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Abstract. The present paper is devoted to the rigorous upscaling of some
particles displacement model with trapping events, to the continuum scale. It

focuses especially on the transitions between sub-diffusive and diffusive mod-

els. The work gives emphasis to the following points: 1. The distribution of
waiting times in passing to the continuum limit. The common idea is that the

distributions with slowly decaying long tails produce anomalous diffusion while

the classical diffusion model corresponds to distributions with short tails. This
is shown to be not always true by introducing a simple model of geometrical

heterogeneity leading to trapping events without characteristic time scale. 2.

The extension of the Feynman-Kac theory to some non-Brownian setting. 3.
Constructing a microscopic random walk model that, thought based on a MIM

approach, gives both fMIM and FFPE at the mesoscopic limit.

1. Introduction. The spread of a tracer in a shear flow, in a porous medium or
in a spatially disordered set of streamlines, is often analyzed by averaging over mi-
croscopic scales. Classically the corresponding mesoscopic model is the advection–
diffusion equation. Diffusion is characterized by an evolution in time of the tracer
distribution variance proportional to t. Nevertheless, observations have emphasized
the existence of regimes where the variance rather expands as t2γ , γ 6= 1/2 (see
e.g. the observations in a sand column described in [7]). This non-Fickian phe-
nomenon is referred to as anomalous diffusion. In particular, if 0 < γ < 1/2 the
dispersion is slower than diffusion and is thus termed subdiffusion. Subdiffusion has
been observed for instance during the transport of charge carriers in amorphous
semi-conductors, during the propagation of contaminants in groundwater, or in the
movement of proteins in intracellular media.

The present paper is devoted to the rigorous upscaling of some particles displace-
ment model with trapping events to the continuum scale. We focus especially on
the transitions between subdiffusive and diffusive models.
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A classical approach to go from the particles scale to a continuous description of
the displacement consists in representing small scale motions of walkers by means of
random processes. After the fundamental works of Brown [8], Einstein [15], Smolu-
chowski [52] and Perrin [41], literature on the subject is of course very abundant.
Recently, a branch of the physical literature focused on non-Fickian settings. Let
us give some typical references. A first statistical model yielding subdiffusion is the
anti-persistent fractional Brownian motion with Hurst exponent in the range (0, 1/2)
([33]). Another approach to anomalous behavior consists in representing small scale
motions of walkers by means of random processes whose (one-time) probability den-
sity function satisfies the Fractional Fokker Planck Equation (FFPE) or the fractal
Mobile-Immobile Model (fMIM). FFPEs were derived e.g. in [56, 3, 35, 29, 28],
using mainly continuous time random walks and Laplace transforms. In the present
paper, we choose primarily the MIM approach that seems better suited for modeling
mass transport in porous media ([49, 4, 37]). Indeed, fMIM’s solutions behave as
FFPE’s ones at late times and as ones of the advection-dispersion equation at early
times, in agreement with many heavy-tailed data. Yet we prove that our derivation
lets us also recover FFPE.

Basically, MIM-like models considers the global displacement as a succession of
Mobile periods (convection/diffusion) and Immobile periods (trapping events due
to local –microscopic– heterogeneity, e.g. geometrical complexity or sorption sites)
[57], [4]. Fractal MIM involves a generalization of Fourier’s law that rules the density
of Brownian motion.

In the present work, we aim at giving particular emphasis to the following points:

• The waiting times distribution and its scaling. Anomalous versus classical
diffusion.

A quantity of fundamental importance in passing to the continuum limit
in an interrupted process is the distribution of waiting times. One of the first
illustrations of this importance was given in [55] by selecting a distribution
which induces the same type of variance than the pde’s model for the tracer
distribution in a central pipe with many stagnant infinite side branches. See
also the references therein.

On the one hand, classical diffusion equation has been justified by assuming
deterministic residence times between jumps (Einstein’s derivation) or expo-
nential distribution of residence times (see for instance [17]). On the other
hand recent developments about anomalous diffusion are mainly associated
to residence times with infinite mean (Mittag-Leffler residence time distri-
bution, e.g. [48, 50]). These two types of result have led to the common
idea that distributions with slowly decaying long tails produce anomalous dif-
fusion while the classical diffusion model corresponds to distributions with
short tails. In the present paper, we show that it does not always hold true.
Actually, we introduce a simple model of geometrical heterogeneity leading
to trapping events without characteristic time scale: the survival probabil-
ity of the trapping asymptotically behaves as a power law (long tails). We
then show that anomalous diffusion appears in MIM if and only if there is no
scale separation between moving and trapping process. It means in particu-
lar that the mesoscale, that is the observation time, is calibrated in view of
the magnitude of the sojourn times at the microscale. Furthermore we prove
that the anomalous behavior in MIM is transient, without assuming that the
microscopic heterogeneity asymptotically disappears as e.g. in [13, 5].
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• Path integrals.
Let u be a given integrable function. We associate with any path of particle

x(·t) in the time interval (0, t) the random variable A defined as the functional:

A(t) =

∫ t

0

u(x(s)) ds.

Such path integral may represent various “observables” attached to trajec-
tories of tracer particles: occupation time if u is a step function, advection
in turbulent flow if u(x) = x, average width of an interface if u(x) = x2,
magnetization phase in NMR if u is the magnetic field etc (see the review
[31] for various examples). Assuming Brownian particles, the Brownian func-
tional A is widely studied. In the fundamental article [24], using Feynman’s
path integral method, Kac derived the Schrödinger-like equation governing
the distribution of Brownian functionals for any positive function u.

In the present paper, we extend the Feynman-Kac theory to some non-
Brownian settings. We thus also recover the results of [9] without handling
with double Laplace transforms. We believe our method more comfortable in
view of numerical simulations.

• Fractal Mobile-Immobile Model versus Fractional Fokker Planck Equation.
We construct a microscopic random walk model that, thought based on a

MIM approach, let us get at the mesoscopic limit both fMIM and FFPE. The
key is the choice of the duration of the micro-convective step. Furthermore
we prove at the mesoscale that FFPE may be viewed as a limit of fMIM.

Let us now describe the results presented in this work.
The present paper gives an uniform derivation of the appropriate form of the

Feynman-Kac equation both in subdiffusive and diffusive settings. Moreover we
describe the scalings leading to the appearance and disappearance of anomalous
behavior. By the way, let us first focus on the anomalous setting. We state the
following result.

Theorem 1.1. If the observation time is such that there is no scale separation
between trapping and diffusion, the hydrodynamic limiting behavior of the probability
density function (pdf) P (x, t, A) for a tagged particle to be at point x at time t with
the value A for the path integral A(t) is governed by a non-Fickian equation in the
form

∂tP −D∂2
xxHγΛ,Λv,uP + Λv∂x

(
vHγΛ,Λv,uP

)
+ u∂AP = r, (1)

where r is a source term and operator HγΛ,Λv,u is the inverse of some non-local in
time mapping:

HγΛ,Λv,u =
(
ΛvId + ΛT A·tu(·x)I

1−γ
0,+ T A−·tu(·x)

)−1
. (2)

This relation entails a substantial fractional operator, that is the fractional integral
of order 1 − γ, I1−γ

0,+ , composed with path translations T A±·tu(·x). Here Id denotes

the identity operator. The real numbers Λ ≥ 0 and γ > 0 are constant parameters
characterizing the physics of the trapping process while the real number Λv ≥ 0
characterizes convective motions.

Furthermore, anomalous diffusion is a transient behavior. For larger times, pdf
P is governed by the classical Fickian Feynman-Kac equation:

∂tP −D∂2
xxP + Λv∂x(vP ) + u∂AP = r. (3)
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We recall that the fractional integral of order α > 0, Iα0,+f , is defined by

Iα0,+f(t) =
1

Γ(α)

∫ t

0

(t− t′)α−1f(t′)dt′.

This fractional integral generalizes the Cauchy multiple integral to non–integer or-
der [47, 45]. Operator Iα0,+ is bounded in Lp(0, T ), 1 ≤ p ≤ ∞ [47]. The correspond-

ing Laplace symbol is λ−α. We also recall that Iα0,+I
β
0,+ = Iα+β

0,+ . Hence Iα0,+ may be
viewed as a “αth root” of the time integration operator. The substantial fractional
operator HγΛ,Λv,u expresses memory effects. In short, the future state depends on
the present state and on the past. Markovity fails.

We observe in Eq. 1 that the micro–trapping process induces two anomalous
transport properties at the mesoscale, on the meso–diffusion law and on the meso–
convection. First, due to the presence of a substantial fractional operator HγΛ,Λv,u
in the diffusive term, the classical Fick’s law is perturbed and the model is subdiffu-
sive. Second, the trapping process also perturbs the convective process, once again
through the substantial fractional operator HγΛ,Λv,u.

