters.25
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• The user agent determines the image class (in the ground truth) cor-1

responding to each cluster by the most represented class among the 212

presented images of the cluster. The number of images of this class3

in the cluster must be greater than a threshold MinImages. If this is4

not the case, this cluster can be considered as a noise cluster. In our5

experiments, MinImages = 5 for databases having a small number6

of classes (Wang, PascalVoc2006), and MinImages = 2 for databases7

having a large number of classes (Caltech101).8

• When several clusters (among chosen clusters) correspond to a same9

class, the cluster in which the images of this class are the most numerous10

(among the 21 shown images of the cluster) is chosen as the principal11

cluster of this class. The classes of the other clusters are redefined as12

usual, but neutralize the images from this class.13

• In each chosen cluster, all images, where the result of the algorithm14

corresponds to the ground truth, are labeled as positive samples of15

this cluster, while the others are negative samples of this cluster. All16

negative samples are moved to the cluster (among chosen clusters) cor-17

responding to their class in the ground truth.18

As presented in Section 3.4, we have to deduce pairwise constraints be-19

tween images based on user feedback in each iteration and also on the neigh-20

borhood information. User feedback is in the form of positive and negative21

images of each cluster (the image which is displaced from one cluster to an-22

other cluster is considered as a negative image of the source cluster and a23

positive image of the destination cluster). The neighborhood information is24
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in the form of the lists Np = {Npi} and CannotNp = {cannotNpi}, where1

each neighborhood Npi contains images which should be in a same cluster2

and cannotNpi identifies the list of neighborhoods having cannot-link with3

Npi. Neighborhood information is deduced from user feedback during all4

interactive iterations, as presented in Section 3.4. Pairwise constraints be-5

tween images will be used directly for the semi-supervised HMRF-Kmeans,6

while they have to be deduced into pairwise constraints between CF entries7

(see Section 3.4) to be used by our proposed semi-supervised clustering. We8

divide pairwise constraints between images into two kinds: user constraints9

and deduced constraints. User constraints are created directly, based on user10

feedback in each iteration, while deduced constraints are created by deduction11

rules. For instance, in the first iteration, the user marks x1, x2 as positive12

images and x3 as a negative image of cluster µi; while in the second iter-13

ation, he marks x1 and x4 as positive images of cluster µj. The created14

user constraints are: must-link between positive images in the first iteration15

(x1, x2), must-link between positive images in the second iteration (x1, x4),16

and cannot-links between positive and negative images in the first iteration17

(x1, x3), (x2, x3). As there are must-links (x1, x2), (x1, x4), there is also a de-18

duced must-link (x2, x4). In addition deduced cannot-link (x3, x4) is created,19

based on the must-link (x1, x4) and the cannot-link (x1, x3). We can see that20

deduced constraints can be created based on neighborhood information. In21

our experiments, we use different strategies for deducing pairwise constraints22

between images. These strategies are detailed in Table 1.23
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Table 1: Different strategies for deducing pairwise constraints between images based on user feedback and on

neighborhood information.

N◦ Take into account Details

1 • All user constraints of all in-
teractive iterations.

• All deduced constraints of all
interactive iterations.

All constraints are created based on the neighborhood information:

• Must-link between each pair of images of each neighborhood.

• Cannot-link between each image of each neighborhood Npi ∈ Np and each image of each
neighborhood having cannot-link with Npi (listed in cannotNpi).

2 • All user constraints of all in-
teractive iterations.

• None of deduced constraints.

In each iteration, all possible user constraints are created:

• Must-link between each pair of positive images of each cluster.

• Cannot-link between each pair of a positive image and a negative image of a same cluster.

3 • All user constraints of all in-
teractive iterations.

• All deduced constraints in
the current iteration (de-
duced constraints in the previ-
ous iterations are eliminated).

• In each iteration, all possible user constraints are created as in Strategy 2.

• Deduced constraints in the current iteration are created while updating the neighbor-
hoods as follows:

– If there is a must-link (or cannot-link) (xi, xj), xj ∈ Npm, deduced must-links (or
cannot-links) (xi, xl), ∀xl ∈ Npm are created.

