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Abstract. We derive a new model for seawater intrusion phenomena in free aquifers. It com-
bines the efficiency of the sharp interface approach with the physical realism of the diffuse interface
one. More precisely, a phase field is used as an intermediate variable for including the exchanges
between the characteristic layers of the aquifer (salt water, fresh water, unsaturated zone). The three-
dimensional problem is reduced to a two-dimensional model involving a strongly coupled system of
PDEs of parabolic type describing the evolution of the depths of the two free surfaces. The model
is discretized by finite elements in space and by a semi-implicit Euler method in time. Numerical
simulations present some physical predictions from the model.
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1. Introduction. Groundwater is a major source of water supply. In coastal
zones there exist hydraulic exchanges between fresh groundwater and seawater. They
are slow in “natural conditions” and thus are often forgotten and replaced by a quasi-
equilibrium between two fluid layers (Ghyben–Herzberg approximation). The picture
fails in case of more drastic conditions due to meteorological events or to human
interventions. Intensive extraction of freshwater leads for instance to local water
table depression causing problems of saltwater intrusion in the aquifer. We thus
need efficient and accurate models to simulate the displacement of saltwater fronts in
coastal aquifers for the optimal exploitation of fresh groundwater.

We refer to the textbooks [6], [7], [8] for general information about seawater
intrusion problems. Beyond the abovementioned Ghyben–Herzberg static model, the
existing models for seawater intrusion may be classified into three categories.

Hidden diffuse interfaces: This is the physically correct approach. Fresh and salt
water are two miscible fluids. Due to density contrast they tend to separate into two
layers with a transition zone characterized by the variations of the salt concentration.
Moreover the aquifer has to be considered as a partially saturated porous medium.
There is another transition zone between the completely saturated part and the dry
part of the reservoir, the definition of the area of desaturation being difficult. The
whole problem is modeled by a convection-dispersion system for multicomponent mix-
tures in an unsaturated porous medium. Two “diffusive interfaces” are thus hidden
in this kind of model. The approach is very cumbersome, both in theoretical and
numerical terms ([13]; see also [4] when further assuming a saturated medium; see [1]
for numerical recipes).
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Hidden sharp interfaces: A first simplification consists in assuming that fresh and
salt water are two immiscible fluids (see [13] in unsaturated media). Points where
the salty phase disappears may be viewed as a sharp interface. Nevertheless the
explicit tracking of the interfaces remains unworkable to implement without further
assumptions (they correspond to the disappearing of an unknown and thus to the
degeneration of the corresponding equation).

Sharp or abrupt interfaces: This approach is also based on the hypothesis that the
two fluids are immiscible. Moreover the domains occupied by each fluid are assumed
to be separated by a smooth interface called a sharp interface, no mass transfer occurs
between the fresh and the salt area, and capillary pressure effects are neglected. This
approximation is often reasonable (see, e.g., [6] and below).

Of course, this type of model does not describe the behavior of the real transition
zone but gives information concerning the movement of the saltwater front. The
other price to pay for this simplified approach is the mathematical handling of free
interfaces.

In the present work we essentially have chosen to adopt the (numerical) simplicity
of a sharp interface approach. We compensate for the mathematical difficulty of the
analysis of the free interfaces by an upscaling procedure which allows us to model
the three-dimensional problem (3D) by a PDE system set in a two-dimensional (2D)
domain. The originality and novelty is to mix this abrupt interface approach with a
phase-field approach, thus reinjecting in a new way the realism of diffuse interfaces
models. We exploit here the specificity of the dynamics of the fluids in an aquifer for
using such a model which was originally developed for phase transition phenomena in
binary fluids. We thus combine the advantage of respecting the physics of the problem
and that of the computational efficiency. The two key assumptions are summarized
as follows:

• There is no explicit mass transfer between freshwater and saltwater, thus they
are separated by an abrupt interface. The free interfaces are treated by an
upscaling procedure, with an obvious dimensional gain since the 3D reality is
processed by a 2D model. Both the simplicity and the efficiency of the model
lie in the fact that the mass exchanges are in fact “hidden” in the diffuse
interface.

• We suppose the existence of a diffuse interface between fresh and salt water.
This diffuse interface is modeled using a phase-field approach, here an Allen–
Cahn type model in fluid-fluid context.

The same process is applied to model the transition between the saturated and un-
saturated zones.

In section 2, we detail the derivation of the model for the evolution of the depth h
of the interface between freshwater and saltwater and of the depth H of the interface
between the saturated and unsaturated zone. The approach is based on the conserva-
tion principles coupled with Darcy’s law. Instead of closing the corresponding PDE
system with the classical Fick’s law assumption, we exploit the layered structure of
the aquifer (Dupuit’s setting) for upscaling the problem and we superimpose a 3D
phase-field model for the mixing zone. The resulting model consists in a system of
strongly and nonlinearly coupled PDEs of parabolic type. From the numerical view-
point, the advantage of the sharp interface approach is of course the dimensional gain.
Nevertheless the tracking of interfaces, even in an immiscible context, is a challeng-
ing problem (see, for instance, [31] and the references therein for the weaknesses of
classical level-set or volume-of-fluid approaches). Here instead we benefit from the
conservative structure of the model. We emphasize that we can demonstrate a logical
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maximum principle from the point of view of physics (see [14]), which is not suitable in
the case of sharp interface approximation (see, for instance, [18], [32]). Moreover the
coupling of the Allen–Cahn model with the upscaled conservation equations avoids
the classical weakness of the Allen–Cahn solutions: nonconserved fields. This seem-
ingly nonnatural property does not appear in our final model. We thus do not need
to consider more complex phase-field models, such as, for instance, a Cahn–Hilliard
variant with degenerate mobility and logarithmic terms in the free energy. We either
have to use a nonlocal Allen–Cahn equation with a time or a space-time dependent
Lagrange multiplier to enforce conservation of mass (see [25]).

