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Abstract In recent years, the expansion of acquisition

devices such as digital cameras, the development of storage

and transmission techniques of multimedia documents and

the development of tablet computers facilitate the devel-

opment of many large image databases as well as the

interactions with the users. This increases the need for

efficient and robust methods for finding information in

these huge masses of data, including feature extraction

methods and feature space structuring methods. The feature

extraction methods aim to extract, for each image, one or

more visual signatures representing the content of this

image. The feature space structuring methods organize

indexed images in order to facilitate, accelerate and

improve the results of further retrieval. Clustering is one

kind of feature space structuring methods. There are dif-

ferent types of clustering such as hierarchical clustering,

density-based clustering, grid-based clustering, etc. In an

interactive context where the user may modify the auto-

matic clustering results, incrementality and hierarchical

structuring are properties growing in interest for the

clustering algorithms. In this article, we propose an

experimental comparison of different clustering methods

for structuring large image databases, using a rigorous

experimental protocol. We use different image databases

of increasing sizes (Wang, PascalVoc2006, Caltech101,

Corel30k) to study the scalability of the different

approaches.

Keywords Image indexing � Feature space structuring �
Clustering � Large image database � Content-based image

retrieval � Unsupervised classification

1 Originality and contribution

In this paper, we present an overview of different clustering

methods. Good surveys and comparisons of clustering

techniques have been proposed in the literature a few years

ago [3–12]. However, some aspects have not been studied

yet, as detailed in the next section. The first contribution of

this paper lies in analyzing the respective advantages and

drawbacks of different clustering algorithms in a context of

huge masses of data where incrementality and hierarchical

structuring are needed. The second contribution is an

experimental comparison of some clustering methods

(global k-means, AHC, R-tree, SR-tree and BIRCH) with

different real image databases of increasing sizes (Wang,

PascalVoc2006, Caltech101, Corel30k) to study the sca-

lability of these approaches when the size of the database is

increasing. Different feature descriptors of different sizes

are used in order to evaluate these approaches in the con-

text of high-dimensional data. The clustering results are

evaluated by both internal (unsupervised) measures and

external (supervised) measures, the latter being closer to

the users’ semantic.
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2 Introduction

With the development of many large image databases, the

traditional content-based image retrieval in which the

feature vector of the query image is exhaustively compared

to that of all other images in the database for finding the

nearest images is not compatible. Feature space structuring

methods (clustering, classification) are necessary for

organizing indexed images to facilitate and accelerate

further retrieval.

Clustering, or unsupervised classification, is one of the

most important unsupervised learning problems. It aims to

split a collection of unlabelled data into groups (clusters)

so that similar objects belong to the same group and

dissimilar objects are in different groups. In general,

clustering is applied on a set of feature vectors (signa-

tures) extracted from the images in the database. Because

these feature vectors only capture low level information

such as color, shape or texture of an image or of a part of

an image (see Sect. 3), there is a semantic gap between

high-level semantic concepts expressed by the user and

these low-level features. The clustering results are there-

fore generally different from the intent of the user. Our

work in the future aims to involve the user into the

clustering phase so that the user could interact with the

system in order to improve the clustering results (the user

may split or group some clusters, add new images, etc.).

With this aim, we are looking for clustering methods

which can be incrementally built in order to facilitate the

insertion, the deletion of images. The clustering methods

should also produce hierarchical cluster structure where

the initial clusters may be easily merged or split. It can be

noted that the incrementality is also very important in the

context of very large image databases, when the whole

data set cannot be stored in the main memory. Another

very important point is the computational complexity of

the clustering algorithm, especially in an interactive

context where the user is involved.

Clustering methods may be divided into two types: hard

clustering and fuzzy clustering methods. With hard clus-

tering methods, each object is assigned to only one cluster

while with fuzzy methods, an object can belong to one or

more clusters. Different types of hard clustering methods

have been proposed in the literature such as hierarchical

clustering (AGNES [37], DIANA [37], BIRCH [45],

AHC [42], etc.), partition-based clustering (k-means [33],

k-medoids [36], PAM [37], etc.), density-based clustering

(DBSCAN [57], DENCLUE [58], OPTICS [59], etc.), grid-

based clustering (STING [53], WaveCluster [54], CLICK

[55], etc.) and neural network based clustering (SOM [60]).

Other kinds of clustering approaches have been presented

in the literature such as the genetic algorithm [1] or the

affinity propagation [2] which exchange real-valued

messages between data points until having a high-quality

set of exemplars and corresponding clusters. More details

on the basic approaches will be given in Sect. 4. Fuzzy

clustering methods will be studied in further works.

A few comparisons of clustering methods [3–10] have

been proposed so far with different kinds of databases.

Steinbach et al. [3] compared agglomerative hierarchical

clustering and k-means for document clustering. In [4],

Thalamuthu et al. analyzed some clustering methods with

simulated and real gene expression data. Some clustering

methods for word images are compared in [5]. In [7], Wang

and Garibaldi compared hard (k-means) and fuzzy (fuzzy

C-means) clustering methods. Some model-based cluster-

ing methods are analyzed in [9]. These papers compared

different clustering methods using different kinds of data

sets (simulated or real), most of these data sets have a low

number of attributes or a low number of samples. More

general surveys of clustering techniques have been pro-

posed in the literature [11, 12]. Jain et al. [11] presented an

overview of different clustering methods and give some

important applications of clustering algorithms such as

image segmentation, object recognition, but they did not

present any experimental comparison of these methods. A

well-researched survey of clustering methods is presented

in [12], including analysis of different clustering methods

and some experimental results not specific to image anal-

ysis. In this paper, we present a more complete overview of

different clustering methods and analyze their respective

advantages and drawbacks in a context of huge masses of

data where incrementality and hierarchical structuring are

needed. After presenting different clustering methods, we

experimentally compare five of these methods (global

k-means, AHC, R-tree, SR-tree and BIRCH) with different

real image databases of increasing sizes (Wang, Pascal-

Voc2006, Caltech101, Corel30k) (the number of images is

from 1,000 to 30,000) to study the scalability of different

approaches when the size of the database is increasing.

Moreover, we test different feature vectors which size (per

image) varies from 50 to 500 in order to evaluate these

approaches in the context of high-dimensional data. The

clustering results are evaluated by both internal (unsuper-

vised) measures and external (supervised and therefore

semantic) measures.

The most commonly used Euclidean distance is referred

by default in this paper for evaluating the distance or the

dissimilarity between two points in the feature space

(unless another dissimilarity measure is specified).

This paper is structured as follows. Section 3 presents an

overview of feature extraction approaches. Different clus-

tering methods are described in Sect. 4. Results of different

clustering methods on different image databases of

increasing sizes are analyzed in Sect. 5. Section 6 presents

some conclusions and further work.
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3 A short review of feature extraction approaches

There are three main types of feature extraction approaches:

global approach, local approach and spatial approach.

– With regards to the global approaches, each image is

characterized by a signature calculated on the entire

image. The construction of the signature is generally

based on color, texture and/or shape. We can describe

the color of an image, among other descriptors [13], by

a color histogram [14] or by different color moments

[15]. The texture can be characterized by different

types of descriptors such as co-occurrence matrix [16],

Gabor filters [17, 18], etc. There are various descriptors

representing the shape of an image such as Hu’s

moments [19], Zernike’s moments [20, 21], Fourier

descriptors [22], etc. These three kinds of features can

be either calculated separately or combined for having

a more complete signature.

– Instead of calculating a signature on the entire image,

local approaches detect interest points in an image and

analyze the local properties of the image region around

these points. Thus, each image is characterized by a set

of local signatures (one signature for each interest

point). There are some different detectors for identify-

ing the interest points of an image such as the Harris

detector [23], the difference of Gaussian [24], the

Laplacian of Gaussian [25], the Harris–Laplace detec-

tor [26], etc. For representing the local characteristics

of the image around these interest points, there are

various descriptors such as the local color histogram

[14], Scale-Invariant Feature Transform (SIFT) [24],

Speeded Up Robust Features (SURF) [27], color SIFT

descriptors [14, 28–30], etc. Among these descriptors,

SIFT descriptors are very popular because of their very

good performance.