Heuristically Theorem 1.1 states that some scaling conditions lead to a transient
anomalous transport and hence to a subdiffusive version of the Feynman-Kac equa-
tion. By the way, the present paper also describes precisely the critical scalings
leading to normal or anomalous transport behavior:
Extended Theorem 1. The choices of scaling parameters leading to normal or
abnormal transport (or to a freezing of the system due to asymptotically dominant
trapping) are basically summarized in Fig. 1.

Finally, let us mention that choosing Λv = 0 we recover the Feynmann-Kac
equation associated with FFPE, that is the equation derived in [9] with other tools.
More precisely:

Theorem 1.2. Assume Λv = 0. If the observation time is such that there is no
scale separation between trapping and diffusion, the hydrodynamic limiting behavior
of the probability density function P ∗(x, t, A) for a tagged particle to be at point x
at time t with the value A for the path integral A(t) is governed by a non-Fickian
equation in the form

∂tP
∗(x, t, A)−D∂2

xx(Λ−1T Atu(x)D
1−γ
0,+ T A−·tu(x))P

∗(x, t, A)

+u(x)∂AP
∗(x, t, A) = r(x, t, A), (4)

where operator D1−γ
0,+ is the Riemann-Liouville derivative of order 1 − γ, that is a

left inverse of the fractional integral I1−γ
0,+ . Hence FFPE appears as a special case

of our derivation. Moreover, convergence of the weak solutions of 1 to those of 4 is
proved.

The present paper is organized as follows. In Section 2, we construct a micro-
scopic random walk model describing displacement of particles with trapping events.
Our assumptions and especially the scaling parameters are introduced. Section 3 is
devoted to the hydrodynamic limiting process. Anomalous (or not) behavior is in-
duced by the relative importance of mobile and immobile densities. For each scaling
choice, we derive the corresponding model at the mesoscale. In Section 4, we focus
on the importance of scalings. We summarize when and why anomalous transport
properties appear/disappear at the mesoscale and we interpret these phenomena in
terms of operational and clock times. The mathematical analysis of the pde 1 is
performed in Section 5. We also prove that solution of 4 is the limit of solution of
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Figure 1. Governing models versus scaling choices. The scaling
separation parameters are introduced in Section 2.1. Parameter γ1

scales trapping times with regard to observation times. Parameter
γ characterizes the waiting times distribution of the trapping model
and thus the heterogeneity degree leading to trapping (assumption
γ < 1 corresponds to long tails, assumption γ > 1 corresponds to
short tails).

1. In Section 6 we derive the equation for observable quantities corresponding to
the anomalous Feynman-Kac equation 1. Finally Annex A is devoted to the wait-
ing times distributions with long tails. A power-law distribution is in particular
justified using a basic geometrical model of heterogeneity.

2. A small-scale random walk model for flow with trapping processes.

2.1. Definition and assumptions. The present study is based on a random walk
process. Our starting point relies on some known facts in the classical Brownian
setting. Assume that an average flow field v (here supposed constant) can be iden-
tified. A simple model for mass transport in homogeneous materials is obtained
by considering that during successive time steps [nΛvτ, (n + 1)Λvτ ] fluid particles
are advected over a distance vΛvτ . Parameter Λv calibrates the duration of the
convective step. Diffusion is taken into account by adding random independent
instantaneous jumps of characteristic length scale ` to the advective contribution.
The total displacement length during time Λvτ is thus vΛvτ + `N∗, where N∗ is a
random variable with zero mean and unit variance. If ϕ represents the probability
density function of N∗ then

ϕ`(·) = `−1ϕ(·/`)
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is the density of `N∗. We denote by xτt the random process that represents the
position of a tagged walker at time t.

We now introduce an assumption on the scale separation parameters ` and τ . The
so-called diffusive scaling consists in assuming that the microscopic and macroscopic
distances (respect. times) satisfy xmicro = `−1xmacro (respect. tmicro = τ−1tmacro)
and that the former scale separation parameters are related through

` =
√

2Dτ1/2, (5)

where D is a given nonnegative number. Letting τ → 0, the stochastic process xτt
then asymptotically approaches the Brownian Motion xt with diffusion coefficient
D and drift v ([44]). Assuming that ϕ` is a normal pdf with zero mean and standard
deviation equal to ` does not restrict the generality of this picture.

Suppose now that stagnation periods of random durations are super-imposed
to the above random walk due to small-scale heterogeneities. A natural way of
accounting for such “sorption” events is that walkers are trapped at the end of each
displacement of tracer or fluid parcels. For instance one may imagine a stream
tube which winds tortuously through an array of persistent trapping eddies, or
adsorption/desorption phenomena. We further assume that the sojourn time in the
traps is itself a random variable t∗w. Its average may be finite or not. As explained
in the Introduction, we focus here on the second case. We thus assume that t∗w
obeys a power-law decaying pdf. More precisely, we assume:
(H1) (waiting times distribution) The pdf ψ of the retention times is concen-
trated on R+, with survival probability Ψ of type

Ψ(t) = Λt−γ/Γ(1− γ) +K(t), γ > 0.

Function K is integrable in R+ and such that Ψ is integrable in (0, 1). The real
number γ characterizes tails of the waiting time distribution: we assume

(H1
long) 0 < γ < 1 for long tails,

(H1
short) 1 < γ for short tails.

Prefactor Γ(γ − 1) is introduced for the sake of simplicity of computations while

Λ is a constant introduced for dimensional consistency. Assumption (H1
long) is

satisfied by pdf’s whose asymptotic behavior is a power-law. We might consider
maximally skewed Lévy laws with exponent γ [26, 17, 34], which are concentrated
on R+ precisely for 0 < γ < 1. The trivial degenerate case of constant waiting
times, γ = 1, corresponds to normal diffusion (see e.g. [38]).

Justification of Assumption (H1
long) is postponed to Annex A. We now only give

two fundamental remarks about this hypothesis.

Remark 1. Considering as in (H1
long) waiting times distributions with no char-

acteristic mean meets the ideas of [39] where subdiffusion was recovered through
the asymptotic study of a stochastic differential equation after assuming no-scale
separation and thus no possibility of a classical homogenization process (bear in
mind that any homogenization process may be considered as the tracking of a mean
behavior).

Remark 2. A main ingredient of our fractal MIMs derivation is the choice (H1
long)

of power-law retention times. In FFPEs derivation such a power-law also character-
izes residence times between diffusive jumps. Let us precise that the main difference
between FPE and MIM is the subordinator which replaces the deterministic time
by a random clock process. The equivalent Langevin description of both models is
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in terms of the subordinated process y(t) = x(S(t)) where the parent process x(·)
is defined as the solution of the Itô stochastic differential equation

dx(τ) = Λvvdτ + dB(τ),

driven by the standard Brownian motion B. In FFPE, S is the inverse stable
subordinator S(t) = inf{s ∈ R+; WL(s) > t}, WL being a stable Levy process. In
fractal MIM, S(t) = inf{s ∈ R+; Λvs+WL(s) > t}. Hence our assumptions should
lead to the FFPE derivation if Λv = 0. This point is rigorously confirmed in this
work.

Microscopic models where the power-law characterizes diffusive jumps (Levy
flights instead of Gaussian jumps) lead to limit models with a fractional space
derivative ([53] for instance) which seems more suitable for super-diffusive settings.

Let us now introduce a scale separation parameter τw for the trapping process
such that ttrapmicro = τ−1

w ttrapmacro. We choose to express it as a function of the time
scale separation parameter τ by setting

τw = τ1/γ1 , γ1 > 0. (6)

Note that the scaling relation 6 is constructed as the scaling relation 5. We have
the classical diffusive scaling “distance=(time)1/2” and a trapping scaling “trapping
time=(time)1/γ1”. In short, we have the following assumption.
(H′1) (scaling of the waiting times) We introduce the rescaled variable

tw = τ1/γ1t∗w, γ1 > 0.

The real number γ1 is a parameter introduced to account for possibly different
orders of magnitudes between sojourn times and observation time. This point is
more detailed in Section 4 below.

The survival probability associated with t∗w is∫ +∞

t

ψ(t′) dt′.

This quantity expresses the probability that the trapping time is longer than t. It
follows that the rescaled pdf of tw is

ψγ1
(t) = τ−1/γ1ψ(t/τ1/γ1),

while the rescaled survival probability is

Ψγ1(t) = Ψ(t/τ1/γ1) =

∫ +∞

t/τ1/γ1

ψ(t′) dt′.

Assumptions (H1,H
′
1) provide a sufficient description of the walkers immobi-

lization (immobile phase). For the time spent during displacements (mobile phase),
several sceneries may be conceived, depending on the time of occurrence of the
diffusive jump within a mobile period [t − τ, t]. Since we assume here stochastic
independence between waiting times and jumps, they are equivalent in the diffusive
limit [37, 54]. For the sake of simplicity, we thus assume that walkers perform a
single instantaneous diffusive jump at the end of each mobile period.