In section 3, we illustrate the numerical efficiency of the derived model. After a
brief presentation of the discretization scheme, we compute various physical predic-
tions from the model. In particular, for showing that our model retains the advantages
while overcoming the weaknesses of the sharp interface approach and of the 3D exact
model, we focus on two physical phenomena. We show that our upscaled model easily
includes the potential compressibility of the fluids and of the rock, in contrast to the
cumbersome 3D model [13], especially in the unsaturated setting which leads to fully
degenerate equations. We also show that the coupling with the diffuse interface ap-
proach lets us properly treat cases where the mixing zone induces nonnegligible flow
[15].

2. Derivation of the model. The basis of the modeling is the mass conserva-
tion law for each “species” (fresh and salt water) coupled with the classical Darcy law
for porous media. Fluids and soil are considered to be weakly compressible.

For the 3D description, we denote by (x, z), x = (x1, x2) ∈ R
2, z ∈ R, the usual

coordinates. The z-basis unit vector is ez.

2.1. Conservation laws. We begin with the conservation of momentum. In
view of the (large) dimensions of an aquifer (related to the characteristic size of the
porous structure of the underground), we consider a continuous description of the
porous medium. The effective velocity q of the flow is thus related to the pressure P
through the so-called Darcy law

q = −k

μ
(∇P + ρgez),

where ρ and μ are, respectively, the density and the viscosity of the fluid, k is the per-
meability matrix of the soil, and g the gravitational acceleration constant. Introducing
the hydraulic head Φ defined by

(2.1) Φ =
P

ρ0g
+ z − href ,

we write the previous equation as follows:

(2.2) q = −K∇Φ− k

μ
(ρ− ρ0)gez, K =

kρ0g

μ
.

In this relation, the matrix K is the hydraulic conductivity which expresses the ability
of the underground to conduct the fluid. We have denoted by ρ0 the reference density
of the fluid. In (2.1), Z = z − href is the elevation above a fixed datum level under
the aquifer, href < 0.

Next, the conservation of mass during displacement is given by the equation

(2.3) ∂t(φρ) +∇ · (ρq) = ρQ,
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where φ is the porosity of the medium and Q denotes a generic source term (for
production and replenishment).

2.2. State equation for the fluid compressibility. We consider that the
fluids are compressible by assuming that pressure P is related to the density ρ as
follows:

(2.4)
dρ

ρ
= αPdP.

The real number αP ≥ 0 is the fluid compressibility coefficient. We assume that fresh
and salt water have the same compressibility. Further assuming αP = 0 we would
recover the incompressible case.

2.3. State equation for the soil compressibility. The soil is a porous medium.
It is a set of voids contained in a solid skeleton consisting of rock grains. We now
introduce in the model the effects of the rock compressibility, that is from the possible
deformations of the skeleton. This means ruling the dependence of the porosity with
respect to the depth. A simple model due to Athy [5] reads

φ(z) = φ0e
−Mz, (φ0,M) ∈ R

2
+.

Notice that no dependence of the porosity with the variation of the pressure is in-
cluded in such a formula. A much more physical approach thus consists in deriving
a differential equation for the porosity. First we denote by σ the total stress in the
porous medium and by σs the stress related to the skeleton. We have

σ = φP + (1 − φ)σs,

where term φP accounts for the pressure effects. From Terzaghi’s theory [33], the
effective stress σe is defined by

σe = (1 − φ)(σs − P ).

Assuming that the total stress does not change, we infer from σe + P = σ that

dσe = −dP.

Let us now consider the variations of a given volume V of porous medium due to rock
compressibility. If the grains of the porous rock are incompressible, the deformation
is mainly produced by the rearrangement of the assembly of grains and the volume of
the solid part Vs = (1− φ)V remains unchanged (cf. [13]). We thus have

(2.5)
dVs

dσe
= − dφ

dσe
V + (1− φ)

dV

dσe
= 0 ⇔ − 1

V

dV

dσe
=

1

(1 − φ)

dφ

dP
.

Assuming small volume variations and low elastic behavior for the soil justifies the
definition of the soil compressibility βP ∈ R by

βP = − 1

V

dV

dσe
.

Equation (2.5) then reads

(2.6) βP =
1

1− φ

dφ

dP
.
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2.4. Hypothesis. Let us now list the assumptions on the fluid and medium
characteristics and also on the flow which are meaningful in the context of seawater
intrusion in an aquifer.

2.4.1. Hypothesis on the fluid and on the medium. In the present subsec-
tion, we include the state equations presented in subsections 2.2 and 2.3 in (2.2)–(2.3)
while also taking into account the specifical range of the physical parameters in an
aquifer.

First, we assume that the fluids (namely, here fresh and salt water) and the soil
are weakly compressible. It means that the densities of the fluids and the porosity of
the medium weakly depend on the pressure variations, that is (in (2.4) and (2.6))

(2.7) αP � 1, βP � 1.

For instance, the pure water compressibility is αP = 4.4× 10−10, rock compressibility
is in the range [10−8, 10−6] for clay, [10−10, 10−8] for gravel or jointed rock (in m2N−1).

Let us exploit the first assumption. In natural conditions and especially in an
aquifer, one observes small fluid mobility (defined by the ratio k/μ). A first conse-
quence of the low compressibility of the fluid combined with the low mobility of fluid
appears in the momentum equation. We perform a Taylor expansion with respect to
P of the density ρ in the gravity term of the Darcy equation. Neglecting the terms
weighted by αP k/μ � 1 in (2.2), we get

(2.8) q = −K∇Φ, K =
kρ0g

μ
.

A second consequence is ∇ρ · q � 1 which leads to the following simplification in the
mass conservation equation (2.3):

ρ∂tφ+ φ∂tρ+ ρ∇ · q = ρQ.

Neglecting in this way the variation of density in the direction of flow is sometimes
considered as an extra assumption called Bear’s hypothesis (cf. [1]). Here it follows
from (2.7) and separating these assumptions seems questionable. Including (2.4) and
(2.6), that is ∂tρ = ραP∂tP and ∂tφ = (1− φ)βP ∂tP in the latter equation, we get

ρ
(
(1− φ)βP + φαP

)
∂tP + ρ∇ · q = ρQ.