– Regarding to the spatial approach, each image is

considered as a set of visual objects. Spatial relationships

between these objects will be captured and characterized

by a graph of spatial relations, in which nodes often

represent regions and edges represent spatial relations.

The signature of an image contains descriptions of visual

objects and spatial relationships between them. This kind

of approach relies on a preliminary stage of objects

recognition which is not straightforward, specially in the

context of huge image databases where the contents may

be very heterogeneous. Furthermore, the sensitivity of

regions segmentation methods generally leads to use

inexact graph matching techniques, which correspond to

a N–P complete problem.

In content-based image retrieval, it is necessary to measure

the dissimilarity between images. With regards to the

global approaches, the dissimilarity can be easily

calculated because each image is represented by a n-

dimensional feature vector (where the dimensionality n is

fixed). In the case of the local approaches, each image is

represented by a set of local descriptors. And, as the

number of interest points may vary from one image to

another, the sizes of the feature vectors of different images

may differ and some adapted strategies are generally used

to tackle the variability of the feature vectors. In that case,

among all other methods, we present hereafter two among

the most widely used and very different methods for

calculating the distance between two images:

– In the first method, the distance between two images is

calculated based on the number of matches between

them [31]. For each interest point P of the query

image, we consider, among all the interest points of

the image database, the two points P1 and P2 which

are the closest to P (P1 being closer than P2). A match

between P and P1 is accepted if D(P, P1) B distRa-

tio* D(P, P2), where D is the distance between two

points (computed using their n-dimensional feature

vectors) and distRatio is a fixed threshold, distRa-

tio [ (0,1). Note that for two images Ai and Aj, the

matching of Ai against Aj (further denoted as (Ai, Aj))

does not produce the same matches as the matching of

Aj against Ai (denoted as (Aj, Ai).) The distance

between two images Ai and Aj is computed using the

following formula:

Di;j ¼ Dj;i ¼ 100 � 1� Mij

minfKAi
;KAj
g

� �
ð1Þ

where KAi
;KAj

are respectively the numbers of interest

points found in Ai, Aj and Mij is the maximum number

of matches found between the pairs (Ai, Aj) and (Aj, Ai).

– The second approach is based on the use of the ‘‘bags

of words’’ method [32] which calculates, from a set of

local descriptors, a global feature vector for each

image. Firstly, we extract local descriptors of all the

images in the database and perform clustering on these

local descriptors to create a dictionary in which each

cluster center is considered as a visual word. Then,

each local descriptor of every image in the database is

encoded by its closest visual word in the dictionary.

Finally, each image in the database is characterized by

a histogram vector representing the frequency of

occurrence of all the words of the dictionary, or

alternatively by a vector calculated by the tf-idf

weighting method. Thus, each image is characterized

by a feature vector of size n (where n is the number of

words in the dictionary, i.e. the number of clusters of

local descriptors) and the distance between any two

images can be easily calculated using the Euclidean

distance or the v2 distance.
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In summary, the global approaches represent the whole

image by a feature descriptor, these methods are limited by

the loss of topological information. The spatial approaches

represent the spatial relationships between visual objects in

the image, they are limited by the stability of the region

segmentation algorithms. The local approaches represent

each image by a set of local feature descriptor, they are also

limited by the the loss of spatial information, but they give

a good trade-off.

4 Clustering methods

There are currently many clustering methods that allow us

to aggregate data into groups based on the proximity

between points (vectors) in the feature space. This section

presents an overview of hard clustering methods where

each point belongs to one cluster. Fuzzy clustering methods

will be studied in further work. Because of our applicative

context which involves interactivity with the user (see Sect.

2), we analyze the application capability of these methods

in the incremental context. In this section, we use the fol-

lowing notations:

– X ¼ xiji ¼ 1; . . .;N : the set of vectors for clustering

– N: the number of vectors

– K ¼ Kjjj ¼ 1; . . .; k : the set of clusters

Clustering methods are divided into several types:

– Partitioning methods partition the data set based on the

proximities of the images in the feature space. The

points which are close are clustered in the same group.

– Hierarchical methods organize the points in a hierar-

chical structure of clusters.

– Density-based methods aim to partition a set of points

based on their local densities.

– Grid-based methods partition a priori the space into

cells without considering the distribution of the data

and then group neighboring cells to create clusters.

– Neural network based methods aim to group similar

objects by the network and represent them by a single

unit (neuron).

4.1 Partitioning methods

Methods based on data partitioning are intended to parti-

tion the data set into k clusters, where k is usually prede-

fined. These methods give in general a ‘‘flat’’ organization

of clusters (no hierarchical structure). Some methods of

this type are: k-means [33], k-medoids [36], PAM [37],

CLARA [37], CLARANS [38], ISODATA [40], etc.

K-means [33] K-means is an iterative method that par-

titions the data set into k clusters so that each point belongs

to the cluster with the nearest mean. The idea is to mini-

mize the within-cluster sum of squares:

I ¼
Xk

j¼1

X
xi2Kj

Dðxi; ljÞ ð2Þ

where lj is the gravity center of the cluster Kj.

The k-means algorithm has the following steps:

1. Select k initial clusters.

2. Calculate the means of these clusters.

3. Assign each vector to the cluster with the nearest mean.

4. Return to step 2 if the new partition is different from

the previous one, otherwise, stop.

K-means is very simple to implement. It works well for

compact and hyperspherical clusters and it does not depend

on the processing order of the data. Moreover, it has rel-

atively low time complexity of O(Nkl) (note that it does not

include the complexity of the distance) and space com-

plexity of O(N ? k), where l is the number of iterations

and N is the number of feature vectors used for clustering.

In fact, l and k are usually much small compared to N, so

k-means can be considered as linear to the number of

elements. K-means is therefore effective for the large

databases. On the other side, k-means is very sensitive to

the initial partition, it can converge to a local minimum, it

is very sensitive to the outliers and it requires to predefine

the number of clusters k. K-means is not suitable to the

incremental context.

There are several variants of k-means such as k-har-

monic means [34], global k-means [35], etc. Global

k-means is an iterative approach where a new cluster is

added at each iteration. In other words, to partition the data

into k clusters, we realize the k-means successively with

k ¼ 1; 2; . . .; k � 1: In step k, we set the k initial means of

clusters as follows:

– k - 1 means returned by the k-means algorithm in step

k - 1 are considered as the first k - 1 initial means in

step k.

– The point xn of the database is chosen as the last initial

mean if it maximizes bn:

bn ¼
XN

j¼1

ðd j
k�1 � jjxn � xjjj2; 0Þ ð3Þ

where dk-1
j is the squared distance between xj and the

nearest mean among the k - 1 means found in the pre-

vious iteration. Thus, bn measures the possible reduction

of the error obtained by inserting a new mean at the

position xn.

The global k-means is not sensitive to initial conditions,

it is more efficient than k-means, but its computational

complexity is higher. The number of clusters k may not be
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determined a priori by the user, it could be selected auto-

matically by stopping the algorithm at the value of k having

acceptable results following some internal measures (see

Sect. 5.1.)

k-medoids [36] The k-medoids method is similar to the

k-means method, but instead of using means as represen-

tatives of clusters, the k-medoids uses well-chosen data

points (usually referred as to medoids1 or exemplars) to

avoid excessive sensitivity towards noise. This method and

other methods using medoids are expensive because the

calculation phase of medoids has a quadratic complexity.

Thus, it is not compatible to the context of large image

databases. The current variants of the k-medoids method

are not suitable to the incremental context because when

new points are added to the system, we have to compute all

of the k medoids again.

Partitioning Around Medoids (PAM) [37] is the most

common realisation of k-medoids clustering. Starting with

an initial set of medoids, we iteratively replace one medoid

by a non-medoid point if that operation decreases the

overall distance (the sum of distances between each point

in the database and the medoid of the cluster it belongs to).

PAM therefore contains the following steps:

1. Randomly select k points as k initial medoids.

2. Associate each vector to its nearest medoid.

3. For each pair {m, o} (m is a medoid, o is a point that is

not a medoid):

– Exchange the role of m and o and calculate the new

overall distance when m is a non-medoid and o is a

medoid.

– If the new overall distance is smaller than the

overall distance before changing the role of m and

o, we keep the new configuration.

4. Repeat step 3 until there is no more change in the

medoids.