– If there is a must-link (or cannot-link) (xi, xj), xi ∈ Npm, xj ∈ Npn, deduced must-
links (or cannot-links) (xk, xl), ∀xk ∈ Npm, ∀xl ∈ Npn are created.

Continued on next page
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Table 1 – continued from previous page

N◦ Take into account Details

4 • User constraints between im-
ages and cluster centers of all

interactive iterations.

• Deduced constraints between
images and cluster centers
in the current iteration (de-
duced constraints in the previ-
ous iterations are eliminated).

In each iteration, the positive image having the best internal measure (SW) value among
all positive images of each cluster is the center of this cluster.

• Must-link/cannot-link user constraints are created in each iteration between each posi-
tive/negative image and the corresponding cluster center.

• Deduced constraints in the current iteration are created while updating the neighbor-
hoods as follows:

– If xi and xj must be in the same (or different) clusters (based on user feedback),
xj ∈ Npm, deduced must-links (or cannot-links) are created between xi and each
center image of Npm.

– If xi and xj must be in the same (or different) clusters (based on user feedback),
xi ∈ Npm, xj ∈ Npn, deduced must-links (or cannot-links) are created between xi

and each center image of Npn and between xj and each center image of Npm.

5 • User constraints (must-links
between the most distant im-
ages and cannot-links between
the closest images) of all iter-
ations.

• Deduced constraints (must-
links between the most dis-
tant images and cannot-links
between the closest images) of
all iterations.

• User constraints are created for each cluster in each iteration as follows: must-links are
successively created between two positive images (at least one of them is not selected
by any must-link) that have the longest distance until all positive images of the cluster
are connected by these must-links; cannot-links are created between each negative image
and the nearest positive image of the cluster.

• Deduced constraints are created in each iteration as follows: must-links for each neigh-
borhood are successively created between two images that have the longest distance until
all images of this neighborhood are connected by these must-links; cannot-links are de-
duced, for each pair of cannot-link neighborhoods (Npi,Npj), between each image of Npi
and the nearest image of Npj and between each image of Npj and the nearest image of
Npi.

6 Same idea as in strategy 5, but
the size of the neighborhoods
is considered while creating de-
duced cannot-links.

User constraints and deduced must-link constraints are created as in Strategy 5. For each
pair of cannot-link neighborhoods, deduced cannot-links are only created between each
image of the neighborhood that has the least number of images and the nearest image of
the neighborhood that has the most images.
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4.2. Experimental results1

4.2.1. Analysis of different strategies for deducing pairwise constraints be-2

tween images3

The first set of experiments aims at evaluating the performance of our4

interactive semi-supervised clustering model using different strategies for de-5

ducing pairwise constraints between images. Note that constraints between6

CF entries should be deduced from constraints between images, before being7

used in the re-clustering phase. We use the Wang and the PascalVoc20068

image databases for these experiments. For these two databases, we propose9

three test scenarios (note that c specifies the number of clusters which are10

chosen for interacting in each iteration):11

• Scenario 1: c = 5 closest clusters are chosen.12

• Scenario 2: c = 5 clusters are randomly chosen.13

• Scenario 3: c = 10, all cluster are chosen (Wang and PascalVoc200614

both have 10 clusters).15

Note that our experiments are carried out automatically, i.e. the feedback is16

given by a software agent simulating the behaviors of the human user when17

interacting with the system. In fact, the human user can give feedback by18

clicking for specifying the positive and/or negative images of each cluster or19

by dragging and dropping the image from a cluster to another cluster. For20

each cluster selected by the user, only 21 images of this cluster are displayed21