Using the hydraulic head defined in (2.1) and Darcy’s law (2.8) combined with ρ > 0,
we finally write

(2.9) S0∂tΦ−∇ · (K∇Φ) = Q, where S0 = ρ0g
(
(1− φ)βP + φαP

)
.

The fluid storage coefficient S0 (also called storativity) characterizes the workable
water volume. It accounts for the rock and fluid compressibility. In general, this
coefficient is extremely small, once again due to (2.7). In what follows, we moreover
assume that S0(φ) � S0(P0) ∈ R (that is αPβP � 0 and β2

P � 0 in the Taylor
expansion of S0(P ) near P0).

At this point, introducing specific indicies for the fresh (f) and salt (s) waters in
(2.9) and using (2.8), we have derived the following model:

Sf∂tΦf +∇ · qf = Qf , qf = −Kf∇Φf ,
Sf = ρfg

(
(1− φ)βP + φαP

)
, Kf = kgρf/μf ,

(2.10)

Ss∂tΦs +∇ · qs = Qs, qs = −Ks∇Φs,
Ss = ρsg

(
(1− φ)βP + φαP

)
, Ks = kgρs/μs.

(2.11)
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Fig. 1. Schematic representation of saltwater intrusion in a coastal aquifer: the lower transition
zone with variable salt concentration around the corresponding “virtual” sharp interface “z = h”; the
upper transition (desaturation) zone around the corresponding “virtual” sharp interface, the water
table “z = H.”

Remark 1. Notice that due to the difference of reference quantities ρf �= ρs,
the model is density driven. The approach is however different from Muskat’s where
density variations in the flow direction “∇ρ · q” are not neglected and where (2.9) is
thus replaced by: ρS0∂tΦ−∇ · (ρK∇Φ) = ρQ.

2.4.2. Hypothesis on the flow. The following two assumptions are introduced
for upscaling the 3D problem to a 2D model in the next subsection.

Sharp interfaces. The slow dynamics of the displacement in the aquifer let the
fluids tend to the picture described in Figure 1. Of course, freshwater and saltwater
are miscible. Therefore they are separated by a transition zone characterized by the
variations of the salt concentration. Nevertheless the thickness of the transition zone is
small compared to dimensions of the aquifer. We then assume that an abrupt interface
separates two distinct domains, one for the saltwater and one for the freshwater. A
sharp interface is also assumed to separate the saturated and the dry parts of the
aquifer, thus neglecting the thickness of the partially saturated zone. This latter free
interface may be viewed as a moving water table. This approximation is justified
because the thickness of the capillarity fringe is much smaller than the distance to
the ground surface. We will alleviate these assumptions by reincluding somehow mass
transfers around interfaces in subsection 2.6 below.

Notice moreover that the slow dynamics of the displacement and the gravity
effects (here the lighter fluid is above the heavier fluid) allow us to assume that both
the interfaces are graphs.

Dupuit approximation (hydrostatic approach). The Dupuit assumption
supposes that [8] the hydraulic head is constant along each vertical direction (vertical
equipotentials). It is legitimate since one actually observes quasi-horizontal displace-
ments when the thickness of the aquifer is small compared to its width and its length
and when the flow is far from sinks and wells. This approximation is exact in the case
of a homogeneous, isotropic, and confined aquifer with constant thickness.
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2.5. Upscaling procedure. We now use the approximations introduced in 2.4.2
to vertically integrate (2.10)–(2.11), thus reducing the 3D problem to a 2D problem.

2.5.1. Vertical integration. The aquifer is represented by a 3D domain Ω ×
(h2, hmax), Ω ⊂ R

2, function h2 (resp., hmax) describing its lower (resp., upper)
topography. For the sake of simplicity, we assume that the upper surface of the
aquifer is at constant depth, hmax ∈ R, and moreover that hmax = 0.

We denote byH (resp., h) the depth of the free interface separating the freshwater
layer and the dry part of the aquifer (resp., the saltwater layer). Since we do not
consider very deep geologic formations, we assume that the pressure is constant and
equal to the atmospheric pressure Pa in the upper dry part of the aquifer, that is
between z = H and z = 0. We impose pressure equilibrium at the boundary of each
area, more precisely,

(2.12)

{
If H < hmax = 0 : Φf |z=H = Pa/ρfg +H − href ,
If H = hmax = 0 : Φf |z=hmax

= Pa/ρfg − href .

It follows that the right quantity for the hydraulic head Φf to be meaningful in the
whole aquifer is H− = inf(0, H). The upper head equilibrium condition (2.12) reads
Φf |z=H− = Pa/ρfg +H− − href . Similar elements on the depth of the salt interface
h lead us to introduce h− = inf(0, h).

Now we perform the vertical integration. We begin with the freshwater zone
between depths h− and H−. We obtain

∫ H−

h−

(
Sf∂tΦf +∇ · qf

)
dz =

∫ H−

h−
Qf dz, Bf = H− − h−.

Applying the Leibnitz rule to the first term in the left-hand side yields
∫ H−

h−
Sf∂tΦfdz = Sf

∂

∂t

∫ H−

h−
Φfdz + SfΦf |z=h−∂th

− − SfΦf |z=H−∂tH
−.

We denote by Φ̃f the vertically averaged hydraulic head

Φ̃f =
1

Bf

∫ H−

h−
Φfdz.

Because of the Dupuit approximation, Φf (x1, x2, z) � Φ̃f (x1, x2), x = (x1, x2) ∈ Ω,
z ∈ (h−, H−), we have

∫ H−

h−
Sf∂tΦfdz = SfBf∂tΦ̃f .

We also have∫ H−

h−
∇ · qf dz = ∇′ · (Bf q̃

′
f ) + qf |z=h−

1
· (ez −∇H−)− qf |z=h− · (ez −∇h−),

where ∇′ = (∂x1 , ∂x2), q′f = (qf,x1 , qf,x2), and the averaged Darcy velocity q̃′f =

1
Bf

∫ H−

h− q′f dz is given by

q̃′f = − 1

Bf

∫ H−

h−

(
K ′

f∇′Φf

)
dz = − 1

Bf

∫ H−

h−

(
K ′

f∇′Φ̃f

)
dz = −K̃ ′

f∇′Φ̃f ,

K̃ ′
f =

1

Bf

∫ H−

h−
K ′

f dz.
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We denote by Q̃f the source term representing distributed surface supply of fresh
water into the free aquifer:

Q̃f =
1

Bf

∫ H−

h−
Qf dz.