Because of its high complexity O(k(n - k)2), PAM is not

suitable to the context of large image databases. Like every

variant of the k-medoids algorithm, PAM is not compatible

with the incremental context either.

CLARA [37] The idea of Clustering LARge Applications

(CLARA) is to apply PAM with only a portion of the data

set (40 ? 2k objects) which is chosen randomly to avoid

the high complexity of PAM, the other points which are not

in this portion will be assigned to the cluster with the

closest medoid. The idea is that, when the portion of the

data set is chosen randomly, the medoids of this portion

would approximate the medoids of the entire data set. PAM

is applied several times (usually five times), each time with

a different part of the data set, to avoid the dependence of

the algorithm on the selected part. The partition with the

lowest average distance (between the points in the database

and the corresponding medoids) is chosen.

Due to its lower complexity of O(k(40 ? k)2 ? k(N - k)),

CLARA is more suitable than PAM in the context of large

image databases, but its result is dependent on the selected

partition and it may converge to a local minimum. It is

more suitable to the incremental context because when

there are new points added to the system, we could directly

assign them to the cluster with the closest medoid.

CLARANS [38] Clustering Large Application based

upon RANdomize Search (CLARANS) is based on the use

of a graph GN,k in which each node represents a set of

k candidate medoids ðOM1; . . .;OMkÞ: All nodes of the

graph represent the set of all possible choices of k points in

the database as k medoids. Each node is associated with a

cost representing the average distance (the average dis-

tance between between all the points in the database and

their closest medoids) corresponding to these k medoids.

Two nodes are neighbors if they differ by only one medoid.

CLARANS will search, in the graph GN,k, the node with

the minimum cost to get the result. Similar to CLARA,

CLARANS does not search on the entire graph, but in the

neighborhood of a chosen node. CLARANS has been

shown to be more effective than both PAM and CLARA

[39], it is also able to detect the outliers. However, its time

complexity is O(N2), therefore, it is not quite effective in

very large data set. It is sensitive to the processing order of

the data. CLARANS is not suitable to the incremental

context because the graph changes when new elements are

added.

ISODATA [40] Iterative Self-Organizing Data Analysis

Techniques (ISODATA) is an iterative method. At first, it

randomly selects k cluster centers (where k is the number of

desired clusters). After assigning all the points in the

database to the nearest center using the k-means method,

we will:

– Eliminate clusters containing very few items (i.e. where

the number of points is lower than a given threshold)

– Split clusters if we have too few clusters. A cluster is

split if it has enough objects (i.e. the number of objects

is greater than a given threshold) or if the average

distance between its center and its objects is greater

than the overall average distance between all objects in

the database and their nearest cluster center.

– Merge the closest clusters if we have too many clusters.

The advantage of ISODATA is that it is not necessary to

permanently set the number of classes. Similar to k-means,

ISODATA has a low storage complexity (space) of

O(N ? k) and a low computational complexity (time) of

O(Nkl), where N is the number of objects and l is the

1 The medoid is defined as the cluster object which has the minimal

average distance between it and the other objects in the cluster.
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number of iterations. It is therefore compatible with large

databases. But its drawback is that it relies on thresholds

which are highly dependent on the size of the database and

therefore difficult to settle.

The partitioning clustering methods described above are

not incremental, they do not produce hierarchical structure.

Almost of them are independent to the processing order of

the data (except CLARANS) and do not depend on any

parameters (except ISODATA). K-means, CLARA and

CLARANS are adapted to the large databases, while

CLARANS and ISODATA are able to detect the outliers.

Among these methods, k-means is the best known and the

most used because of its simplicity and its effectiveness for

the large databases.

4.2 Hierarchical methods

Hierarchical methods decompose hierarchically the data-

base vectors. They provide a hierarchical decomposition of

the clusters into sub-clusters while the partitioning methods

lead to a ‘‘flat’’ organization of clusters. Some methods of

this kind are: AGNES [37], DIANA [37], AHC [42],

BIRCH [45], ROCK [46], CURE [47], R-tree family [48–

50], SS-tree [51], SR-tree [52], etc.

DIANA [37] DIvisitive ANAlysis (DIANA) is a top-

down clustering method that divides successively clusters

into smaller clusters. It starts with an initial cluster con-

taining all the vectors in the database, then at each step the

cluster with the maximum diameter is divided into two

smaller clusters until all clusters contain only one single-

ton. A cluster K is split into two as follows:

1. Identify x* in cluster K with the largest average

dissimilarity with other objects of cluster K, then x*

initializes a new cluster K*

2. For each object xi 62 K�; compute:

di ¼ ½average½dðxi; xjÞ�jxj 2 K n K��
� ½average½dðxi; xjÞ�jxj 2 K��

ð4Þ

where d(xi, xj) is the dissimilarity between xi and xj

3. Choose xk for which dk is the largest. If dk [ 0 then

add xk into K*

4. Repeat steps 2 and 3 until dk \ 0

The dissimilarity between objects can be measured by

different measures (Euclidean, Minkowski, etc.). DIANA

is not compatible with an incremental context. Indeed, if

we want to insert a new element x into a cluster K that is

divided into two clusters K1 and K2, the distribution of the

elements of the cluster K into two new clusters K 01 and K 02
after inserting the element x may be very different to K1

and K2. In that case, it is difficult to reorganize the

hierarchical structure. Moreover, the execution time to split

a cluster into two new clusters is also high (at least

quadratic to the number of elements in the cluster to be

split), the overall computational complexity is thus at least

O(N2). DIANA is therefore not suitable for a large

database.

Simple Divisitive Algorithm (Minimum Spanning Tree

(MST)) [11] This clustering method starts by constructing a

Minimum Spanning Tree (MST) [41] and then, at each

iteration, removes the longest edge of the MST to obtain

the clusters. The process continues until there is no more

edge to eliminate. When new elements are added to the

database, the minimum spanning tree of the database

changes, therefore it may be difficult to use this method in

an incremental context. This method has a relatively high

computational complexity of O(N2), it is therefore not

compatible for clustering large databases.

Agglomerative Hierarchical Clustering (AHC) [42]

AHC is a bottom-up clustering method which consists of

the following steps:

1. Assign each object to a cluster. We obtain thus

N clusters.

2. Merge the two closest clusters.

3. Compute the distances between the new cluster and

other clusters.

4. Repeat steps 2 and 3 until it remains only one cluster

There are different approaches to compute the distance

between any two clusters:

– In single-linkage, the distance between two clusters Ki

and Kj is the minimum distance between an object in

cluster Ki and an object in cluster Kj.

– In complete-linkage, the distance between two clusters

Ki and Kj is the maximum distance between an object in

cluster Ki and an object in cluster Kj.

– In average-linkage, the distance between two clusters

Ki and Kj is the average distance between an object in

cluster Ki and an object in cluster Kj.

– In centroid-linkage, the distance between two clusters

Ki and Kj is the distance between the centroids of these

two clusters.

– In Ward’s method [43], the distance between two

clusters Ki and Kj measures how much the total sum of

squares would increase if we merged these two clusters:

DðKi;KjÞ ¼
X

xi2Ki[Kj

ðxi � lKi[Kj
Þ2

�
X
xi2Ki

ðxi � lKi
Þ2 �

X
xi2Kj

ðxi � lKj
Þ2

¼
NKi

NKj

NKi
þ NKj

ðlKi
� lKj

Þ2 ð5Þ

where lKi
; lKj

; lKi[Kj
are respectively the center of

clusters Ki, Kj, Ki[ Kj, and NKi
;NKj

are respectively the

numbers of points in clusters Ki and Kj.
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Using AHC clustering, the tree constructed is deterministic

since it involves no initialization step. But it is not capable

to correct possible previous misclassification. The other

disadvantages of this method is that it has a high

computational complexity of O(N2log N) and a storage

complexity of O(N2), and therefore is not really adapted to

large databases. Moreover, it has a tendency to divide,

sometimes wrongly, clusters including a large number of

examples. It is also sensitive to noise and outliers.

There is an incremental variant [44] of this method.

When there is a new item x, we determine its location in the

tree by going down from the root. At each node R which has

two children G1 and G2, the new element x will be merged

with R if D(G1, G2) \ D(R, X); otherwise, we have to go

down to G1 or G2. The new element x belongs to the

influence region of G1 if D(X, G1) B D(G1, G2).