(see Figure 1). Therefore, for interacting with 5 clusters (scenarios 1, 2) or22

10 clusters (scenario 3), the user has to realize respectively a maximum of23

105 or 210 mouse clicks in each interactive iteration. These upper bounds do24
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not depend on neither the size of the database nor the pairwise constraint1

deduction strategy, and in practice the number of clicks that the user has2

to provide is far lower. However, the number of deduced constraints may be3

much greater than the user’s clicks (and this number depends on the database4

size and on the pairwise constraint deduction strategy). When applying the5

interactive semi-supervised clustering model in the indexing phase, the user6

is generally required to provide as much feedback as possible for having a7

good indexing structure which could lead to better results in the further8

retrieval phase. Therefore, in the case of the indexing phase, the proposed9

number of clicks seems tractable.10

Figures 3a and 3b show, respectively, the results during 50 interactive11

iterations of our proposed interactive semi-supervised clustering model on12

the Wang and PascalVoc2006 image databases, with the three proposed sce-13

narios. The results are shown according to 6 strategies for deducing pairwise14

constraints presented in Table 1. The vertical axis specifies the V-measure15

values, while the horizontal axis specifies the number of iterations. Note16

that with each selected cluster, the user agent gives all possible feedback.17

Therefore, for each scenario, the numbers of user feedback are equivalent18

between different iterations and between different strategies. As in scenario19

2, clusters are randomly chosen, we realize this scenario 10 times for each20

database. The curves of the scenario 2 shown in Figures 3a and 3b represent21

the mean values of the V-measure over these 10 executions at each iteration.22

The average standard deviation of each strategy after 50 iterations is pre-23

sented in Table 2. The corresponding execution time for these experiments24

is presented in Table 3 (note that for the scenario 2, the average execution25
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(a) Results on the Wang image database

(b) Results on the PascalVoc2006 image database

Figure 3: Results of our proposed interactive semi-supervised clustering model

during 50 interactive iterations on the Wang and PascalVoc2006 image databases,

using 6 strategies for deducing pairwise constraints. The horizontal axis specifies

the number of iterations.
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Table 2: Average standard deviation of 10 executions of the scenario 2 after

50 interactive iterations corresponding to the experiments of our proposed

interactive semi-supervised clustering model shown in Figures 3a and 3b

Average standard deviation

Wang database PascalVoc2006 database

Strategy 1 0.033 0.022

Strategy 2 0.044 0.017

Strategy 3 0.045 0.025

Strategy 4 0.047 0.022

Strategy 5 0.036 0.024

Strategy 6 0.044 0.026

times of 10 executions are shown). The experiments are executed using a1

normal PC with 2GB of RAM.2

We can see that the clustering results progress, in general, after each in-3

teractive iteration, in which the system re-clusters the dataset by considering4

the constraints deduced from accumulated user feedback. In most cases, the5

clustering results converge after only a few iterations. This may be due to the6

fact that no new knowledge is provided. Moreover, we can easily see that the7

clustering results are better and converge more quickly when the number of8

chosen clusters (and therefore the number of constraints) in each interactive9

iteration is higher (scenario 3 gives better results and converges more quickly10

than scenarios 1 and 2). In addition, for both image databases, scenario 2,11

in which clusters are randomly chosen for interacting, gives better results12

than scenario 1, in which the closest clusters are chosen. When selecting the13
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Table 3: Processing time after 50 interactive iterations of the experiments of

our proposed interactive semi-supervised clustering model shown in Figures

3a and 3b.

Wang database

Scenario 1 Scenario 2 Scenario 3

Strategy 1 1h58’ 2h24’ 1h41’

Strategy 2 9’ 12’ 10’

Strategy 3 31’ 19’ 47’

Strategy 4 8’ 9’ 8’

Strategy 5 8’ 9’ 9’

Strategy 6 6’ 8’ 8’

PascalVoc2006 database

Scenario 1 Scenario 2 Scenario 3

Strategy 1 16d12h 14d11h

Strategy 2 2h55’ 4h02’ 5h6’

Strategy 3 3h23’ 6h39’ 6h22’

Strategy 4 1h9’ 1h33’ 2h17’

Strategy 5 3h33’ 4h42’ 3h10’