The averaged mass conservation law for the freshwater thus finally reads

SfBf∂tΦ̃f = ∇′ · (Bf K̃
′
f∇′Φ̃f )− qf |z=H− · (ez −∇H−)

+ qf |z=h− · (ez −∇h−) +Bf Q̃f .(2.13)

Similar computations in the saltwater layer give

SsBs∂tΦ̃s = ∇′ · (BsK̃
′
s∇′Φ̃s) + qs|z=h2

· (ez −∇h2)

− qs|z=h− · (ez −∇h−) +BsQ̃s,(2.14)

where Bs = h− − h2 is the thickness of the saltwater zone. In these equations, the
term BiK̃

′
i, i = f, s, may be viewed as the dynamic transmissivity of each layer. At

this point, we have obtained an underdetermined system of two PDEs (2.13)–(2.14)
with four unknowns, Φ̃i, i = f, s, H−, and h−.

2.6. Fluxes and continuity equations across the interfaces. Our aim is
now to include in the model the continuity and transfer properties across interfaces.
As a consequence, we express the four flux terms appearing in (2.13)–(2.14) and
we reduce the number of unknowns, the remaining ones being the interfaces height
functions.

2.6.1. Fluxes across the interfaces. The present subsection is fundamental.
Indeed our approach began like a sharp interface approach: we have averaged the equa-
tions in the vertical direction between the bottom of the aquifer and two interfaces; as
already mentioned, these interfaces are virtual since they actually approximate two
thin transition zones, the mixing layer where salt and fresh water coexist and the
desaturation layer (see Figure 1). Now we reinclude existence of these two layers in
the model in the form of two diffuse interfaces: one of characteristic thickness δH
between the dry and saturated zones and the other one of characteristic thickness
δh between fresh and salt water. As mentioned in the introduction, this coupled
sharp-diffuse interface approach is the new point relative to the existing literature
that makes our work completely original. The dynamics of these diffuse interfaces is
ruled by phase-field models.

Phase-field models were first introduced for the description of phase transitions
and solidification processes [11]. They are now largely used for modeling binary fluids
transitions. Closer to our context, such models are employed to describe imbibition
in porous media [16] (comparable to the upper interface in our setting). In phase
separation problems the model typically contains a double-well potential in which
the local minima correspond to the homogeneous stable states. Here we rather use
a triple-well potential for respecting the primal sharp interface approach and for in-
cluding the effect of this macroscopic front in the local phase-field model. The energy
functional also contains nonlocal terms involving the gradient (and possibly higher
order derivatives) of the phase field. In the present work we choose a simple model,
namely, based on a tristable Allen–Cahn-type model (see, e.g., [27]). As already men-
tioned the fact that the Allen–Cahn model, contrary to the Cahn–Hilliard’s one, is
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characterized by nonconserved fields (see [22]) will not impact the conservative form
of our final model. The nondegenerate mobility choice for the phase-field model is
also well-based in terms of the physics because occurence of pure phases and thus
of vanishing mobility does not make sense in our miscible context, contrary to the
context of phase separation.

• Flux across the fresh-saltwater interface We introduce an order parameter
Fh (the phase field) that “labels” the two “phases” (salt and fresh water) and the sharp
interface:

Fh =

⎧⎨
⎩

0 in freshwater,
cs/2 on sharp interface,
cs in saltwater,

where cs is, e.g., the mean concentration of salt in the salty area. Indeed we choose
to define the virtual interface by isosurface cs/2. The sharp interface at time t corre-
sponds to set

{
(x, z) = (x1, x2, z) s.t. Fh(x, z, t) = cs/2

}
. The function Fh satisfies a

modified Allen–Cahn equation with three points of stability,

(2.15) ∂tFh + 	v · ∇Fh − δhΔ
′Fh +

2Fh(Fh − cs/2)(Fh − cs)(3F
2
h − c2s/4)

δh
= 0.

The detailed shape of the triple-well potential is not important; its main role is to
establish and maintain well-defined domain walls. The elastic relaxation built into
the phase-field dynamics prevents the interfacial mixing layer from spreading out.
This point corresponds to the observations in the aquifers considered in the present
paper. The characteristic size of the corresponding diffuse interface is δh > 0 (see,
e.g., [3] for rigorous results). The parameter δh is small. Another point in the favor
of the coupling of (2.15) with the sharp interface approach is indeed the convergence
as δh → 0 of the phase-field model to a sharp interface one (see [26] for Allen–Cahn,
[12, 9] for Cahn–Hilliard and Stefan, and Remark 2). The phase-field equation (2.15)
also contains advection of the order parameter by the fluid, the effective velocity being
denoted by 	v [10]. Note that we have already neglected here the vertical diffusion with
regard to the convective term.

Since the stability set {Fh = cs/2} corresponds to the sharp interface of depth
h−, we have

Fh(x, z, t) = cs/2 ⇔ z − h−(x, t) = 0.

The derivative of the constant function Fh(x, h
−(x, t), t) = cs/2 is null. We infer

from ∂i[Fh(x, h
−(x, t), t)] = 0, i = x, t, that ∂tFh(x, h

−, t) = −∂zFh(x, h
−, t)∂th−

and ∇′Fh(x, h
−, t) = −∂zFh(x, h

−, t)∇′h−. Deriving once again the latter rela-
tion we compute Δ′Fh(x, h

−, t) = −∂zFh(x, h
−, t)Δ′h− − ∂2

zzFh(x, h
−, t)|∇′h−|2 −

∇′∂zFh(x, h
−, t) · ∇′h−. Including these results in the projection of the Allen–Cahn

equation for Fh = cs/2, we get

∂zFh

(−∂th
− + 	v · (ez −∇h−) + δhΔ

′h−)+ δh∇′h− · ∇′∂zFh + δh|∇′h−|2∂2
zzFh = 0.