BIRCH [45] Balanced Iterative Reducing and Clustering

using Hierarchies (BIRCH) is developed to partition very

large databases that can not be stored in main memory. The

idea is to build a Clustering Feature Tree (CF-tree).

We define a CF-Vector summarizing information of a

cluster including M vectors ðX1; . . .;XMÞ; as a triplet CF ¼
ðM;LS; SSÞ where LS and SS are respectively the linear

sum and the square sum of vectors ðLS ¼
PM

i¼1 Xi; SS ¼PM
i¼1 Xi

2Þ. From the CF-vector of a cluster, we can simply

compute the mean, the average radius and the average

diameter (average distance between two vectors of the

cluster) of a cluster and also the distance between two

clusters (e.g. the Euclidean distance between their means).

A CF-Tree is a balanced tree having three parameters

B, L and T:

– Each internal node contains at most B elements of the

form [CFi, childi] where childi is a pointer to its ith

child node and CFi is the CF-vector of this child.

– Each leaf node contains at most L elements of the form

[CFi], it also contains two pointer prev and next to link

leaf nodes.

– Each element CFi of a leaf must have a diameter lower

than a threshold T.

The CF-tree is created by inserting successive points into the

tree. At first, we create the tree with a small value of T, then if

it exceeds the maximum allowed size, T is increased and the

tree is reconstructed. During reconstruction, vectors that are

already inserted will not be reinserted because they are

already represented by the CF-vectors. These CF-vectors

will be reinserted. We must increment T so that two closest

micro-clusters could be merged. After creating the CF-tree,

we can use any clustering method (AHC, k-means, etc.) for

clustering CF-vectors of the leaf nodes.

The CF-tree captures the important information of the

data while reducing the required storage. And by increasing

T, we can reduce the size of the CF-tree. Moreover, it has a

low time complexity of O(N), so BIRCH can be applied to

a large database. The outliers may be eliminated by iden-

tifying the objects that are sparsely distributed. But it is

sensitive to the data processing order and it depends on the

choice of its three parameters. BIRCH may be used in the

incremental context because the CF-tree can be updated

easily when new points are added into the system.

CURE [47] In Clustering Using REpresentative

(CURE), we use a set of objects of a cluster for repre-

senting the information of this cluster. A cluster Ki is

represented by the following characteristics:

– Ki.mean: the mean of all objects in cluster Ki.

– Ki.rep: a set of objects representing cluster Ki. To

choose the representative points of Ki, we select firstly

the farthest point (the point with the greatest average

distance with the other points in its cluster) as the first

representative point, and then we choose the new

representative point as the farthest point from the

representative points.

CURE is identical to the agglomerative hierarchical

clustering (AHC), but the distance between two clusters is

computed based on the representative objects, which leads

to a lower computational complexity. For a large database,

CURE is performed as follows:

– Randomly select a subset containing Nsample points of

the database.

– Partition this subset into p sub-partitions of size Nsample/p

and realize clustering for each partition. Finally,

clustering is performed with all found clusters after

eliminating outliers.

– Each point which is not in the subset is associated with

the cluster having the closest representative points.

CURE is insensitive to outliers and to the subset chosen.

Any new point can be directly associated with the cluster

having closest representative points. The execution time of

CURE is relatively low of O(Nsample
2 log Nsample), where

Nsample is the number of elements in the subset chosen, so it

can be applied on a large image database. However, CURE

relies on a tradeoff between the effectiveness and the

complexity of the overall method. Two few samples

selected may reduce the effectiveness, while the complex-

ity increases with the number of samples. This tradeoff

may be difficult to find when considering huge databases.

Moreover, the number of clusters k has to be fixed in order

to associate points which are not selected as samples with

the cluster having the closest representative points. If the

number of clusters is changed, the points have to be

reassigned. CURE is thus not suitable to the context that

users are involved.
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R-tree family [48–50] R-tree [48] is a method that aims

to group the vectors using multidimensional bounding

rectangles. These rectangles are organized in a balanced

tree corresponding to the data distribution. Each node

contains at least Nmin and at most Nmax child nodes. The

records are stored in the leaves. The bounding rectangle of

a leaf covers the objects belonging to it. The bounding

rectangle of an internal node covers the bounding rectan-

gles of its children. And the rectangle of the root node

therefore covers all objects in the database. The R-tree thus

provides ‘‘hierarchical’’ clusters, where the clusters may be

divided into sub-clusters or clusters may be grouped into

super-clusters. The tree is incrementally constructed by

inserting iteratively the objects into the corresponding

leaves. A new element will be inserted into the leaf that

requires the least enlargement of its bounding rectangle.

When a full node is chosen to insert a new element, it must

be divided into two new nodes by minimizing the total

volume of the two new bounding boxes.

R-tree is sensitive to the insertion order of the records.

The overlap between nodes is generally important. The

R?-tree [49] and R*-tree [50] structures have been

developed with the aim of minimizing the overlap of

bounding rectangles in order to optimize the search in the

tree. The computational complexity of this family is about

O(Nlog N), it is thus suitable to the large databases.

SS-tree [51] The Similarity Search Tree (SS-tree) is a

similarity indexing structure which groups the feature vec-

tors based on their dissimilarity measured using the

Euclidean distance. The SS-tree structure is similar to that of

the R-tree but the objects of each node are grouped in a

bounding sphere, which permits to offer an isotropic analysis

of the feature space. In comparison to the R-tree family, SS-

tree has been shown to have better performance with high

dimensional data [51] but the overlap between nodes is also

high. As for the R-tree, this structure is incrementally con-

structed and compatible to the large databases due to its

relatively low computational complexity of O(Nlog N). But

it is sensitive to the insertion order of the records.

SR-tree [52] SR-tree combines two structures of R*-tree

and SS-tree by identifying the region of each node as the

intersection of the bounding rectangle and the bounding

sphere. By combining the bounding rectangle and the

bounding sphere, SR-tree allows to create regions with

small volumes and small diameters. That reduces the

overlap between nodes and thus enhances the performance

of nearest neighbor search with high-dimensional data. SR-

tree also supports incrementality and compatibility to deal

with the large databases because of its low computational

complexity of O(Nlog N). SR-tree is still sensitive to the

processing order of the data.

The advantage of hierarchical methods is that they orga-

nize data in hierarchical structure. Therefore, by considering

the structure at different levels, we can obtain different

number of clusters. DIANA, MST and AHC are not adapted

to large databases, while the others are suitable. BIRCH,

R-tree, SS-tree and SR-tree structures are built incrementally

by adding the records, they are by nature incremental. But

because of this incremental construction, they depend on the

processing order of the input data. CURE is enable to add

new points but the records have to be reassigned whenever

the number of clusters k is changed. CURE is thus not suit-

able to the context where users are involved.

4.3 Grid-based methods

These methods are based on partitioning the space into

cells and then grouping neighboring cells to create clusters.

The cells may be organized in a hierarchical structure or

not. The methods of this type are: STING [53], Wave-

Cluster [54], CLICK [55], etc.

STING [53] STatistical INformation Grid (STING) is

used for spatial data clustering. It divides the feature space

into rectangular cells and organizes them according to a

hierarchical structure, where each node (except the leaves)

is divided into a fixed number of cells. For instance, each

cell at a higher level is partitioned into 4 smaller cells at the

lower level.

Each cell is described by the following parameters:

– An attribute-independent parameter:

– n: number of objects in this cell

– For each attribute, we have five attribute-dependent

parameters:

– l: mean value of the attribute in this cell.

– r: standard deviation of all values of the attribute in

this cell.

– max: maximum value of the attribute in the cell.

– min: minimum value of the attribute in the cell.

– distribution: the type of distribution of the attribute

value in this cell. The potential distributions can be

either normal, uniform, exponential, etc. It could be

‘‘None’’ if the distribution is unknown.

The hierarchy of cells is built upon entrance of data. For

cells at the lowest level (leaves), we calculate the param-

eters n, l, r, max, min directly from the data; the distri-

bution can be determined using a statistical hypothesis test,

for example the v2-test. Parameters of the cells at higher

level can be calculated from parameters of lower lever cell

as in [53].