The present work aims at deriving an equation governing the limit behavior of
the pdf P τ (x, t, A) for a tagged particle to be at point x at time t, with the value

A for the path integral
∫ t

0
u(xτ (t′))dt′, as τ → 0. We assume:

(H2) (path integral integrand) The real function u is nonnegative and integrable,
and belongs to L∞(R+).
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We aim deriving the equation ruling the hydrodynamic limit P (x, t, A) of quan-
tity P τ (x, t, A). We will show below that the existence of P is related to the behavior
of the density distribution mτ (x, t, A) defined as the pdf of just ending a stagnation
period at time t and position x with value A. We assume:
(H3) (mobility) There exists a limit function lm ∈W 1,1((0, T )×R2) such that the
sequence of density distribution (mτ )τ>0 ⊂ D′((0, T )× R2) satisfies:

lim
τ→0

τ−1/2‖τmτ − lm‖L1(0,T ;X) = 0, X = L1(R, L1(R)).

We choose here to work within the framework of L1 functions instead of using
measures. This choice is essentially motivated by the use of density functions and
the corresponding simplicity of notations. Indeed our aim in the present paper is
to focus on the importance of scalings. Integral representations are interpretable
physically and clarify the structure of the limiting processes. The interested reader
will find the details of the proof in the context of measures in [10].

Remark 3. In the present paper, the hydrodynamic limit τ → 0 consists in study-
ing weak limit in X, and therefore testing against functions that live on the macro-
scopic scale. Part of the microscopic information is lost through this mechanism
and lead to the irreversibility of the macro-model, even in case of reversibility of
the micro-model.

2.2. Probability densities for the mobile and immobile phases at small
scale. Particles performing such random walks with sorption can be thought of
as belonging alternatively to two distinct “phases”: at each time step walkers are
said to be in the immobile or in the mobile phase according they are trapped or
not. Note that this succession of “Stop and Go” is in some sense comparable to the
sequence of “On and Off” of network traffic models ([25]). We proceed to derive
an explicit microscopic relation that links the particles densities in the two phases.
The hydrodynamic limit will be addressed in the next Section.

Let τ > 0 be given. Let P τi (x, t, A) represent the density of trapped particles

at location x and time t such that the path integral
∫ t

0
u(xτ (t′))dt′ has the value

A. Formally, quantity P τi (x, t, A)dxdA is the probability to find a tagged walker
between x and x + dx, with the path integral between A and A + dA. Similarly,
P τm(x, t, A) represents the density of mobile walkers. In order to establish a relation
between densities P τi and P τm, we introduce the pdf’s iτ (x, t, A) of just arriving and
being immobilized at point x and time t with the value A for the path integral, and
mτ (x, t, A) of just being released by a sorbing site (at point x, time t with the value
A). We recall that density mτ is characterized in assumption (H3).

Mobile particles at position x at time t have been trapped and then released at
time t−t′ and at a distance vt′ from x, for some t′ > 0. Moreover, particles attached

(at point x and time t) to the value A of the integral
∫ t

0
u(xτ (θ))dθ correspond at

time t− t′ (and at point x− vt′) to the value A−
∫ t′

0
u(x− vt′+ vθ)dθ. This implies

P τm(x, t, A)

=

∫ Λvτ

0

mτ (x− vt′, t− t′, A−
∫ t′

0

u(x− vt′ + vs)ds) dt′

=

∫ Λvτ

0

Tvt′,t′T A∫ t′
0
u(x+vs)ds

mτ (x, t, A) dt′,
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that is

P τm = ΛvP
τ,aux
m ,

P τ,auxm (x, t, A) =

∫ τ

0

TΛvvt′,Λvt′T A∫ Λvt′
0

u(x+vs)ds
mτ (x, t, A) dt′.

(7)

Convective displacements are represented through operator Tu,w which denotes
translation in space and time. We set

Tu,wG(x, t) = H(t− w)G(x− u, t− w),

H being the Heaviside step function. Translations of amplitude b in the direction
of A, are denoted by T Ab . Note that all the translations used in the present paper
trivially become Id if Λv = 0.

Immobile particles that are in x at time t must have jumped there previously at
time t − t′, for some t′ > 0, been trapped and stayed there up to t. During this
immobile period, the increase of path integral A is u(x)t′. Hence, denoting time
convolutions of functions in R+ by ∗, i.e.

F ∗G(t) =

∫ t

0

F (t− t′)G(t′) dt′,

we have

P τi (x, t, A) =

∫ t

0

Ψγ1(t′)iτ (x, t− t′, A− t′u(x)) dt′

= T Au(x)t

∫ t

0

Ψγ1
(t′)iτ (x, t− t′, A+ (t− t′)u(x)) dt′

= T Au(x)t[Ψγ1
∗ T A−u(x)·ti

τ (x, ·t, ·A)](x, t, A) (8)

where ·y designs a variable (y = t, x or A) involved in convolutions or translations.
Equations 7 and 8 were gained upon addressing separately what happens to

a tagged walker in the mobile and immobile phases. We now link these steps.
Particles just arriving at x at time t > Λvτ (where they will be immobilized) may
have been trapped and released or have been injected into the system by the source,
in each case at time t−Λvτ . During this latter mobile period, that began at point

x − y − Λvvτ , path integral A was increased of
∫ Λvτ

0
u(x − y − Λvvτ + vθ)dθ =

TΛvvτ,Λvτ

∫ Λvτ

0
u(x − y + vs)ds. Indeed, the diffusive jump was assumed to be

instantaneous and to occur at the end of the current period. Hence, quantity
iτ (x, t, A) reads, for t > Λvτ ,

iτ (x, t, A)

=

∫
R
mτ
(
x− y − Λvvτ, t− Λvτ,A−

∫ Λvτ

0

u(x− y − Λvvτ + vs)ds
)
ϕ`(y)dy

=
(
ϕ`(·x) ? TΛvvτ,ΛvτT A∫ Λvτ

0
u(·x+vs)ds

mτ
)
(x, t, A). (9)

We denote by ? the space convolution, that is

f ? g(x) =

∫
R
f(x− x′)g(x′) dx′.

Quantity iτ is thus fully described by the knowledge of mτ .
According to Eq. 7, the weighted density τ−1P τ,auxm (x, t, A) is the average of

the quantity TΛvvt′,Λvt′T A∫ Λvt′
0

u(x+vs)ds
mτ (x, t, A) over an interval of amplitude τ .

Thus it approximates TΛvvτ,ΛvτT A∫ Λvτ
0

u(x+vs)ds
mτ (x, t, A) when τ → 0, at least for
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smooth functions of time. This latter assumption is actually not necessary to ensure
that replacing TΛvvτ,ΛvτT A∫ Λvτ

0
u(x+vs)ds

mτ (x, t, A) by τ−1P τ,auxm (x, t, A) results into

a small error for P τi . This argument will be checked in the next subsection. We
thus define the error ετ corresponding to this approximation:

ετ (x, t, A)

= TΛvvτ,ΛvτT A∫ Λvτ
0

u(x+vs)ds
mτ (x, t, A)− P τ,auxm (x, t, A)

τ

=

∫ 1

0

(
TΛvvτ,ΛvτT A∫ Λvτ

0
u(x+vs)ds

− TΛvvθτ,ΛvθτT A∫ Λvθτ
0

u(x+vs)ds

)
mτ (x, t, A) dθ. (10)

From relations 8 and 9 that read

P τi (x, t, A)

= T Au(x)t[Ψγ1
∗ T A−u(x)·t(ϕ` ? TΛvvτ,ΛvτT A∫ Λvτ

0
u(·x+vs)ds

)mτ ](x, t, A), (11)

and from the decomposition 10 TΛvvτ,ΛvτT A∫ Λvτ
0

u(x+vs)ds
mτ = τ−1P τ,auxm + ετ , we

infer:

P τi (x, t, A) = RτP τ,auxm (x, t, A) + Eτ (x, t, A), (12)

where

Rτg(x, t, A) = τ−1T Au(x)tΨγ1
∗ T A−u(x)·t [ϕ` ? g](x, t, A), (13)

Eτ (x, t, A) = T Au(x)tΨγ1
∗ T A−u(x)·t [ϕ` ? ε

τ ](x, t, A) = Rτ [τετ ](x, t, A). (14)

In the next Section, we prove that the operator Rτ may asymptotically lead
to the introduction of a substantial derivative operator, quite similar to the one
already introduced (with a different formulation) by [18] and [9]. We also check
that Eτ tends to zero as τ → 0. To this aim, we provide in the next subsection
some auxiliary convergence results.