The two last terms of the left-hand side of the latter relation may be neglected.
Indeed they combine three low order quantities. First, of course, the diffusion param-
eter δh which is the characteristic size of the diffuse interface is small. Next point
comes from the dynamics of the Allen–Cahn equation. A formal asymptotic analy-
sis shows that the reaction term is dominant at small times, so that in the rescaled
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time scale t′ = t/δ2h the dynamics essentially lie in the ODE ∂t′Fh = 2Fh(Fh − cs/2)
(Fh − cs)(3F

2
h − c2s/4) and the values of Fh tend to the stable values thus creating

steep transition layers. Then the propagation is associated with a much slower time
scale, convective and diffusive terms coming to balance with the reaction term near
the stable surfaces, but the regular steep structure of the diffuse interface ensures
small ∇′∂zFh and order one ∂2

zzFh. Furthermore Dupuit’s work [17] is based on the
observation that in such a groundwater flow the slope of the interfacial surface is very
small, that is, |∇′h−| � 1. For the same reason, the function Fh heuristically behaves
like a step function in the vertical direction and ∂zFh �= 0. The latter equation thus
gives

(2.16) −∂th
− + 	v · (ez −∇h−) + δhΔ

′h− = 0.

We then turn back to the traditional sharp interface characterization. Actually
it turns out that the velocity 	v in the mixing zone which transports the interface in
(2.15) and which seems to be an additional unknown in the model disappears at this
stage. We thus do not have to introduce a supplementary equation for closing the
system (as for instance in [29]). There is no mass transfer across the interface between
fresh and salt water, i.e., the normal component of the effective velocity is continuous
at the interface z = h−:

(2.17)
(qf |z=h−

φ
− 	v

)
· 	n =

(qs|z=h−

φ
− 	v

)
· 	n = 0,

where 	n denotes the normal unit vector to the interface, 	n = |∇(z−h−)|−1∇(z−h−).
Combining (2.16) and (2.17), we obtain

qf |z=h− · (ez −∇h−) = qs|z=h− · (ez −∇h−) = φ(∂th
− − δhΔ

′h−)

= φ
(X0(−h)∂th− δh∇′ · (X0(−h)∇′h)

)
(2.18)

where we set

X0(h) =

{
0 if h ≤ 0,
1 if h > 0.

Relation (2.18) is a regularized Stefan-type boundary condition.
Remark 2. For emphasizing once again the consistency with our primal sharp

interface approach, we recall that rigorous asymptotic results let us recover the sharp
interface evolution equation. More precisely, if δh → 0, the Allen–Cahn model tends
to the classical Stefan problem, that is the classical modeling of the interface evolution
given by a level-set equation qf (h

−)·(ez−∇h−) = φ∂th
− (see [24]). If the Allen–Cahn

equation (here in the case of one point of stability) is written as

∂tF
ε + 	v · ∇F ε − γΔF ε +

F ε(F ε − cs/2)(F
ε − cs)

εδh
= 0,

γ being a parameter related to the elasticity of the interface and to δh, when letting
ε → 0 for any given γ, we get (see [2] and the references therein)

∂tF + 	v · ∇F − γΔF = 0.

• Flux across the unsaturated-saturated interface We perform the same
reasoning for the upper capillary fringe. Likewise, defining the phase function F1 by

F1 =

⎧⎨
⎩

−1 in unsaturated zone,
0 at sharp interface,
1 in saturated zone,
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the sharp interface is characterized by F1(x, z, t) = 0 ⇔ z − H−(x, t) = 0. The
leading order terms of the projection on z = H− of a tristable Allen–Cahn equation
for a diffuse interface of characteristic size δH give

(2.19) −∂tH
− + 	v1 · (ez −∇H−) + δHΔ′H− = 0.

We combine the latter equation with the relation ruling continuity of the normal
component of the velocity

(qf |z=H−

φ
− 	v1

)
· 	n = 0,

and we obtain

qf |z=H− · (ez −∇H−) = φ
(
∂tH

− − δHΔ′H−)
= φ

(X0(−H)∂tH − δH∇′ · (X0(−H)∇′H
))
.(2.20)

• Impermeable layer at z = h2 If the lower layer is impermeable, there is no
flux across the boundary z = h2:

(2.21) qs(h2) · (ez −∇h2) = 0.

2.6.2. Continuity equations. Continuity relations now imposed on the inter-
faces will allow us to properly reduce the number of unknowns in (2.13)–(2.14).

The Dupuit approximation reads Φ̃f � Φf |z=H− , that is,

(2.22) Φ̃f =
Pa

ρfg
+H− − href .

Bearing in mind the boundary condition (2.12) at the upper free interface and ap-
proximation Φf |z=H− � Φf |z=h− , we have

Pa

ρfg
+H− − href =

Pf |z=h−

ρfg
+ h− − href ⇔ Pf |z=h− = Pa + ρfg(H

− − h−).

Besides, the pressure is continuous at the interface between salt and fresh water.
Since Ps|z=h− = ρsg(Φs|z=h− − h− + href ) and Φs|z=h− � Φ̃s, it follows that

(2.23) (1 + α) Φ̃s =
Pa

ρfg
+H− + αh− − (1 + α)href , α =

ρs
ρf

− 1.

Parameter α characterizes the density contrast.
Equations (2.22)–(2.23) allow us to eliminate Φ̃f and Φ̃s in the final system.

2.6.3. Presence of other water ressources. Up to now, we have considered
that the aquifer is surrounded by a dry zone. Other settings may of course be included
in the model and may impact (2.20)–(2.21). We mention two important cases in the
present subsection although we do not numerically illustrate them in the present
paper.

Presence of free water (river. . . ) in a part of the upper boundary may be treated
by prescribing the continuity of the hydraulic head. Assume existence of a deflection
in a part Ωr × {0}, Ωr ⊂ Ω, of the upper bound of the aquifer containing a river of
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depth |hriv|. The river is in hydrodynamic equilibrium with the atmosphere, that is,
if Pr is the pressure in the river,

Pr(x1, x2, z) = Pa + ρfg(0− z), (x1, x2) ∈ Ωr, hriv ≤ z ≤ 0.