Since STING goes through the data set once to compute

the statistical parameters of the cells, the time complexity

of STING for generating clusters is O(N), STING is thus

suitable for large databases. Wang et al. [53] demonstrated
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that STING outperforms the partitioning method CLA-

RANS as well as the density-based method DBSCAN when

the number of points is large. As STING is used for spatial

data and the attribute-dependent parameters have to be

calculated for each attribute, it is not adapted to high-

dimensional data such as image feature vectors. We could

insert or delete some points in the database by updating the

parameters of the corresponding cells in the tree. It is able to

detect outliers based on the number of objects in each cell.

CLIQUE [55] CLustering In QUEst (CLIQUE) is ded-

icated to high dimensional databases. In this algorithm, we

divide the feature space into cells of the same size and then

keep only the dense cells (whose density is greater than a

threshold r given by user). The principle of this algorithm

is as follows: a cell that is dense in a k-dimensional space

should also be dense in any subspace of k - 1 dimensions.

Therefore, to determine dense cells in the original space,

we first determine all 1-dimensional dense cells. Having

obtained k - 1 dimensional dense cells, recursively the

k-dimensional dense cells candidates can be determined by

the candidate generation procedure in [55]. Moreover, by

parsing all the candidates, the candidates that are really

dense are determined. This method is not sensitive to the

order of the input data. When new points are added, we

only have to verify if the cells containing these points are

dense or not. Its computational complexity is linear to the

number of records and quadratic to the number of dimen-

sions. It is thus suitable to large databases. The outliers

may be detected by determining the cells which are not

dense.

The grid-based methods are in general adapted to large

databases. They are able to be used in an incremental

context and to detect outliers. But STING is not suitable to

high dimensional data. Moreover, in high dimensional

context, data is generally extremely sparse. When the space

is almost empty, the hierarchical methods (Sect. 4.2) are

better than grid-based methods.

4.4 Density-based methods

These methods aim to partition a set of vectors based on the

local density of these vectors. Each vector group which is

locally dense is considered as a cluster. There are two kinds

of density-based methods:

– Parametric approaches, which assume that data is

distributed following a known model: EM [56], etc.

– Non-parametric approaches: DBSCAN [57], DEN-

CLUE [58], OPTICS [59], etc.

EM [56] For the Expectation Maximization (EM) algo-

rithm, we assume that the vectors of a cluster are

independent and identically distributed according to a

Gaussian mixture model. EM algorithm allows to estimate

the optimal parameters of the mixture of Gaussians (means

and covariance matrices of clusters).

The EM algorithm consists of four steps:

1. Initialize the parameters of the model and the k clusters.

2. E-step: calculate the probability that an object xi

belongs to any cluster Kj.

3. M-step: Update the parameters of the mixture of

Gaussians so that it maximize the probabilities.

4. Repeat steps 2 and 3 until the parameters are stable.

After setting all parameters, we calculate, for each object

xi, the probability that it belongs to each cluster Kj and we

will assign it to the cluster associated with the maximum

probability.

EM is simple to apply. It allows to identify outliers (e.g.

objects for which all the membership probabilities are below

a given threshold). The computational complexity of EM is

about O(Nk2l), where l is the number of iterations. EM is thus

suitable to large databases when k is small enough. How-

ever, if the data is not distributed according to a Gaussian

mixture model, the results are often poor, while it is very

difficult to determine the distribution of high dimensional

data. Moreover, EM may converge to a local optimum, and it

is sensitive to the initial parameters. Additionally, it is dif-

ficult to use EM in an incremental context.

DBSCAN [57] Density Based Spatial Clustering of

Applications with Noise (DBSCAN) is based on the local

density of vectors to identify subsets of dense vectors that

will be considered as clusters. For describing the algorithm,

we use the following terms:

– �-neighborhood of a point p contains all the points

q, whose distance Dðq; pÞ\�:

– MinPts is a constant value used for determining the

core points in a cluster. A point is considered as a

core point if there are at least MinPts points in its

�-neighborhood.

– directly density-reachable: a point p is directly density-

reachable from a point q if q is a core point and p is in

the � -neighborhood of q.

– density-reachable: a point p is density-reachable from

a core point q if there is a chain of points p1; . . .; pn

such that p1 = q, pn = p and pi?1 is directly density-

reachable from pi.

– density-connected: a point p is density-connected to a

point q if there is a point o such that p and q are both

density-reachable from o.

Intuitively, a cluster is defined to be a set of density-

connected points. The DBSCAN algorithm is as follows:

1. For each vector xi which is not associated with any

cluster:
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– If xi is a core point, we try to find all vectors xj

which are density-reachable from xi. All these

vectors xj are then classified in the same cluster

of xi.

– Else label xi as noise.

2. For each noise vector, if it is density-connected to a

core point, it is then assigned to the same cluster of the

core point.

This method allows to find clusters with complex shapes.

The number of clusters does not have to be fixed a priori

and no assumption is made on the distribution of the

features. It is robust to outliers. But on the other hand, the

parameters � and MinPts are difficult to adjust and this

method does not generate clusters with different levels of

scatter because of the � parameter being fixed. The

DBSCAN fails to identify clusters if the density varies

and if the data set is too sparse. This method is therefore

not adapted to high dimensional data. The computational

complexity of this method being low O(Nlog N), DBSCAN

is suitable to large data sets. This method is difficult to use

in an incremental context because when we insert or delete

some points in the database, the local density of vectors is

changed and some non-core points could become core

points and vice versa.

OPTICS [59] OPTICS (Ordering Points To Identify the

Clustering Structure) is based on DBSCAN but instead of a

single neighborhood parameter �; we work with a range of

values ½�1; �2� which allows to obtain clusters with different

scatters. The idea is to sort the objects according to the

minimum distance between object and a core object before

using DBSCAN; the objective is to identify in advance the

very dense clusters. As DBSCAN, it may not be applied to

high-dimensional data or in an incremental context. The

time complexity of this method is about O(Nlog N). Like

DBSCAN, it is robust to outliers but it is very dependent on

its parameters and is not suitable to an incremental context.

The density-based clustering methods are in general

suitable to large databases and are able to detect outliers.

But these methods are very dependent on their parameters.

Moreover, they does not produce hierarchical structure and

are not adapted to an incremental context.

4.5 Neural network based methods

For this kind of approaches, similar records are grouped by

the network and represented by a single unit (neuron).

Some methods of this kind are Learning Vector Quanti-

zation (LVQ) [60], Self-Organizing Map (SOM) [60],

Adaptive Resonance Theory (ART) models [61], etc. In

which, SOM is the best known and the most used method.

Self-Organizing Map (SOM) [60] SOM or Kohonen map

is a mono-layer neural network which output layer contains

neurons representing the clusters. Each output neuron

contains a weight vector describing a cluster. First, we have

to initialize the values of all the output neurons.

The algorithm is as follows:

– For each input vector, we search the best matching unit

(BMU) in the output layer (output neuron which is

associated with the nearest weight vector).

– And then, the weight vectors of the BMU and neurons

in its neighborhood are updated towards the input

vector.

SOM is incremental, the weight vectors can be updated

when new data arrive. But for this method, we have to fix

a priori the number of neurons, and the rules of influence of

a neuron on its neighbors. The result depends on the

initialization values and also the rules of evolution

concerning the size of the neighborhood of the BMU. It is

suitable only for detecting hyperspherical clusters. More-

over, SOM is sensitive to outliers and to the processing

order of the data. The time complexity of SOM is Oðk0NmÞ;
where k0 is the number of neurons in the output layer, m is

the number of training iterations and N is the number of

objects. As m and k0 are usually much smaller than the

number of objects, SOM is adapted to large databases.

4.6 Discussion

Table 1 compares formally the different clustering meth-

ods (partitioning methods, hierarchical methods, grid-based

methods, density-based methods and neural network based

methods) based on different criteria (complexity, adapted

to large databases, adapted to incremental context, hierar-

chical structure, data order dependence, sensitivity to out-

liers and parameters dependence). Where:

– N: the number of objects in the data set.

– k: the number of clusters.

– l: the number of iterations.

– Nsample: the number of samples chosen by the clustering

methods (in the case of CURE).

– m: the training times (in the case of SOM).

– k0 : the number of neurons in the output layer (in the

case of SOM).