2.3. Some convergence results. We begin with an auxiliary result.

Lemma 2.1. Let g ∈ L1(0, T ;X). Let A[g] : (0, T ) → L1(0, T ;X) be the applica-
tion defined by

A[g](t′) = TΛvvt′,Λvt′T A∫ Λvt′
0

u(·x+vs)ds
[g], t′ ∈ (0, T ).

Then we have

lim
τ1→0

∥∥∥A[g](τ1)− τ−1
1

∫ τ1

0

A[g](t′) dt′
∥∥∥
L1(0,T ;X)

= 0.

If furthermore g ∈W 1,1((0, T )× R2),

lim
τ1→0

τ
−1/2
1

∥∥∥A[g](τ1)− τ−1
1

∫ τ1

0

A[g](t′) dt′
∥∥∥
L1(0,T ;X)

= 0.

Proof. By continuity of translation operator, with in particular

lim
(x1,t1,A1)→0

‖g(·x − x1, ·t − t1, ·A −A1)− g(·x, ·t, ·A)‖L1(0,T ;X) = 0,

and continuity of the integration operator, we check straightforward that application
A[g] is continuous in (0, T ). Its average is thus known to approximate it in (0, T ).



ANOMALOUS OR CLASSICAL CONVECTION-DIFFUSION MODELS 11

More precisely, if ‖ · ‖L1 = ‖ · ‖L1(0,T ;X),∥∥∥A[g](τ1)− τ−1
1

∫ τ1

0

A[g](t′) dt′
∥∥∥
L1

=
∥∥∥∫ 1

0

(
A[g](τ1)−A[g](θτ1)

)
dθ
∥∥∥
L1

≤
∥∥∥ max
θ∈(0,1)

∣∣A[g](τ1)−A[g](θτ1)
∣∣∥∥∥
L1

=
∥∥∥∣∣A[g](τ1)−A[g](θoτ1)

∣∣∥∥∥
L1

for some θo : R → (0, 1). Since A[g] : (0, T ) → L1(0, T ;X) is continuous, it
follows that the right-hand side of the latter expression tends to zero as τ1 → 0. If
furthermore g ∈W 1,1((0, T )× R2), we use a Taylor’s type formula to assert that

lim
τ1→0

τ
−1/2
1

∥∥∥A[g](τ1)−A[g](θoτ1)
∥∥∥
L1(0,T ;X)

= 0.

This ends the proof of the lemma.

We now study the limit behavior of the correction ετ defined in 10. We prove
the following result.

Lemma 2.2. The following result holds true:

τ1/2ετ → 0 in L1(0, T ;X).

Proof. Using application A defined in Lemma 2.1, we note that ετ = A[mτ ](τ) −
τ−1

∫ τ
0
A[mτ ](t′) dt′. Inserting the L1-limit lm of τmτ in the latter expression, we

have

τετ =
(
A[τmτ ](τ)−A[lm](τ)

)
+
(
A[lm](τ)− τ−1

∫ τ

0

A[lm](t′) dt′
)

+τ−1

∫ τ

0

(
A[lm]−A[τmτ ]

)
(t′) dt′.

It remains to prove that the three terms in the right-hand side of the latter relation
tend to zero in L1(0, T ;X) faster than τ1/2. Using the continuity of the translation
operator in L1, we compute:

τ−1/2
∥∥A[τmτ ](τ)−A[lm](τ)

∥∥
L1(0,T ;X)

= τ−1/2
∥∥TΛvvτ,ΛvτT A∫ Λvτ

0
u(·x+vs)ds

[τmτ − lm]
∥∥
L1(0,T ;X)

≤ τ−1/2
∥∥τmτ − lm

∥∥
L1(0,T ;X)

→ 0 as τ → 0.

Since function lm belongs to W 1,1((0, T )×R2) and does not depend on τ (see (H3)),
we assert with Lemma 2.1 that

τ−1/2
∥∥∥A[lm](τ)− τ−1

∫ τ

0

A[lm](t′) dt′
∥∥∥
L1(0,T ;X)

→ 0 as τ → 0.

Finally, we compute:

τ−1/2
∥∥∥τ−1

∫ τ

0

(
A[lm]−A[τmτ ]

)
(t′) dt′

∥∥∥
L1(0,T ;X)

= τ−1/2
∥∥∥τ−1

∫ τ

0

TΛvvt′,Λvt′T A∫ Λvt′
0

u(·x+vs)ds
[lm − τmτ ] dt′

∥∥∥
L1(0,T ;X)

≤ τ−3/2

∫ τ

0

‖lm − τmτ‖L1(0,T ;X) dt
′

= τ−1/2‖lm − τmτ‖L1(0,T ;X) → 0 as τ → 0.

Lemma 2.2 is proved.
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Now we claim and prove the following result.

Proposition 1. There exists some function Pm belonging to W 1,1((0, T )×R2) such
that the following convergence holds true as τ → 0:

τ−1/2
(
P τ,auxm − P auxm

)
→ 0 in L1(0, T ;X).

Proof. Due to 10,

P τ,auxm = TΛvvτ,ΛvτT A∫ τΛv
0

u(·x+vs)ds
[τmτ ]− τετ . (15)

The result of the present proposition thus follows from Assumption (H3) and
Lemma 2.2.

Remark 4. In view of 15 and of the previous results, Assumption (H3) on τmτ

(and not on mτ ) is the minimal one to get a non-trivial limit behavior for P τm, that
is Pm 6= 0 if Λv 6= 0.

3. Hydrodynamic limit: Governing equations versus scaling. The keypoint
in deriving the macroscopic equations governing the hydrodynamic limit of the small
scale processes described above is the limit of Eq. 12. It is the purpose of the next
two subsections. In the third one, we collect our results and give the appropriate
form of the Feynman-Kac equation for each scaling choice (thus recovering results
of Fig. 1).

3.1. Relation between mobile and immobile densities if γ < 1. We now show
that the mapping Rτ defined by Eq. 13 converges to a combination of translations
in the A-direction with a fractional integral with regard to time.

To highlight the dominant singular term in the time convolution of kernel τ−1Ψγ ,
for any g ∈ L1(0, T ;X) we decompose Rτg in

Rτg = Iτ1 g + Iτ2 g, (16)

where

Iτ1 g(x, t, A)

=
Λτγ/γ1−1

Γ(1− γ)

∫ t

0

(t′)−γ(ϕ` ? g)(x, t− t′, A− t′u(x))dt′, (17)

Iτ2 g(x, t, A)

= τ1/γ1−1

∫ t

0

τ−1/γ1K(
t′

τ1/γ1
)(ϕ` ? g)(x, t− t′, A− t′u(x))dt′, (18)

thanks to hypothesis (H1,H
′
1) that read:

τ−1Ψγ1
(t) = Λ

t−γ

Γ(1− γ)
τγ/γ1−1 + τ−1K(t/τ1/γ1).

Let us begin with some results about the limit behavior of operators Iτi , i = 1, 2.
The time convolution of kernel Λt−γ/Γ(1− γ) is precisely the fractional integral

ΛI1−γ
0,+ . Then Iτ1 satisfies

Iτ1 g(x, t, A) = τγ/γ1−1T Atu(x)Λ
[ ·−γt

Γ(1− γ)
∗ T A−u(x)·t [ϕ`(·x) ? g(·x)]

]
(x, t, A)

= τγ/γ1−1T Atu(x)ΛI
γ−1
0,+ T A−u(x)·t [ϕ` ? g](x, t, A) (19)
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for any g ∈ L1(0, T ;X). Convolution of kernel ϕ` tends to the identity operator Id
as `→ 0. Thus, for any g ∈ L1(0, T ;X), we have the strong convergence result〈

τ1−γ/γ1Iτ1 g, h
〉
D′×D →

〈
ΛT Atu(x)I

1−γ
0,+ T A−u(x)·tg, h

〉
in L1

x(R)

as τ → 0, for any ad hoc test function h defined in R2. Moreover, if (g`) is a
sequence of L1(0, T ;X) which is weakly convergent in L1(0, T ;X) to some limit g,
we recall that for any test function h∫

(0,T )×R

∫
R

(ϕ` ? g
`)h dxdtdA

=

∫
(0,T )×R

∫
R
g`(ϕ̃` ? h) dxdtdA→

∫
(0,T )×R

∫
R
gh dxdtdA

as `→ 0, where ϕ̃` = ϕ` ◦ (−Id) = ϕ` because of symmetry. We infer from the two
latter relations the following lemma.

Lemma 3.1. For any sequence (gτ ) of L1(0, T ;X) which is weakly convergent in
L1(0, T ;X) to some limit g, we have

τ1−γ/γ1Iτ1 g
τ (x, t, A) ⇀ ΛT Atu(x)I

1−γ
0,+ T A−u(x)·tg(x, t, A) weakly in L1(0, T ;X).