The hydraulic head of the river Φr is thus also constant with regard to z, just like
Φf . The usual boundary condition at the interface between the aquifer and the river
consists in prescribing the continuity of the hydraulic head. It reads

Φf |{x∈Ωr, z=hriv} = Φr|{x∈Ωr, z=hriv} =
Pr|z=hriv

ρfg
+ hriv − href =

Pa

ρfg
− href .

Bearing in mind the general definition of Φ̃f in the aquifer (see (2.22)), we can interpret
the latter relation: when the free water interface touches the river, the model includes
the river depth in the freshwater zone and H− jumps from hriv to 0. In this case, the
flux term is qf |z=H−=hriv

· (ez − ∇H−) = 0. The same type of boundary condition
holds true along the outflow face for freshwater along the bottom of the sea (with of
course a term containing the density ratio ρs/ρf instead of 1/ρf ; see [8, section 9.7]).
But in this case, the Dupuit assumption fails.

Another possibility is the presence of a weakly impermeable zone (aquitard). Flux
between the aquitard and the water contained in the aquifer consists of a leakage term
qL. The generic model for recharge and discharge is qL = (Φext − Φ)/cm, where Φ
(resp., Φext) is the head on the aquifer’s (resp., aquitard’s) side of the semipermeable
“membrane,” resistance cm = O(bm/km) depending on the thickness bm and on the
permeability km (km � k) of the membrane (see, e.g., [30]). This formulation allows
us to treat charge and discharge, depending on the ratio between Φ and Φext. Here
we can include a fresh leakage term qLf from the top of the aquifer to the fresh water
when the aquifer is fully saturated (that is H = 0) and a salty leakage term qLs from
the bottom to the saltwater:

(2.24) qf |z=H− · (ez −∇h−
1 ) = qLf when H− = 0, qs|z=h2

· (ez −∇h2) = −qLs.

More precisely, in view of (2.22), term qLf reads

qLf (x,H, h)

=
(
1− χ0(−H)

)
χ0(H

− − h−)
kmf (x)

bmf(x)

(
Pext,f (x)

ρfg
+ bmf(x) − Pa

ρfg
−H−

)

=
(
1− χ0(−H)

)
χ0(H

− − h−)
kmf (x)

bmf(x)

(
Pext,f (x)

ρfg
+ bmf(x) − Pa

ρfg

)
.

Indeed we specify that only fresh exchanges are allowed, thus the term χ0(H
− − h−),

and that the semipermeable zone is at depth hmax = 0, thus the term (1 − χ0(−H))
(we consider here a phreatic aquifer: there is no leakage at the upper boundary unless
the aquifer is fully saturated). We impose kmf = 0 outside the aquitard’s area. The
same type of arguments and (2.23) lead to

qLs(x,H, h)

= χ0(h
− − h2)

kms(x)

bms(x)

(
Pext,s(x)

ρsg
+ h2 − bms(x) − Pa

ρfg(1 + α)
− H−

1 + α
− αh−

1 + α

)
.



SHARP-DIFFUSE INTERFACE MODEL FOR FREE AQUIFERS 13

2.7. Conclusion: seawater intrusion model. We begin by some assump-
tions, essentially introduced for the sake of simplicity of the equations. The medium
is supposed to be isotropic and the viscosity the same for the salt and fresh water.
Using definition (2.2) for the permeabilities K̃ ′

f and K̃ ′
s, it follows from μf = μs that

(2.25) K̃ ′
s = (1 + α)K̃ ′

f .

The 2D model (2.13)–(2.14) now reads

SfBf∂tΦ̃f −∇′ · (Bf K̃
′
f∇′Φ̃f ) + qf |z=H− · (ez −∇H−)

− qf |z=h− · (ez −∇h−) = Bf Q̃f ,(2.26)

SsBs∂tΦ̃s − (1 + α)∇′ · (BsK̃
′
f∇′Φ̃s)− qs|z=h2

· (ez −∇h2)

+ qs|z=h− · (ez −∇h−) = BsQ̃s.(2.27)

We can neglect the term SsBs∂tΦ̃s because of the two following arguments. First the
saltwater is confined since the bottom of the aquifer is assumed essentially imperme-
able:

∂tΦs � 1.

Besides Ss � 1 because of the weak compressibility of the fluid and of the rock (see
(2.7)), hence

Ss = ρsg
(
(1− φ)βP + φαP

) � 1.

We now choose to base the model on the salt mass conservation and on the total
mass conservation. We thus write (2.27) using SsBs∂tΦ̃s � 0, and the sum of (2.26)
and (2.27):

−(1 + α)∇′ · (BsK̃
′
f∇′Φ̃s

)
+ qs|z=h− · ∇(

z − h−)− qs|z=h2
· ∇(

z − h2

)
= BsQ̃s,

SfBf∂tΦ̃f −∇′ · (Bf K̃
′
f∇′Φ̃f

)− (1 + α)∇′ · (BsK̃
′
f∇Φ̃s

)
+ qf |z=H− · ∇(

z −H−)
− qs|z=h2

· ∇(
z − h2

)
= Bf Q̃f +BsQ̃s.

Once again for the sake of simplicity, we assume δh = δH := δ (the diffuse interfaces
widths are of the same order). We have no need for truncations involving χ0, since
a maximum principle has been established for the previous model in [14]. Bearing in
mind that now Bs = h− − h2, Bf = H− − h−, and using (2.18), (2.20), (2.21), and
(2.22)–(2.23), we write the latter system as

(M)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

φ∂th−∇′ · (αK̃ ′
f (h− h2)∇′h

)−∇′ · (δφ∇′h
)

− ∇′ · (K̃ ′
f(h2 − h)∇′H

)− qLs(x,H, h) = Q̃s(h− h2),(
Sf (H − h) + φ

)
∂tH −∇′ · (K̃ ′

f

(
(H − h) + (h− h2)

)∇′H
)

− ∇′ · (δφK̃ ′
f∇′H

)−∇′ · (K̃ ′
fα(h− h2)∇′h

)
− qLf (x,H, h)− qLs(x,H, h) = Q̃f (H − h) + Q̃s(h− h2).