The partitioning methods (k-means, k-medoids (PAM),

CLARA, CLARANS, ISODATA) are not incremental;

they do not produce hierarchical structure. Most of them

are independent of the processing order of the data and do

not depend on any parameters. K-means, CLARA and

ISODATA are suitable to large databases. K-means is the

baseline method because of its simplicity and its effec-

tiveness for large database. The hierarchical methods

(DIANA, MST, AHC, BIRCH, CURE, R-tree, SS-tree,

SR-tree) organize data in hierarchical structure. Therefore,
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by considering the structure at different levels, we can

obtain different numbers of clusters that are useful in the

context where users are involved. DIANA, MST and AHC

are not suitable to the incremental context. BIRCH, R-tree,

SS-tree and SR-tree are by nature incremental because they

are built incrementally by adding the records. They are also

adapted to large databases. CURE is also adapted to large

databases and it is able to add new points but the results

depend much on the samples chosen and the records have

to be reassigned whenever the number of clusters k is

changed. CURE is thus not suitable to the context where

users are involved. The grid-based methods (STING,

CLIQUE) are in general adapted to large databases. They

are able to be used in incremental context and to detect

outliers. STING produce hierarchical structure but it is not

suitable to high dimensional data such as features image

space. Moreover, when the space is almost empty, the

hierarchical methods are better than grid-methods. The

density-based methods (EM, DBSCAN, OPTICS) are in

general suitable to large databases and are able to detect

outliers. But they are very dependent on their parameters,

they do not produce hierarchical structure and are not

adapted to incremental context. Neural network based

methods (SOM) depend on initialization values and on the

rules of influence of a neuron on its neighbors. SOM is also

sensitive to outliers and to the processing order of the data.

SOM does not produce hierarchical structure. Based on the

advantages and the disadvantages of different clustering

methods, we can see that the hierarchical methods

(BIRCH, R-tree, SS-tree and SR-tree) are most suitable

to our context.

We choose to present, in Sect. 5, an experimental

comparison of five different clustering methods: global

k-means [35], AHC [42], R-tree [48], SR-tree [52] and

BIRCH [45]. Global k-means is a variant of the well

known and the most used clustering method (k-means).

The advantage of the global k-means is that we can

automatically select the number of clusters k by stopping

the algorithm at the value of k providing acceptable

results. The other methods provide hierarchical clusters.

AHC is chosen because it is the most popular method in

the hierarchical family and there exists an incremental

version of this method. R-tree, SR-tree and BIRCH are

dedicated to large databases and they are by nature

incremental.

5 Experimental comparison and discussion

5.1 The protocol

In order to compare the five selected clustering methods,

we use different image databases of increasing size

(Wang,2 PascalVoc2006,3 Caltech101,4 Corel30k). Some

examples of these databases are shown in Figs. 1, 2, 3 and

4. Small databases are intended to verify the performance

of descriptors and also clustering methods. Large databases

are used to test clustering methods for structuring large

amount of data. Wang is a small and simple database, it

contains 1,000 images of 10 different classes (100 images

per class). PascalVoc2006 contains 5,304 images of 10

classes, each image containing one or more object of dif-

ferent classes. In this paper, we analyze only hard clus-

tering methods in which an image is assigned to only one

cluster. Therefore, in PascalVoc2006, we choose only the

images that belong to only one class for the tests (3,885

images in total). Caltech101 contains 9,143 images of 101

classes, with 40 up to 800 images per class. The largest

image database used is Corel30k, it contains 31,695 images

of 320 classes. In fact, Wang is a subset of Corel30k. Note

that we use for the experimental tests the same number of

clusters as the number of classes in the ground truth.

Concerning the feature descriptors, we implement one

global and different local descriptors. Because our study

focuses on the clustering methods and not on the feature

descriptors, we choose some feature descriptors that are

widely used in literature for our experiment. The global

descriptor of size 103 is built as the concatenation of three

different global descriptors:

– RGB histobin: 16 bins for each channel. This gives a

histobin of size 3 9 16 = 48.

– Gabor filters: we used 24 Gabor filters on 4 directions

and 6 scales. The statistical measure associated with

each output image is the mean and standard deviation.

We obtained thus a vector of size 24 9 2 = 48 for the

texture.

– Hu’s moments: 7 invariant moments of Hu are used to

describe the shape.

For local descriptors, we implemented the SIFT and color

SIFT descriptors. They are widely used nowadays for their

high performance. We use the SIFT descriptor code of

David Lowe5 and color SIFT descriptors of Koen van de

Sande.6 The ‘‘Bag of words’’ approach is chosen to group

local features into a single vector representing the

frequency of occurrence of the visual words in the

dictionary (see Sect. 3).

As mentioned in Sect. 4.6, we implemented five different

clustering methods: global k-means [35], AHC [42], R-tree

[48], SR-tree [52] and BIRCH [45]. For the agglomerative

2 http://wang.ist.psu.edu/docs/related/.
3 http://pascallin.ecs.soton.ac.uk/challenges/VOC/.
4 http://www.vision.caltech.edu/Image_Datasets/Caltech101/.
5 http://www.cs.ubc.ca/*lowe/keypoints/.
6 http://staff.science.uva.nl/*ksande/research/colordescriptors/.
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hierarchical clustering (AHC), in our tests with five different

kinds of distance described in Sect. 4.2 (single-linkage,

complete-linkage, average-linkage, centroid-linkage and

Ward). The distance of the Ward’s method [43] gives the best

results. It is used therefore in the experiment of the AHC

method.

In order to analyze our clustering results, we use two

kinds of measures:

– Internal measures are low-level measures which are

essentially numerical. The quality of the clustering is

evaluated based on intrinsic information of the data set.

Fig. 1 Examples of Wang

Fig. 2 Examples of Pascal

Fig. 3 Examples of Caltech101

Fig. 4 Examples of Corel30k
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They consider mainly the distribution of the points into

clusters and the balance of these clusters. For these

measures, we ignore if the clusters are semantically

meaningful or not (‘‘meaning’’ of each cluster and

validity of a point belonging to a cluster). Therefore,

internal measures may be considered as unsupervised.

Some measures of this kind are: homogeneity or

compactness [62], separation [62], Silhouette Width

[63], Huberts C statistic [64], etc.

– External measures evaluate the clustering by compar-

ing it to the distribution of data in the ground truth,

which is often created by humans or by a source of

knowledge ‘‘validated’’ by humans. The ground truth

provides the semantic meaning and therefore, external

measures are high-level measures that evaluate the

clustering results compared to the wishes of the user.

Thus, we can consider external measures as supervised.

Some measures of this kind are: Purity [65], Entropy

[65], F-measure [66], V-measure [67], Rand Index [68],

Jaccard Index [69], Fowlkes–Mallows Index [70],

Mirkin metric [71], etc.

The first type of measures (internal) does not consider the

semantic point of view, it can therefore be applied

automatically by the machine, but it is a numerical

evaluation. The second type (external) forces the human

to provide a ground truth. It is therefore more difficult to be

done automatically, but the evaluation is closer to the

wishes of the user. It is thus a semantic evaluation. As

clustering is an unsupervised learning problem, we should

know nothing about the ground truth. But our work in the

future is to embed human for improving the result of the

clustering. Thus, we supposed, in this paper, that the class

of each image is known, this will help us to evaluate the

results of the clustering compared to what the human

wants. Among all different measures, we use here five

different measures that seem representative: Silhouette

Width (SW) [63] as internal measure and V-measure [67],

Rand Index [68], Jaccard Index [69] and Fowlkes–Mallows

Index [70] as external measures. The Silhouette Width

measures the compactness of each cluster and the separa-

tion between clusters based on the distance between points

in a same cluster and between points from different

clusters. V-measure evaluates both the homogeneity and

the completeness of the clustering solution. A clustering

solution satisfies the homogeneity criterion if all clusters

contain only members of one class and satisfies the

completeness if all points belonging to a given class are

also the elements of a same cluster. Rand Index estimates

the probability that a pair of points are similarly classified

(together or separately) in the clustering solution and in the

ground truth. Jaccard and Fowlkes–Mallows indexes

measure the probability that a pair of points are classified

together in both the clustering solution and the ground

truth, provided they are classified together in at least one of

these two partitions. The greater values of these measures

means better results. Almost all the evaluation measures

used are external measures because they compare the

results of clustering to what the human wants. The internal

measure is used for evaluating the differences between

numerical evaluation and semantic evaluation.