Remark 5. On the right-hand side of the latter convergence result, for any fixed
x ∈ R, we recognize a mapping whose double Laplace transform w.r.t. t and A
has symbol (λ+ pu(x))γ−1 when the range of A is restricted to R+ (see Appendix
B). Since [18] and [9] named “substantial fractional derivative” the mapping of

symbol (λ+pu(x))α, we propose to consider that T Atu(x)I
1−γ
0,+ T A−u(x)·t is a substantial

fractional integral of order 1− γ.

We now consider the operator Iτ2 defined as

Iτ2 g(x, t, A) = τ
1
γ1
−1T Atu(x)τ

− 1
γ1 K(

·t
τ1/γ1

) ∗ [T A−u(x)·t [ϕ` ? g]](x, t, A),

where τ−
1
γ1 K( t

τ1/γ1
) is the kernel of an approximation in time for Id. Hence the

limit behavior of Iτ2 g depends on the value of (1/γ1 − 1). More precisely, we have
the following result.

Lemma 3.2. For any sequence (gτ ) of functions in L1(0, T ;X) weakly convergent
to g in L1(0, T ;X), we have

τ1− 1
γ1 Iτ2 g

τ ⇀ g weakly in L1(0, T ;X).

Using the two previous lemmas with Proposition 1, we compute the limit behavior
of RτP τm. The limit behavior of the correction Eτ = Iτ1 [τετ ] + Iτ2 [τετ ] is obtained
using Lemmas 2.2, 3.1, and 3.2. We have proved the following result.

Proposition 2 (γ < 1).
(i) If γ1 = γ, the transport in the limit τ → 0 evolves to a non-Fickian one.
More precisely, the mapping Rτ of L1(0, T ;X) with X = L1(R, L1(R)) tends to the

substantial fractional integral operator ΛT A·tu(·x)I
1−γ
0,+ T A−u(·x)·t when τ → 0. Densities

of immobile and mobile walkers are related through

Pi(x, t, A) = ΛT Atu(x)I
1−γ
0,+ [T A−u(x)·tP

aux
m ](x, t, A), (20)
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while the total density of walkers P = Pm + Pi = ΛvP
aux
m + Pi satisfies

P auxm = HγΛ,Λv,uP, (21)

HγΛ,Λv,u = (ΛvId + ΛT A·tu(·x)I
1−γ
0,+ T A−·tu(·x))

−1. (22)

(ii) If γ1 < γ, that is if the observation time scale is larger than the largest hetero-
geneity scale, the transport becomes normal and there is no influence of the trapping
processes in the limit τ → 0:

ΛvP
aux
m = P. (23)

(iii) If γ < γ1, tracer is asymptotically immobile.
All these convergence results hold true in L1(0, T ;X) with a convergence rate of
order τ1/2.

We note that the rate of convergence τ1/2 in Assumption (H3) is useless to
prove items (i)-(iii). This rate assumption is only necessary in Subsection 3.3 for
the study of the physical fluxes.

Proof. Proof of points (i) and (ii) based on Lemmas 3.1 and 3.2 is straightforward.
We thus only detail point (iii). First we have

τ1−γ/γ1P τi = (τ1−γ/γ1Iτ1P
τ,aux
m ) + τ (1−γ)/γ1(τ1−1/γ1Iτ2P

τ,aux
m )

+(τ1−γ/γ1Iτ1 τε
τ ) + τ (1−γ)/γ1(τ1−1/γ1Iτ2 τε

τ ).

We infer from Lemmas 2.2, 3.1 and 3.2 that the right-hand side of the latter relation
tends to P auxm as τ → 0. Using 11, we write the left-hand side in the form

τ1−γ/γ1P τi = τ1−γ/γ1Rτ
[
τTΛvvτ,ΛvτT A∫ Λvτ

0
u(·x+vs)ds

mτ
]

= τ1−γ/γ1Iτ1
[
A[τmτ ](τ)

]
+ τ (1−γ)/γ1τ1−1/γ1Iτ2

[
A[τmτ ](τ)

]
that tends to lm in L1(0, T ;X). Finally, we have

P τ,auxm → P auxm = lm in L1(0, T ;X),

τ1−γ/γ1P τi → lm in L1(0, T ;X),

the second convergence result with 1 − γ/γ1 > 0 meaning that immobile particles
become asymptotically dominant.

Remark 6. Relation 20 for the density of immobile walkers is derived here from the
microscopic scale. In [55] Young derived a similar relation, with γ = 1/2, by working
directly at the mesoscopic scale on a particular flow geometry. He considered a pipe
containing a mobile tracer of concentration cm with many stagnant side branches
where the tracer is immobilized and of concentration ci. He computed ci solution
of a purely diffusive equation in the one-dimensional infinite branches with the
continuous boundary condition ci = cm at the pipe/branches transitions. Thanks

to the explicit integral representation of such a solution, he obtained ci ∼ I
1/2
0,+cm

(see (2.7) in [55]).

Remark 7. Notice that we also have proved that if γ1 < γ, transport becomes
normal, without the usual technical assumption of a truncated in time pdf ψ (see
for instance [13, 5]). This point deserves being detailed and explained, which is
done in Section 4.
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3.2. Relation between mobile and immobile densities if γ > 1. In the present
subsection we assume for instance that ψ is such that ψ(t) ∼+∞ t−γ−1, γ > 1, with
a finite mean. The survival probability Ψ is thus integrable in R+ and we can define
the mean pause by

Rγ =

∫ ∞
0

Ψ(t) dt.

Note that Rγ → 0 as γ →∞. We turn back to relation 12, that is

P τi = Rτ [P τ,auxm ] +Rτ [τετ ]

with Rτ [g](x, t, A) = τ−1+1/γ1T Au(x)tτ
−1/γ1Ψ(·t/τ1/γ1)∗T A−u(x)·t [ϕ`?g](x, t, A). Time

convolution of kernel τ−1/γ1Ψ(·/τ1/γ1) tends to RγId as τ → 0. The following result
follows.

Proposition 3 (γ > 1).
(i) If γ1 = 1, limit densities are related through the following relations involving the
retardation factor Rγ :

Pi = RγP
aux
m , P = (Λv +Rγ)Pm. (24)

(ii) If γ1 < 1, transport is normal and we recover once again 23.
(iii) If γ1 > 1, the tracer is asymptotically immobile.
All these convergence results hold true in L1(0, T ;X) with a convergence rate of
order τ1/2.

3.3. Study of the fluxes: A p.d.e. for the evolution of P . In the present
subsection, we do not assume that we can substitute directly the tracer concentra-
tion to the probability density and that the tracer concentration is smooth enough
to be Taylor expendable, as in [6]. We do not either choose to restrict ourself to the
asymptotic study of the moments. We prefer applying mass conservation principle
and getting an expression of the flux of walkers in the space {(x,A) ∈ R2}. This
physical argument leads to the generator of the process under interest.

For this purpose, we derive a variant of Fick’s law for the hydrodynamic limit of
our random walk model. Basically, we have to count the walkers that cross a point of
given coordinate x, or a given level A of the path integral, during any time interval
[t, t+dt]. Crossings may occur strictly inside the current mobile period or at the very
end. The first alternative involves convective motions due to the average velocity
field v, and the second alternative corresponds to diffusive jumps. The probability
current is a vector with two coordinates (x and A). The first one represents the
averaged balance of walkers crossing point x: it is equal to the probability for a
tagged walker to cross x to the right minus the probability to cross x to the left.
The second one is equal to the probability for the path integral carried by a tagged
walker to become larger than A minus the probability to become smaller than A.

Let us now translate the former intuitions into a mathematical formulation. Par-
ticles that cross x toward the right during the period are mobile and have spent a
time t′ ∈ (0,Λvτ) in the mobile phase, resulting into a convective displacement of
length vt′. Assume first that v is nonnegative. On the one hand, crossings through
point x occur due to convection before the end of the current mobile period with
probability

F τc =

∫ Λvτ

0

Tvt′,t′T A∫ t′
0
u(·x+vs)ds

mτ vdtdt′ = Λvv dt P
τ,aux
m . (25)
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On the other hand, at the end of a mobile period when t′ = Λvτ , a diffusive random
jump may allow the walker to cross x and this occurs with the probability:∫ ∞

0

TΛvvτ,ΛvτT A∫ Λvτ
0

u(x−y+vs)ds
mτ (x− y, t, A) Φ

( y√
2Dτ

)
dydt.

Indeed, we recall that we assume ` =
√

2Dτ . Function Φ defined by

Φ(z) =

∫ ∞
z

ϕ(s) ds

represents the probability for N∗ to take a value larger than z (see the notations in
the beginning of Subsection 2.1). Accounting for crossings to the right yields the
following global contribution of diffusive randoms jumps to the probability current:

F τD(x, t, A) =

∫ ∞
0

TΛvvτ,Λvτ

(
mτ (x− y, t, A−

∫ Λvτ

0

u(x− y + vt′)dt′)

−mτ (x+ y, t, A−
∫ Λvτ

0

u(x+ y + vt′)dt′
)

Φ
( y√

2Dτ

)
dy.