Leakage terms qLf and qLs are defined after (2.24). This system gives a 2D description
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Porosity Permeability Storativity Diffuse interface depth

φ K̃′
f (m/day) Sf δ (m)

Fig. 4 0.3 39.024 0 0 and 0.1

Figs. 5–6 0.3 39.024 0 and 0.25 0.1

Fig. 7 0.3 304.48 0 space dependent
and δ = 0.1

Figs. 8–11 0.35 304.48 0 0 and O(1) given by [15]

Fig. 9 0.35 304.48 0 0

Fig. 10 0.35 304.48 0 O(1) given by [15]

Fig. 2. Parameters used in the simulations.

for tracking a saltwater front in a free aquifer, the third dimension remaining in the
model thanks to the unknowns h and H which are the free interfaces depths.

3. Numerical simulations. The present section is devoted to numerical illus-
trations of the behavior of the model derived above. The discretization is based on
finite elements in space and on a semi-implicit Euler method in time. Let us briefly
sketch the scheme.

We use a semi-implicit in time scheme combined with a P1 finite element method
to discretize our problem. More precisely, we use the following numerical scheme:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ
hn+1 − hn

dt
−∇′ · (αK̃ ′

f (h
n − h2)∇′hn+1

)−∇′ · (δφ∇′hn+1
)

−∇′ · (K̃ ′
f(h2 − hn+1)∇′Hn

)
= Q̃s(h

n+1 − h2),

(
Sf (H

n − hn) + φ
)Hn+1 −Hn

dt
−∇′ · (K̃ ′

f

(
(Hn − hn) + (hn − h2)

)∇′Hn+1
)

−∇′ · (δφK̃ ′
f∇′Hn+1

)−∇′ · (K̃ ′
fα(h

n+1 − h2)∇′hn+1
)

= Q̃f (H
n+1 − hn+1) + Q̃s(h

n+1 − h2).

This choice leads to a condition of CFL type between the time step and space dis-
cretization (the condition remains reasonable; for instance, δt is of order 0.5 while
δx = O(1) for the computations of Figure 7, δt is of order 0.01, while δx = O(1) for
those of Figure 8). We adapt to our case the package FreeFem++ by Pironneau and
coworkers. The reader is referred to [23] for details about it.

The aquifer is figurated by a parallelepiped (x, y) ∈ [−50, 50] × [−20, 20], z ∈
[−10, 0]. The physical parameters have been chosen in agreement with [8]. In the
following simulations, we solve numerically the full bidimensional problem and we
plot the cross-sectional (at y = 0) elevations h and H of the virtual interfaces. The
choice y = 0 is arbitrary since the problem is 2D. The physical parameters used in
the simulations are given in Figure 2. The exterior factors affecting the dynamics in
the aquifer are also summarized in Figure 3. For all the simulations, we have used
homogeneous Neumann boundary conditions at the right boundary of the domain to
let the interfaces freely evolve.

We first mention that our model with small δ has first been compared with results
obtained by the purely sharp interface approach in [21]. Since this reference contains
comparisons with well-known test problems already published, the complete similarity
with our results validates our model in the case of a thin mixing zone (see Figure 4).
Let us also emphasize that we benefit here from the maximum principle satisfied
by the solutions of our model. Actually (see [14]) the solutions of model (M) are
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Source term Left boundary Left boundary
condition for h condition for H

Fig. 4 injection well homogeneous Neumann homogeneous Neumann

Fig. 5 injection well homogeneous Neumann homogeneous Neumann

Fig. 6 pumping well homogeneous Neumann homogeneous Neumann

Fig. 7 no homogeneous Neumann homogeneous Neumann

Figs. 8–11 no oscillating Dirichlet homogeneous Neumann

Figs. 9–10 no oscillating Dirichlet homogeneous Neumann
and oscillating Dirichlet

Fig. 3. Exterior factors used in the numerical tests.
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−9
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−7

−6
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−4

−3

−2

−1

0

x(m)

z
(m

)

at time t = 0.1
at time t = 1
at time t = 4
With Sharp Interface Model
With Sharp-Diffuse Interface Model.

Fig. 4. Agreement between our model with small δ (here δ = 0.1m) and the classical sharp
interface approach inspired by [21]. A large quantity of fresh water is injected during a short time
(0.8 day) through a well of radius 1 m centered at (x, y) = (15, 0). The lower interface h between
salt and fresh water and the upper interface H between saturated and unsaturated zones then freely
evolve. Results at times t = 0.1, 1, 4 days. The dash curves and the cross curves agree.

such that h2 ≤ h ≤ H ≤ 0. We have observed that the same property is satisfied
by our numerical solutions (even if our numerical method may or may not obey the
same maximum principle). It follows that we do not have to truncate the numerical
solutions as in [21].

The next figures are devoted to phenomenological aspects of the potential com-
pressibility of the soil. Storativity is characterized by parameter Sf . Intuitively, the
bigger Sf is, the more water may be contained in the soil. Existing upscaled models
use assumption (2.7) for neglecting the storage coefficient Sf . Figure 5 corresponds to
an injection scenario. Since the compressible soil (Sf �= 0) may contain more water,
we observe an overestimate of the water-table height and an underestimate of the salt
interface height when considering Sf = 0. These misestimates subsist more than three
days after the end of the injection (then the misestimates reverse). Such an injection
process is classically used by operators for bringing down the salty interface. Neglect-
ing Sf produces an overestimation of the impact of the process, especially in the injec-
tion zone. Figure 6 exhibits opposite under/over estimates during a pumping scenario.
We also observe a local depression of the water table and apparition of a salty cone.
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Fig. 5. Comparison of the interfaces depth h and H in a compressible soil (dotted lines,
Sf = 0.25 �= 0) and in an incompressible soil (Sf = 0) during an injection scenario. Injection and
data are the same as in Figure 4. Sequence of results at times t = 0.1, 1, 4 days (left to right, top
to bottom).
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Fig. 6. Comparison of the interfaces depth h and H in a compressible soil (dotted lines,
Sf = 0.25 �= 0) and in an incompressible soil (Sf = 0) during a pumping scenario. Pumping is
constant in time through a well of radius 1 m centered at (x, y) = (15, 0). Sequence of results at
times t = 1, 2, 3 days (left to right, top to bottom).