5.2 Experimental results

5.2.1 Clustering methods and feature descriptors analysis

The first set of experiments aims at evaluating the perfor-

mances of different clustering methods and different fea-

ture descriptors. Another objective is evaluate the stability

of each method depending on different parameters such as

the threshold T in the case of the BIRCH method or the

number of children in the cases of R-tree and SR-tree. The

Wang image database was chosen for these tests because of

its simplicity and its popularity in the field of image

analysis. We fix the number of clusters k = 10 for all the

following tests with the Wang image database (because its

ground truth contains 10 classes).

Methods analysis Figure 5 shows the result of five dif-

ferent clustering methods (global k-means, AHC, R-tree,

SR-tree and BIRCH) using the global feature descriptor on

the Wang image database. The global feature descriptor is

used because of its simplicity. We can see that, for this

image database, the global k-means and BIRCH methods

give in general the best results, while R-tree, SR-tree and

AHC give similar results.

Now, we will analyze the stability of these methods

towards their parameters (when needed). AHC and global

k-means are parameter-free. In the case of BIRCH, the

threshold T is an important parameter. As stated in the

previous section, BIRCH includes two main steps, the first

step is to organize all points in a CF-tree so that each leaf

entry contains all points within a radius smaller than T; the

second step considers each leaf entry as a point and realizes

the clustering for all the leaf entries. The value of the

threshold T, has an influence on the number of points in

each entry leaf, and thus on the results of the clustering.

Figure 6 shows the influence of T on the results of BIRCH.

Note that for the second stage of BIRCH, we use k-means

for clustering the leaf entries because of its simplicity; the

k first leaf entries are used as k initial means so that the

result is not influenced by the initial condition. We can see

that for the Wang image database and for the value of

T that we tested, the results are very stable when the values

of T are varied, even though T = 1 gives slightly better

result. For the R-tree and the SR-tree clustering methods,
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the minimum and maximum number of children of each

node are the parameters that we have to fix. We can add

more points in a node if the number of children is high

enough. Figure 7 shows the influence of these parameters

to the result of these two methods. We can see that these

parameters may influence so much on both the R-tree and

the SR-tree clustering results. For instance, the result of the

R-tree clustering when a node has at least 5 children and at

most 15 children is much worse than when the minimum

and maximum numbers of children are respectively 4 and

10. Selecting the best values for these parameters is crucial,

especially for the tree based methods which are not stable.

However, it may be difficult to choose a convenient value

for these parameters, as it depends on the feature descriptor

and on the image database used. In the following tests, we

try different values of these parameters and choose the best

compromise on all the measures.

Feature descriptors analysis Figure 8 shows the results

of the global k-means and BIRCH, which gave previously

the best results, on the Wang image database using different

feature descriptors (global feature descriptor, SIFT, rgSIFT,

CSIFT, local RGB histogram, RGBSIFT and Opponent-

SIFT). Note that the dictionary size of the ‘‘Bag of Words’’

approach used jointly with the local descriptors is 500. We

can see that the global feature descriptor provides good

results in general. The SIFT, RGBSIFT and OpponentSIFT

are worse than the other local descriptors (CSIFT, rgSIFT,

local RGB Histogram). This may be explained by the fact

that in the Wang database, color is very important and that

the Wang database contains classes (e.g. dinosaurs) which

are very easy to differentiate from the others. Thus, in the

remaining tests, we will use three feature descriptors (global

feature descriptor, CSIFT and rgSIFT).

Methods and feature descriptors comparisons As stated

in Sect. 3, the dictionary size determines the size of the

feature vector of each image. Given the problems and

difficulties related to large image databases, we prefer to

choose a relatively small size of the dictionary in order to

reduce the number of dimensions of the feature vectors.

Working with a small dictionary can also reduce the exe-

cution time, which is an important criterion in our case

where we aim at involving the user. But, a too small dic-

tionary may not be sufficient to accurately describe the

database. Therefore, we must find the best trade-off

between the performance and the size of the dictionary.

Figures 9, 10, 11 and 12 analyze the results of global

k-means, R-tree, SR-tree, BIRCH and AHC on the Wang

image database with different feature descriptors (global

descriptor, CSIFT and rgSIFT when varying the dictionary

size from 50 to 500) using four measures (V-measure,

Rand Index, Fowlkes–Mallows Index and SW). Jaccard

Index is not used because it is very similar with the

Fowlkes–Mallows Index (we can see that they give similar

evaluations in the previous results). Note that LocalDes

means the local descriptor (CSIFT on the left-hand side

figure or rgSIFT on the right-hand side figure). GlobalDes

means global descriptor, which is not influenced by any

size of dictionary, but we choose to represent its results on

the same graphics using a straight line for comparison and

presentation matters. We can see that different feature

descriptors give different results, and the size of the dic-

tionary has also an important influence on the clustering

results, especially for R-tree and SR-tree. When using

external measures (V-measure, Rand Index and Fowlkes–

Mallows Index), BIRCH using rgSIFT with a dictionary of

400 to 500 visual words always give the best results. On the

contrary, when using the internal measure (silhouette

width), the global descriptor is always the best descriptor.

We have to remind that the internal and external measures

do not evaluate the same aspects. The internal measure

used here evaluates without any supervisor the compact-

ness and the separation of clusters based on the distance

between elements in a same cluster and in different clus-

ters, while the external measures compare the distributions

of points in the clustering result and in the ground truth.

We choose the value 200 for the dictionary size in the case

of CSIFT and rgSIFT for the following tests and for our

future works because it is a good tradeoff between the size

of the feature vector and the performance. Concerning the

different methods, we can see that global k-means, BIRCH

and AHC are in general more effective and stable than

R-tree and SR-tree. BIRCH is the best method when we use

external measures but the global k-means is better fol-

lowing the internal measure.

SW V−measure Rand Index Jaccard Fowlkes Mallows
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Global k−means
SR−tree
R−tree
AHC
BIRCH

Fig. 5 Clustering methods (Global k-means, SR-tree, R-tree, AHC,

BIRCH) comparison using global feature descriptor on the Wang

image database. Five measures (Silhouette Width, V-measure, Rand

Index, Jaccard Index, Fowlkes–Mallows Index) are used. The higher

are these measures, the best are the results
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5.2.2 Verification on different image databases

Because the Wang image database is very simple and small,

the results of clustering obtained on it may not be very

representative of what happens with huge masses of data.

Thus, in these following tests, we will analyze the clustering

results with larger image databases (PascalVoc2006, Cal-

tech101 and Corel30k). Global k-means, BIRCH and AHC

are used because of their high performances and stability. In

the case of the Corel30k image database, the AHC method

is not used because of the lack of RAM memory. In fact, the

AHC clustering requires a large amount of memory when

treating more than 10,000 elements, while the Corel30k

contains more than 30,000 images. This problem could be

solved using the incremental version [44] of AHC which

allows to process databases containing about 7 times more

data than the classical AHC. The global feature descriptor,

CSIFT and rgSIFT are also used for these databases. Note

T=1
T=2
T=3
T=4
T=5
T=6
T=7

SW V−measure Rand Index Jaccard Fowlkes Mallows

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 6 Influence of the threshold TðT ¼ 1; . . .; 7Þ on the BIRCH clustering results using the Wang image database. Five measures (Silhouette

Width, V-measure, Rand Index, Jaccard Index, Fowlkes–Mallows Index) are used

SW V−measure Rand Index Jaccard Fowlkes Mallows
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Min=2, Max=10 Min=3, Max=10 Min=4, Max=10 Min=5, Max=10 Min=5, Max=15 Min=6, Max=15 Min=7, Max=15

R−tree SR−tree

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

SW V−measure Rand Index Jaccard Fowlkes Mallows

Fig. 7 Influence of minimum and maximum numbers of children on R-tree and SR-tree results, using the Wang image database. Five measures

(Silhouette Width, V-measure, Rand Index, Jaccard Index, Fowlkes–Mallows Index) are used
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that the size of the dictionary used for both local descriptors

here is 200.