Thanks to 15, the latter expression is rewritten using P τm and ετ :

F τD =

∫ ∞
0

P τ,auxm (x− y, t, A)− P τ,auxm (x+ y, t, A)

τ
Φ
( y√

2Dτ

)
dy

+

∫ ∞
0

τετ (x− y, t, A)− τετ (x+ y, t, A)

τ
Φ
( y√

2Dτ

)
dy

= 2D

∫ ∞
0

P τ,auxm (x−
√

2DτY, t, A)− P τ,auxm (x+
√

2DτY, t, A)√
2DτY

Y Φ(Y ) dY

+

∫ ∞
0

τετ (x−
√

2DτY, t, A)− τετ (x+
√

2DτY, t, A)√
2DτY

Y Φ(Y ) dY. (26)

The right-hand side of 26 tends to D∂xP
aux
m in the hydrodynamic limit. In par-

ticular, we have ensured through Assumption (H3) that the rate of convergence of
P τ,auxm to P auxm and ετ to 0 is faster than O(τ1/2). Thus, for instance, P τ,auxm /

√
τ =

P auxm /
√
τ + (P τ,auxm − P auxm )/

√
τ behaves like P auxm /

√
τ . Hence, letting τ → 0 in

contributions 25 and 26, we get straightforward the x-component of the flux F of
walkers. It is given by the following advective Fick’s law applied to P auxm :

Fx = −D∂xP auxm + ΛvvP
aux
m .

Since u is nonnegative, immobile particles whose third coordinate becomes larger
than A during [t, t + dt] fill the cylinder of basis u(x)dt. Corresponding mobile

particles fill the cylinder of basis
∫ dt

0
u(x− vs)ds. Nevertheless, this latter integral

asymptotically behaves as u(x)dt as dt → 0. Finally, the A-component of the flux
is thus analogous to a convective term for all particles:

FA = uP.

Finally, we use mass conservation principle with fluxes Fx and FA to derive the
Feynman-Kac type equation governing the system in the hydrodynamic limit. We
obtain

∂tP + ∂x
(
−D∂xP auxm + ΛvvP

aux
m

)
+ ∂A(uP ) = r, (27)

function r being the source term. Combining the latter equation with the results
of Propositions 2 and 3, we state the following result.
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Theorem 3.3.
(i) Assume γ = γ1 < 1. Transport is anomalous (subdiffusive). Feynman-Kac
equation corresponding to the limit fractal MIM is 1, that is:

∂tP −D∂2
xxHγΛ,Λv,uP + Λv∂x

(
vHγΛ,Λv,uP

)
+ u∂AP = r.

(ii) Assume γ1 < γ and γ1 < 1. The trapping process asymptotically has no in-
fluence. We observe normal diffusion and we recover the classical Feynman-Kac
equation:

Λv∂tP −D∂2
xxP + Λvv∂xP + Λvu∂AP = Λvr.

(iii) Assume γ1 = 1 < γ. We observe normal diffusion with a retardation factor Rγ
(Rγ → 0 as γ →∞). Corresponding Feynman-Kac equation reads:

(1 +Rγ)∂tP −D∂2
xxP + Λvv∂xP + (1 +Rγ)∂A(uP ) = (1 +Rγ)r.

Note that the difference with item (ii) comes from the intensity of heterogeneity
leading to trapping process via parameter γ.
(iv) The other scalings choices lead to an asymptotically immobile tracer.

We emphasize in particular that a divergent distribution of waiting times does
not imply automatically a non-Fickian behavior in the hydrodynamic limit (see all
the results for γ < 1). Anomalous behavior lies on a precise relation between the
scale separation parameters.

Remark 8 (Fractal MIM versus FFPE). As already noted in Remark 2, the usual
microscopic context leading to FFPE corresponds to setting Λv = 0 in the definition
of our random walk. This is consistent with the asymptotic behaviors stated above.
Indeed, all our convergence results are proven for any Λv ≥ 0. In the particular case
Λv = 0, all the translation operators reduce to identity and point (i) of Theorem
3.3 reduces to:

∂tP −D∂2
xx(ΛT A·tu(·x)I

1−γ
0,+ T A−·tu(·x))

−1P + u∂AP = r,

that is

∂tP (x, t, A)−D∂2
xx(Λ−1T Atu(x)D

1−γ
0,+ T A−·tu(x))P (x, t, A)

+u(x)∂AP (x, t, A) = r(x, t, A).

Operator D1−γ
0,+ is the Riemann-Liouville derivative of order 1 − γ, that is a left

inverse of the fractional integral I1−γ
0,+ . This latter equation is Eq. (11) of [9]. Hence

FFPE appears as a special case of our derivation.
Furthermore, we prove in subsection 5 that letting Λv → 0 in 1 let us recover in

some sense the FFPE formulation 4.

4. Scaling arguments, occurence of anomalous versus normal transport.
The present section is devoted to a physical interpretation of the scaling parameters
involved in the present work. We aim to consider the most complete case where
convection, diffusion and trapping occur. For the sake of clarity, we thus set Λv = 1.

An obvious scaling in our microscopic setting is linked with the time step τ .
By assuming τ → 0, we suppose that the observation time (or “clock time”) is
much larger than other temporal scales present in the system. We also assume that
v is a mesoscopic velocity and that the characteristic local Péclet number Pe of
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the random walk model, defined as the rate between characteristic diffusive time
TD = `2/D to the characteristic convective time Tc = τ , satisfies

Pe =
TD
Tc

=
`2

τD
= O(1).

In the next subsections we precise the importance of the other scale parameters,
that is of γ, γ1 and Λ introduced in Assumptions (H1,H

′
1) on waiting times. We

restrict this analysis to the non-classical context with stable law of exponent γ < 1

as in assumption (Hlong
1 ).

4.1. Parameters γ and γ1, observation time and heterogeneity scale. As-
sume a power law decrease as t−γ−1 for the pdf ψ of n independent random vari-
ables W1, ..., Wn distributed as t∗w and representing successive stagnation times for
a tagged particle. Stable laws (here of exponent γ) play a central role within this
context and cannot be regarded as being a simple particular case. Indeed they are
attractors. Moreover, focusing on stable laws allows us to give sense to parame-
ters γ and γ1 through essentially observation time and heterogeneity scale (itself
described by γ).

To this aim, let us compare the “clock time” with the “operational time”. The
operational time is a process S(t) defined as the time spent by the walker in the
mobile phase before clock time t. It is easier and more natural to compute the
statistics of its inverse process T (s), expressing the observable clock time with regard
to operational time. We can think of T (·) as an unscaled, order one quantity. A
tagged walker performing the above random walk ends the step of rank n (i.e. after
n units of microscopic time) at macroscopic time t

t = T (nτ) = nτ + τ1/γ1(W1 + ...+Wn). (28)

The stable Levy process Wt with the stability index γ being self-similar, we have

Wj
d
= j1/γW1. The latter random variable is thus distributed as

T (nτ) = nτ + τ1/γ1n1/γW1 (29)

if Wi is a stable variable of exponent γ [17]. Here γ represents the heterogeneity of
the stagnation process. Term nτ is the time spent moving until observation time t.
Only t can be measured whereas time nτ ranges between t itself and 0, according
to the value of γ1/γ. Of course, since clock time t = T (nτ) is of order one, n→∞
as τ → 0. The rate of convergence of n to infinity is crucial.

Let us be more precise. Let T be the macroscopic reference time. For sake of
clarity, we begin with the classical diffusive random walk without trapping effects,
that is when t = T (nτ) = nτ . In this case, it is well-known that the central limit
theorem applies when choosing

n = nD =
[T
τ

]
where [·] denotes the integer part, leading to a diffusive limit as τ → 0. This latter
choice for n is the classical diffusive scaling. Note that we use a renormalization by
τ−1 and not by n, therefore the limit depends on T (but of course not on τ). In
the present paper, we consider the latter diffusive process coupled with a trapping
process. We thus may choose either a diffusive scaling nD or a trapping scaling
ntrap. As emphasized by 29, nD and ntrap are respectively such that nDτ = O(1)

and n
1/γ
trapτ

1/γ1 = O(1). Since T = O(1), the previous choices induce of course some
conditions on the scale separation parameters, and especially on the trapping scale
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parameter γ1 with regard to the trapping intensity parameter γ. More precisely, we
have

purely diffusive scaling : n = nD =
[T
τ

]
and γ1 < γ ;

purely trapping scaling : n = ntrap =
[ T γ

τγ/γ1

]
and γ1 > γ ;

no scale separation between
trapping and diffusion : n = nD = ntrap and γ1 = γ.