Strategy 6 1h3’ 1h21’ 2h
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closest clusters there may be only several clusters that always receive user1

feedback; thus the constraint information is less than when all the clusters2

could receive user feedback when we randomly select the clusters.3

As regards different strategies for deducing pairwise constraints, we can4

see that for each database, the average standard deviations over 10 executions5

of the scenario 2 are similar for all scenarios. Therefore, we can compare6

different strategies based on the mean values shown on Figures 3a and 3b.7

We can see that:8

• Strategy 1 shows, in general, very good performance but the processing9

time is huge because it uses all possible user constraints and deduced10

constraints created during all iterations.11

• Strategy 2, the only strategy uniquely using user constraints, generally12

gives the worst results; thus deduced constraints are needed for better13

performance. Its processing time is also high due to the large number14

of user constraints.15

• Strategy 3 shows good or very good performance but some oscillations16

exist between different iterations because, when overlooking previously17

deduced constraints, some important constraints may be omitted. Its18

processing time is high.19

• Strategy 4 gives better results than strategy 2, but the results are unsta-20

ble because this strategy also overlooks previously deduced constraints.21

It has good execution time while reducing the number of constraints.22

• Strategy 5 generally gives good or very good results by keeping im-23

portant constraints (must-links between the most distant images and24
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Table 4: Processing time after 50 interactive iterations corresponding to the

experiments presented in Figures 4a and 4b of the proposed semi-supervised

clustering and of the semi-supervised HMRF-kmeans. Strategy 6 in Table 1

for deducing pairwise constraints is used.

Wang database

Scenario 1 Scenario 2 Scenario 3

Proposed semi-supervised clustering 6’ 8’ 8’

HMRF-kmeans 7’ 11’ 10’

PascalVoc2006 database

Scenario 1 Scenario 2 Scenario 3

Proposed semi-supervised clustering 1h3’ 1h21’ 2h’

HMRF-kmeans 2h16’ 3h10’ 2h49’

cannot-links between the closest images), but its processing time is still1

high.2

• Strategy 6, by reducing the deduced cannot-link constraints from strat-3

egy 5, gives in general very good results in low execution time.4

We can conclude, from this analysis, that strategy 6 shows the best trade-5

off between performance and processing time. This strategy will be used in6

further experiments.7

4.2.2. Comparison of the proposed semi-supervised clustering model and the8

semi-supervised HMRF-kmeans9

Figures 4a and 4b represent, respectively, the clustering results for 5010

interactive iterations on the Wang and the PascalVoc2006 image databases11
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(a) Comparison results on the Wang image database

(b) Comparison results on the PascalVoc2006 image database

Figure 4: Comparison of the proposed semi-supervised clustering and the semi-

supervised HMRF-kmeans with 50 interactive iterations using Strategy 6 in Table

1 for deducing the pairwise constraints between images. The horizontal axis rep-

resents the number of iterations.
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when using our proposed semi-supervised clustering and the semi-supervised1

HMRF-kmeans in the re-clustering phase. The three scenarios described2

in Section 4.2.1 and strategy 6, for deducing pairwise constraints between3

images, are used. Note that the results of scenario 2 represent the mean4

values and also the standard deviations over 10 executions at each itera-5

tion. The corresponding processing time is presented in Table 4. We can6

see that in all scenarios, our proposed method gives better results, in lower7

processing time than the HMRF-kmeans. While the pairwise constraints8

between images are directly used by the HMRF-kmeans, they are deduced9

in pairwise constraints between CF entries for being used by our proposed10

semi-supervised clustering. A CF entry groups a list of similar images, thus11

many pairwise constraints between images can be represented by only one12

pairwise constraints between CF entries. Therefore, with a same set of user13

feedback, the number of pairwise constraints between images is generally14

greater than the number of the pairwise constraints between CF entries.15

Thus the processing time of the HMRF-kmeans is much higher than the pro-16

cessing time of our proposed method. Moreover, when a pairwise constraint17

(CFi, CFj) is deduced from the pairwise constraint of the corresponding im-18

ages (xk, xl), xk ∈ CFi, xl ∈ CFj , the constraint (CFi, CFj) forces the group-19

ing or separating of not only the two images xi and xj but also the other im-20

ages included in CFi and CFj . And therefore, the clustering results given by21

our proposed method are better than the ones given by the HMRF-kmeans.22

Moreover, similar to the experiments presented in Section 4.2.1, the scenario23

2 in which the clusters are randomly chosen for interacting gives better re-24

sults than the scenario 1 in which the closest clusters are chosen. In the25
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Table 5: Processing time after 50 interactive iterations corresponding to

the experiments on the Caltech101 image database in Figure 5 for the pro-

posed semi-supervised clustering and for the semi-supervised HMRF-kmeans.