Figures 13, 14 and 15 show the results of the global

k-means, the BIRCH and the AHC clustering methods on

the PascalVoc2006, Caltech101 and Corel30k. We can see

that the numerical evaluation (internal measure) always

appreciates the global descriptor but the semantic evalua-

tions (external measures) appreciates the local descriptors

in almost all cases, except in the case of global k-means on

the Corel30k image database. And in general, the global

k-means and the BIRCH clustering methods give similar

results, with rgSIFT providing slightly better results than

CSIFT. AHC gives better results using CSIFT than rgSIFT,

but it gives worse results than BIRCH?rgSIFT in general.

Concerning the execution time, we notice that the clus-

tering using the global descriptor is faster than that using

the local descriptor (because the global feature descriptor

has a dimension of 103 while the dimension of the local

SW V−measure Rand Index Jaccard Fowlkes Mallows
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

GlobalDes CSIFT rgSIFT SIFT RGBHistogram local RGBSIFT OpponentSIFT

Global k−means BIRCH

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

SW V−measure Rand Index Jaccard Fowlkes Mallows

Fig. 8 Feature descriptors (global feature descriptor, local feature descriptors (CSIFT, rgSIFT, SIFT, RGBHistogram, RGBSIFT,

OpponentSIFT)) comparison using the global k-means and BIRCH clustering methods on the Wang image database

50 100 200 300 400 500

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Global k−means, GlobalDes
Global k−means, LocalDes
R−tree, GlobalDes
R−tree, LocalDes
SR−tree, GlobalDes
SR−tree, LocalDes
BIRCH, GlobalDes
BIRCH, LocalDes
AHC, GlobalDes
AHC, LocalDes

50 100 200 300 400 500

CSIFT rgSIFT

V−measure (external measure)

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Fig. 9 Clustering methods (global k-means, R-tree, SR-tree, BIRCH

and AHC) and feature descriptors (global k-means, CSIFT and

rgSIFT) comparisons using V-measure on the Wang image database.

The dictionary size of the ‘‘Bag of Words’’ approach used jointly with

the local descriptors is from 50 to 500
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descriptors is 200) and among the local descriptor, the

clustering using rgSIFT is faster. And in comparison to

global k-means and AHC, BIRCH is much faster, espe-

cially in the case of the Caltech101 and the Corel30k image

databases (e.g. the execution time of BIRCH in the case of

the Corel30k is about 400 times faster than that of the

global k-means, using rgSIFT where the dictionary size is

200).

50 100 200 300 400 500
0.3

0.4

0.5

0.6

0.7

0.8

0.9

Global k−means, GlobalDes
Global k−means, LocalDes
R−tree, GlobalDes
R−tree, LocalDes
SR−tree, GlobalDes
SR−tree, LocalDes
BIRCH, GlobalDes
BIRCH, LocalDes
AHC, GlobalDes
AHC, LocalDes

50 100 200 300 400 500

CSIFT rgSIFT

Rand Index (external measure)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fig. 10 Clustering methods (global k-means, R-tree, SR-tree,

BIRCH and AHC) and feature descriptors (global k-means, CSIFT

and rgSIFT) comparisons using Rand Index on the Wang image

database. The dictionary size of the ‘‘Bag of Words’’ approach used

jointly with the local descriptors is from 50 to 500

50 100 200 300 400 500
0.2

0.25

0.3

0.35

0.4

0.45

Global k−means, GlobalDes
Global k−means, LocalDes
R−tree, GlobalDes
R−tree, LocalDes
SR−tree, GlobalDes
SR−tree, LocalDes
BIRCH, GlobalDes
BIRCH, LocalDes
AHC, GlobalDes
AHC, LocalDes

50 100 200 300 400 500

CSIFT rgSIFT

Fowlkes − Mallows Index (external measure)

0.2

0.25

0.3

0.35

0.4

0.45

Fig. 11 Clustering methods (global k-means, R-tree, SR-tree, BIRCH

and AHC) and feature descriptors (global k-means, CSIFT and rgSIFT)

comparisons using Fowlkes–Mallows Index on the Wang image

database. The dictionary size of the ‘‘Bag of Words’’ approach used

jointly with the local descriptors is from 50 to 500
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5.3 Discussion

Concerning the different feature descriptors, the global

descriptor is appreciated by the internal measure (numeri-

cal evaluation) but the external measures or semantic

evaluations appreciate more the local descriptors (CSIFT

and rgSIFT). Thus, we can say that CSIFT and rgSIFT

descriptors are more compatible with the semantic point of

view than the global descriptor at least in our tests.

Concerning the stability of the different clustering

methods, k-means and AHC are parameter-free (provided

the number k of desired clusters). On the other hand, the

results of R-tree, SR-tree and BIRCH vary depending on

the value of their input parameters (the maximum and

minimum child numbers of each node or the threshold

T determining the density of each leaf entry). Therefore, if

we want to embed human in the clustering to put semantics

on, it is more difficult in the case of k-means and AHC

50 100 200 300 400 500
0

0.05

0.1

0.15

0.2

0.25

Global k−means, GlobalDes
Global k−means, LocalDes
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AHC, GlobalDes
AHC, LocalDes
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Fig. 12 Clustering methods (global k-means, R-tree, SR-tree,

BIRCH and AHC) and feature descriptors (global k-means, CSIFT

and rgSIFT) comparisons using Silhouette Width on the Wang image

database. The dictionary size of the ‘‘Bag of Words’’ approach used

jointly with the local descriptors is from 50 to 500
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Silhouette Width (SW), V-measure, Rand Index and Fowlkes–Mallows measures using the PascalVoc2006 image database
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because there is no parameter to fix, while in the case of

R-tree, SR-tree and BIRCH, if the results are not good from

the point of view of the user, we can try to modify the value

of the input parameters in order to improve the final results.

R-tree and SR-tree have a very unstable behavior when

varying their parameters or the number of visual words of

the local descriptor. AHC is also much more sensitive to

the number of visual words of the local descriptor.

Therefore, we consider here that BIRCH is the most

interesting method from the stability point of view.

The previous results show a high performance of global

k-means, AHC and BIRCH compared to the other methods.

BIRCH is slightly better than global k-means and AHC.

Moreover, with BIRCH, we have to pass over the data only

one time for creating the CF tree while with global

k-means, we have to pass the data many times, one time for

each iteration. Global k-means clustering is much more

computationally complex than BIRCH, especially when the

number of clusters k is high because we have to compute

the k-means clustering k times (with the number of clusters

varying from 1 to k). And the AHC clustering costs much

time and memory when the number of elements is high,

because of its time complexity O(N2log N) and its space

complexity O(N2). The incremental version [44] of the
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Fig. 14 Global k-means, BIRCH and AHC clustering methods and features descriptors (global descriptor, CSIFT, rgSIFT) comparison using

Silhouette Width (SW), V-measure, Rand Index and Fowlkes–Mallows measures using the Caltech101 image database
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AHC could save memory but its computational require-

ments are still very important. Therefore, in the context of

large image databases, BIRCH is more efficient than global

k-means and AHC. And because the CF-tree is incremen-

tally built by adding one image at each time, BIRCH may

be more promising to be used in an incremental context

than global k-means. R-tree and SR-tree give worse results

than global k-means, BIRCH and AHC. For all these rea-

sons, we can consider that BIRCH?rgSIFT is the best

method in our context.

6 Conclusions and further work

This paper compares both formally and experimentally

different clustering methods in the context of multi-

dimensional data with image databases of large size. As the

final objective of this work is to allow the user to interact

with the system in order to improve the results of cluster-

ing, it is therefore important that a clustering method is

incremental and that the clusters are hierarchically struc-

tured. In particular, we compare some tree-based clustering

methods (AHC, R-tree, SR-tree and BIRCH) with the

global k-means clustering method, which does not

decompose clusters into sub-clusters as in the case of tree-

based methods. Our results indicate that BIRCH is less

sensitive to variations in its parameters or in the features

parameters than AHC, R-tree and SR-tree. Moreover,

BIRCH may be more promising to be used in the incre-

mental context than the global k-means. BIRCH is also

more efficient than global k-means and AHC in the context

of large image database.

In this paper, we compare only different hard clustering

methods in which each image belongs to only one cluster.

But in fact, there is not always a sharp boundary between

clusters and an image could be on the boundaries of two or

more clusters. Fuzzy clustering methods are necessary in

this case. They will be studied in the near future. We are

currently working on how to involve the user in the clus-

tering process.
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