(30)

More intuitively, on the (microscopic) scale of walkers, γ1 helps us comparing the
time spent in the immobile phase with the time spent moving for each individual
step of the random walk. For any given sampling of the Wis, the fraction of ob-
servation time t = T (nτ) = nτ + (nτ)1/γτ1/γ1−1/γW1 spent in the immobile phase
becomes negligible when τ → 0 if we assume γ1 < γ, because nτ < T (nτ) = t and
τ1/γ1−1/γ → 0. In this case, the influence of the heterogeneity disappears at the
limit (see Theorem 3.3 (ii)). Assuming oppositely γ1 > γ implies that the “mo-
bile time” has to tend to zero in the hydrodynamic limit in order to keep quantity
(nτ)1/γτ1/γ1−1/γ finite. Hence stagnation dominates in this case, and there is no
transport at all on the macroscopic scale (see Theorem 3.3 (iv)).

In short we calibrate the operational time with regard to the heterogeneity degree
of the stagnation process given by γ thanks to parameter γ1.

4.2. Return to a Fickian behavior. In the present subsection, we show that
the anomalous behavior is a temporary phenomenon. More precisely we check that
the long time behavior is always Fickian, even if we use parameters ψ, γ and γ1

leading to anomalous diffusion as in the former section. Our aim is not to study
the asymptotic behavior of the anomalous pde model 1 (as in [30]). We rather are
going to study our random walk model for larger observation times.

Our arguments are based once again on the comparison of clock time and op-
erational time processes and on an appropriate large time scaling. We recall that
the time scale separation parameters τ and τw of the present problem have been
defined in section 2 by tmicro = τ−1tmacro and ttrapmicro = (τw(τ))−1ttrapmacro, function

τw being defined by τw(τ) = τ1/γ1 . We now assume

γ = γ1.

Indeed we have proved in the former sections that assuming γ = γ1 and the diffusive
scaling n = [T/τ ] leads to an anomalous behavior at times of order T = O(1), T
corresponding to the clock time defined in 29 by

T (nτ) = nτ + n1/γτwW1 = nτ + (nτ)1/γW1.

Now, imagine that we track the behavior of this random walk process with trap-
ping after T , more precisely until time T1 � T . In view of going back to time scales
of order 1, we rescale the time variable by setting

T1 = TRT.

We thus have to rescale the time scale separation parameters. We first set

τ1 = τ/TR

(intuitively this means that we use shorter time steps to mimic a long time study
even if the final time T is of order 1). This corresponds to the scaling tmicro =
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τ−1t1,macro = τ−1TRtmacro. Function τw characterizing the trapping time scale
separation is scaled similarly by 1/TR. We get

τ1,w =
τw(τ1)

TR
=
( τ

TR

)1/γ 1

TR
.

Corresponding rescaled clock time reads

T = n
τ

TR
+
(
n
τ

TR

)1/γ 1

TR
W1. (31)

Classical diffusive scaling consists in assuming n = [TTR/τ ].
Choosing TR = O(1) we recover of course at the limit the non-Fickian model 1.

In view of tracking the behavior of this random walk model until T1 � T we let
TR → ∞. In 31 the trapping part (nτ/TR)1/γT−1

R W1 of the clock time becomes
obviously negligible as TR →∞. We thus observe a return to the Fickian behavior,
i.e. a classical advection-diffusion equation. Following the lines of Section 3 gives a
rigorous derivation of this result.

4.3. Parameter Λ, intensity of the trapping process. Weak coupling limit.
In the present subsection we focus on the rule of parameter Λ. We illustrate that
this parameter does not influence the nature of the transport but the intensity of
the anomalous behavior.

After the mobile period of rank n, the walker is immobilized during time τ1/γ1Wn

where the random variable Wn belongs to the attraction domain of a maximally
skewed Levy law of exponent γ. More precisely, the pdf of Wn is defined in As-

sumption (Hlong
1 ) which involves a parameter Λ ≥ 0.

To highlight the rule of Λ, we choose two “toy” models for the trapping process.

1. Reactive barriers. Particles are retained by adsorption phenomena. If we
increase sufficiently the observation time, the reactions become instantaneous
and the trapping process is no more detectable.

2. Presence of residence branches. Assume trapping is due to presence of side
branches as in the example developed in Annex A. Once again, if we increase
sufficiently the observation time and keep the same order of time displacement
in the branches, trapping becomes negligible.

The mechanism described in the two latter examples consists basically in assum-
ing Λ = Λ(τ), Λ(τ) → 0 as τ → 0, and studying the weak coupling limit of the
process 2.2 as τ → 0. We then recover a classical advection-diffusion model. Such
weak coupling limit is comparable to what is done for Hamiltonian systems with a
random Hamiltonian to preserve Markovity (see for instance [40, 16]).

Note finally that we may also include in Λ a trapping probability by replacing Λ
by some space function of type Λh(x) (see [37]).

5. Mathematical analysis of equation 1. Convergence of the fractal MIM
formulation to the FFPE formulation. The present section is devoted to the
mathematical analysis of the fractional pde 1, that is

∂tP −D∂2
xxHγΛ,Λv,uP + Λv∂x

(
vHγΛ,Λv,uP

)
+ u∂AP = r, (32)

HγΛ,Λv,u =
(
ΛvId + ΛT A·tu(·x)I

1−γ
0,+ T A−·tu(·x)

)−1
, γ < 1. (33)

We recall that this is the Feynman-Kac equation associated to the MIM derivation
(see Theorem 3.3). Nevertheless, this equation is strongly connected with the one
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associated with the FPE approach:

∂tP
∗(x, t, A)−D∂2

xx(Λ−1T Atu(x)D
1−γ
0,+ T A−·tu(x))P

∗(x, t, A)

+u(x)∂AP
∗(x, t, A) = r(x, t, A). (34)

We have already mentioned in Remark 8 that the FFPE above corresponds to the
limiting process of our random walk if Λv = 0. Here we also prove that solutions of
32-33 converge to a solution of 34 as Λv → 0.

Let (0, T ), T > 0, be the time interval of interest. Our first aim is the study
of 32-33 for t ∈ (0, T ), x ∈ (0,∞), A ∈ (0,∞). For the mathematical analysis, we
complete the equations with the following initial and boundary conditions:

P|t=0 = P 0, P|x=0 = 0, P|A=0 = 0, (35)

with the compatibility conditions P 0
|x=0 = 0 and P 0

|A=0 = 0. We focus on the

parabolic in space setting by assuming a positive diffusion coefficient D > 0. We
state the following result of existence.

Theorem 5.1. Assume P 0 ∈ H2(R2
+). Assume r ∈ L2((0, T )× R2

+). There exists
a unique weak solution P to the problem 32-33, 35. Specifically, we have

P ∈ L∞(0, T ;L2(R2
+)), ∂xP ∈ L2((0, T )× R2

+).

We set

gγ(t) =
t−γ

Γ(1− γ)
, t > 0.

Since γ < 1, gγ ∈ L1(0, T ). We recall that I1−γ
0,+ is defined by

I1−γ
0,+ [g] = gγ ∗ g.

For the proof of Theorem 5.1, we recall the following results (see [27, 20]).

Lemma 5.2. Let X be a Hilbert space (with scalar product denoted by 〈·, ·〉). Let
v ∈ C([0, T ];X ) such that ∂tv ∈ W (γ−1)/2,2(0, T ;X ). The following relations hold
true:

(i)

∫ T

0

〈(gγ ∗ ∂tv)(t), v(t)〉 dt ≥ 1

2

∫ T

0

gγ(t)
(
‖v(T − t)‖2X + ‖v(t)‖2X

)
dt

−
∫ T

0

gγ(t) 〈v(0), v(t)〉 dt ;

(ii)

∫ T

0

〈∂t(gγ ∗ v)(t), v(t)〉 dt ≥ 1

2

∫ T

0

gγ(t)
(
‖v(T − t)‖2X + ‖v(t)‖2X

)
dt.