Let us now leave the comfort zone of thin mixing zones. As noticed for instance in
[15], in such a case dispersion produces nonnegligible effects: it creates head losses that
lessen the area of the aquifer occupied by saltwater. Indeed salty water discharges
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h : t = 0
h : δ(−50) = 0.1m, t = 30 days.
h : δ(−50) = 1m, t = 30 days.
h : δ(−50) = 0.1m, t = 60days.
h : δ(−50) = 1m, t = 60days.
h : δ(−50) = 0.1m, t = 120 days.
h : δ(−50) = 1m, t = 120 days.

Fig. 7. Effect of the characteristic width of the diffusion/mixing area: focus on the lowering
of the saltwater front depth h due to mixing. Parameters are those of [15]. The mixing zone
being thicker on the side of the shoreline, we test with δ(x) = χ(−50,−20)(x) + 0.1χ(10,50)(x) +
(0.4 − 0.03x)χ(−20,10)(x) (case δ(−50) = 1). The result is compared with the one corresponding
to a thin constant mixing zone δ = 0.1 (case δ(−50) = 0.1). The results appear arranged in pairs
corresponding to simulations at times t = 30, 60, 120 days. For both simulations, the interface is
initially located on the diagonal. It then tends to a horizontal line due to density/gravity effects. Of
course the results are similar on the right side of the aquifer. On the left side we observe that the
mixing lessens the area of the aquifer occupied by saltwater.

from the zone of diffusion back into the sea. The thickness of the latter zone is
characterized by parameter δ in our model. We thus now consider higher values for
δ. Furthermore, we test the possibility of varying δ in the domain since the mixing
zone is thicker on the side of the shoreline. In Figure 7, the shoreline is on the left
of the represented rectangle, a little further on. We impose homogeneous Neumann
boundary conditions on the left of the domain in view of observing the free evolution of
the interfaces depths due to water discharges. In accordance with [15], we observe that
the salty interface get less elevated in the case of higher values for δ. If max δ = O(1)
(which is not a drastic value) we observe a difference of 2% in the elevation. This
effect is increasing over time.

Finally we couple the latter phenomenon with the tides effects. Tidal fluctua-
tions of the sea produce progressive pressure waves in adjacent aquifers. Water-level
measurements showing the landward decrease in tidal fluctuation are then often used
for characterizing the physical parameters of groundwater flow (e.g., [28]). Of course
this inverse process has to be based on adapted models. For this simulation we use
the parameters in [15] after a rescaling to our small aquifer. We impose a Dirichlet
boundary condition on the left boundary {x = −50} for the saltwater elevation h.
Its value is computed with the classical tide-produced change model for the artesian
head of [19]. Parameter δ is calibrated using the formula for the amplitude of the
dispersive zone ((2) in [15]). It is of order one. In the first figure we observe the
tidal fluctuations in groundwater. Figure 8 presents actually two hydrograph arti-
facts showing the elevation of the salt interface over time. The oscillations appear of
course if computations are performed on the model with δ = 0 (on the left) or on the
model with δ = O(1) (on the right). In view of comparing the results between the
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h(x = −35) : Solution computed with Ferris model
h(x = −35) : Approximated solution computed with δ = 0
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h(x = −35) : Solution computed with Ferris model
h(x = −35) : Approximated solution computed with δ = O(1)

Fig. 8. Tidal effects on the saltwater front depth h, represented by hydrograph artifacts (left
δ = 0, right δ = O(1)). The hydrograph is located at x = −35 m. An oscillating Dirichlet boundary
condition, computed with the Ferris model, is imposed on the left of the domain for h (while H
freely evolves with a homogeneous Neumann boundary condition on the left of the domain). Other
parameters are those of [15]. The simulations are compared to the Ferris solution.
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z
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) H(x = −35), h(x = −35) : With oscillating Dirichlet boundary condition for H(−50, .)
H(x = −35), h(x = −35) : With homogeneous Neumann boundary cond. for H(−50, .)
h(x = −35) : Reference solution computed with Ferris model.

Fig. 9. Impact of an oscillating Dirichlet boundary condition on H, simulations with δ = 0.
Artifact for a hydrograph at x = −35.

two models, we thus have plotted a reference solution, here derived from the analytic
formula of [19]. The curve produced by the model with δ �= 0 better fits the analytical
solution. This observation is also confirmed at an other scale by the curves obtained
with homogeneous Neumann boundary conditions in Figures 9 and 10.

The last figures are other phenomenological illustrations linked with tidal effects.
First, in Figure 11, we focus on the water table elevation H . In the first subfigure
we observe that the oscillations imposed on the left boundary of the aquifer on the
saltwater front h induce an oscillating behavior on H . Moreover, as shown in the
second subfigure, the sea tide has an enhancing effect on the mean water table of
a coastal unconfined aquifer (see [20] and the references therein). In some ways
Figures 9 and 10 present converse simulations since we illustrate the effects of the
boundary condition chosen for H . Choosing an oscillating boundary condition or
a Neumann boundary condition (knowing that oscillations are induced on H by the
oscillating Dirichlet boundary condition on h) does not drastically impact the behavior
of H . But it creates an important discrepancy on the saltwater front depth h. More
precisely using the Dirichlet condition for H may produce the underestimate of h.
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Fig. 10. Impact of an oscillating Dirichlet boundary condition on H, simulations with δ = O(1).
Same data as in Figure 9.
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Fig. 11. Tidal effects on the freshwater front depth H, represented by hydrograph artifacts.
The data are the same as the ones used for Figure 8. The first subfigure shows the influence of δ on
the oscillations. The second one illustrates the sea tide enhancing effect on the mean value of H.
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[17] J. Dupuit, Études Théoriques et Pratiques sur le Mouvement des Eaux Dans les Canaux
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