Strategy 6 in Table 1 for deducing pairwise constraints is used.

Proposed semi-supervised clustering HMRF-kmeans

Scenario 4 13h26’ 48h33’

Scenario 5 8h4’ 33h45’

Scenario 6 33h34’ 157h26’

Scenario 7 50h12’ 101h11’

following experiments on the Caltech101 image database, we present only1

the clustering results when the clusters are randomly chosen.2

As the Caltech101 database has a large number of classes (101 classes),3

we do not show all clusters to the user on the principal plane but only a4

small number of clusters (we fix the maximum number of cluster that could5

be shown on the principal plane to 30). There are two strategies for choosing6

clusters to be shown on the principal plane: either clusters are randomly7

chosen or the closest clusters are chosen. The user agent randomly chooses,8

among shown clusters, c clusters for interacting. We use 4 scenarios for the9

experiments on the Caltech101 image database:10

• Scenario 4: the closest clusters are chosen to be shown to the user, c=511

clusters are chosen by the user agent for interacting.12

• Scenario 5: clusters are randomly chosen to be shown to the user, c=513

clusters are chosen by the user agent for interacting.14
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Figure 5: Comparison of the proposed semi-supervised clustering and the semi-

supervised HMRF-kmeans on the Caltech101 image database for 50 interactive

iterations. The strategy 6 in Table 1 for deducing pairwise constraints are used.

The horizontal axis represents the number of iterations.
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• Scenario 6: the closest clusters are chosen to be shown to the user,1

c=10 clusters are chosen by the user agent for interacting.2

• Scenario 7: clusters are randomly chosen to be shown to the user, c=103

clusters are chosen by the user agent for interacting.4

Figure 5 compares our proposed semi-supervised clustering and the HMRF-5

kmeans during 50 interactive iterations on the Caltech101 image database.6

The corresponding processing time is presented in Table 5. As in all these7

four scenarios, the clusters are randomly chosen for interacting, we realize8

each scenario 5 times and present in Figure 5 the mean values and also the9

standard deviations over 5 executions. The results shows that our proposed10

semi-supervised clustering outperforms the HMRF-kmeans in all four sce-11

narios. Moreover, the clustering results are also better when the number of12

feedback for each iteration is high (scenarios 6 and 7 give better results than13

scenarios 4 and 5).14

5. Conclusion15

A new interactive semi-supervised clustering model for indexing image16

databases is presented in this article. After receiving user feedback for each17

interactive iteration, the proposed semi-supervised clustering re-organizes the18

dataset by considering the pairwise constraints between CF entries deduced19

from the user feedback. We present an interactive interface allowing the20

user to view, and to provide feedback. Experimental analysis, using a soft-21

ware user agent for simulating human user behavior, shows that our model22

improves the clustering results at each interactive iteration. Note that our23
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experimental scenarios are realistic, they can be realized by a real user as the1

number of clicks required is tractable. The experiments on different image2

databases (Wang, PascalVoc2006, Caltech101), presented in this paper, also3

show that our semi-supervised clustering outperforms the semi-supervised4

HMRF-kmeans (Basu et al., 2004) in both performance and processing time.5

Moreover, we propose and compare, experimentally, different strategies6

for deducing pairwise constraints from the user feedback accumulated from all7

interactive iterations. The experimental results show that strategy 6 in Table8

1, which keeps only the most important constraints (must-links between the9

most distant images and cannot-links between the closest images), provides10

the best trade-off between the performance and the processing time. Strategy11

6 is therefore the most suitable, in our context involving the user in the12

indexing phase by clustering.13

Our future work aims to verify our proposed semi-supervised clustering14

model with larger image databases such as Corel30k, MIRFLICKR, to prove15

experimentally the convergence of our algorithm, and to look for different16

strategies for deducing the pairwise constraints or for representing the clus-17

tering results that could improve the performance of our model in the context18

of huge image databases.19
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