There exists c > 0 and ḡ ∈ L1(R+), ḡ(t) = t−1+(1−γ)/2e−t, such that

(iii)

∫ T

0

〈(gγ ∗ v)(t), v(t)〉 dt ≥
∫ T

0

‖ḡ ∗ v‖2X dt ;

(iv)

∫ T

0

〈∂t(gγ ∗ v)(t), ∂tv(t)〉 dt ≥
∫ T

0

〈(gγ ∗ ∂tv)(t), ∂tv(t)〉 dt

+

∫ T

0

〈gγ(t)v(0), ∂tv(t)〉 dt ≥
∫ T

0

‖ḡ ∗ ∂tv‖2X dt+

∫ T

0

〈gγ(t)v(0), ∂tv(t)〉 dt ;
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(v)

∫ T

0

〈(gγ ∗ ∂tv)(t), ∂tv(t)〉 dt =
1

2

∫ T

0

∫ t

0

‖v(t− s)− v(t)‖2X g′γ(s) dsdt

−
∫ T

0

g′γ(s)
(
‖v(s)− v(0)‖2X + ‖v(T − s)− v(T )‖2X

)
ds

+gγ(T )‖v(T )− v(0)‖2X .
Proof. (of Theorem 5.1) Inspired by the derivation of the model, we define P auxm

by

P auxm = HγΛ,Λv,uP.
Instead of studying directly 32-33, we consider the following equivalent equation:

Λv∂tP
aux
m + Λ∂t

[
T Au(x)tI

1−γ
0,+ T A−u(x)·t

]
P auxm + Λvv∂xP

aux
m −D∂2

xxP
aux
m

+Λvu∂AP
aux
m + Λu∂A

[
T Au(x)tI

1−γ
0,+ T A−u(x)·t

]
P auxm = r. (36)

This equation seems more cumbersome than the original one but it is actually more
adapted to the exploitation of known mathematical results. We note that, at least
formally,

∂t
[
T Au(x)tg(t, A)

]
= ∂tg(t, A− tu(x))− u(x)∂Ag(t, A− tu(x))

= T Au(x)t∂tg(t, A)− u(x)T Au(x)t∂Ag(t, A).

Equation 36 thus reduces to

Λv∂tP
aux
m + Λ∂t

[
I1−γ
0,+ T A−u(x)·t

]
P auxm (t, x,A− tu(x))

+Λvv∂xP
aux
m −D∂2

xxP
aux
m = r. (37)

It is completed with the following boundary and initial conditions issued from 35:

P auxm |t=0 = P 0
m = Λ−1

v P 0, P auxm |x=0 = 0, P auxm |A=0 = 0. (38)

We recognize in 37 the structure of an integro-differential Volterra equation. For
basic facts on this type of equations, we refer to the monograph [20]. Mathemat-
ical difficulty is here inferred by the singularity of the kernel gγ . Using the time

derivative of order γ, ∂γt · = d
dt (gγ ∗ ·), equation 37 also reads

Λv∂tP
aux
m (t, x,A) + Λ∂γt

(
T A−u(x)·t(P

aux
m − P 0

m)
)
(t, x,A− tu(x))

+Λvv∂xP
aux
m (t, x,A)−D∂2

xxP
aux
m (t, x,A) = r(t, x,A)− Λ∂γt P

0
m. (39)

During the last decade, mathematical literature about evolutionary pdes involving
fractional derivatives ∂γt has considerably developed. We mention in particular
[11] which develops global existence results of BUC solutions (even in quasilinear
settings) through maximal regularity arguments for parabolic equations in the form

∂γt u+Au = f(u) + h(t), u|t=0 = u0.

We also mention references [14, 46].
Occurrence of the (linear) translation operator T A−u(x)·t in 37 may be viewed as

a slight perturbation of the general picture of [11]. Derivation of a priori estimates
for the solutions of 37-38 is thus sufficient to ensure the existence of weak solutions.
Nevertheless, we have to introduce a parabolic (in A) perturbation of 37 by:

Λv∂tP
ε
m + Λ∂t

[
I1−γ
0,+ T A−uε(x)·t

]
P εm(t, x,A− tuε(x))

+Λvv∂xP
ε
m −D∂2

xxP
ε
m − ε(u′ε(x))2∂2

AAP
ε
m = r, (40)
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where ε > 0 and uε is a derivable function such that u′ε ∈ L∞(R+) and uε(x)→ u(x)
a.e. in R+ as ε→ 0. The latter equation also reads

Λv∂tP
ε
m(t, x,A) + Λ∂γt

(
T A−uε(x)·t(P

ε
m − P 0

m)
)
(t, x,A− tuε(x))

+Λvv∂xP
ε
m(t, x,A)−D∂2

xxP
ε
m(t, x,A)− ε(u′ε(x))2∂2

AAP
ε
m

= r(t, x,A)− Λ∂γt P
0
m. (41)

For the first set of estimates, we note that
[
T A−uε(x)·tP

ε
m

]
(t, x,A − tuε(x)) =

P εm(t, x,A). Thus, multiplying 40 by P εm and integrating by parts in (0, T ) × R2
+,

we get for any To ≤ T :

Λv
2

∫ To

0

d

dt
‖P εm‖2L2(R2

+) dt

+
Λ

2

∫ To

0

gγ(t)
(
‖T A−u(·x)·tP

ε
m(To − t)‖2L2(R2

+) + ‖T A−u(·x)·tP
ε
m‖2L2(R2

+)

)
dt

+D

∫ To

0

‖∂xP εm‖2L2(R2
+) dt+ ε

∫ To

0

‖
√
u′ε∂AP

ε
m‖2L2(R2

+) dt

+
Λv
2

∫ To

0

∫
R2

+

v∂x((P εm)2) dtdxdA+
Λv
2

∫ To

0

∫
R2

+

uε∂A((P εm)2) dtdxdA

≤
∫

(0,To)×R2
+

rP εm dtdxdA.

We compute

Λv
2

∫
(0,To)×R2

+

v∂x((P εm)2) dtdxdA = −Λvv

2

∫
(0,To)×R+

|P εm|x=0|2 dtdA = 0,

and

Λv
2

∫
(0,To)×R2

+

uε∂A((P εm)2) dtdxdA = −Λv
2

∫
(0,To)×R+

uε|P εm|A=0|2 dtdA = 0.

The three later relations give

Λv
2
‖P εm(To, ·, ·)‖2L2(R2

+)

+
Λ

2

∫ To

0

gγ(t)
(
‖P εm(To − t)‖2L2(R2

+) + ‖P εm(t)‖2L2(R2
+)

)
dt

+ D

∫ To

0

‖∂xP εm‖2L2(R2
+) dt+ ε

∫ To

0

‖
√
u′ε∂AP

ε
m‖2L2(R2

+) dt

≤ C
(
‖r‖L2 , ‖ΛvP 0

m‖L2

)
= C,

where C is a generic constant, not depending on ε neither on Λv. We infer from
the latter relation the following estimates:

‖√ΛvP
ε
m‖L∞(0,T ;L2(R2

+)) ≤ C,
‖∂xP εm‖L2(0,T ;L2(R2

+)) ≤ C,
‖g1/2
γ P εm‖L2(0,T ;L2(R2

+)) ≤ C.
(42)

Note that these estimates remain true if ε = 0.
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For the second set of estimates, we aim using the following point (see Lemma
5.2): ∫ T

0

〈∂t(gγ ∗ v), ∂tv〉 dt

≥
∫ T

0

‖ḡ ∗ ∂tv‖L2(R2
+) dt+

∫ T

0

〈gγv|t=0, ∂tv〉 dt,

which implies ∫ T

0

〈∂t(gγ ∗ v)(t, x,A− tu(x)), ∂tv(t, x,A− tu(x))〉 dt

≥
∫ T

0

‖ḡ ∗ ∂tv(t, x,A− tu(x))‖L2(R2
+) dt

+

∫ T

0

〈gγ(t)v(0, x, A), ∂tv(t, x,A− tu(x))〉 dt.

We are going to apply the latter relation to v(t, x,A) =
(
T A−uε(x)·tP

ε
m

)
(t, x,A) =

P εm(t, x,A + uε(x)t). Its time derivative is such that ∂tv(t, x,A) = ∂tP
ε
m(t, x,A +

uε(x)t) + uε(x)∂AP
ε
m(t, x,A + uε(x)t) and ∂tv(t, x,A − uε(x)t) = ∂tP

ε
m(t, x,A) +

uε(x)∂AP
ε
m(t, x,A). We thus multiply equation 41 by

∂tP
ε
m(t, x,A)− ∂t(P 0

m(x,A− uε(x)t))

+uε(x)∂AP
ε
m(t, x,A)− uε(x)∂A(P 0

m(x,A− uε(x)t)).

We get, for any To ≤ T ,

Λv

∫
(0,To)×R2

+

(
|∂tP εm|2 + 2uε∂tP

ε
m∂AP

ε
m + |uε∂AP εm|2

)
−
∫

(0,To)×R2
+

(
∂tP

ε
m + uε∂AP

ε
m

) (
∂t(P

0
m(x,A− uε(x)t)) + uε∂AP

0
m

)
+

∫
(0,To)×R2

+

|ḡ ∗
(
∂tP

ε
m + uε∂AP

ε
m − ∂t(P 0

m(x,A− uε(x)t))− uε∂AP 0
m

)
|2

+D

∫
(0,To)×R2

+

∂xP
ε
m∂

2
txP

ε
m +D

∫
(0,To)×R2

+

uε∂xP
ε
m∂

2
AxP

ε
m

+D

∫
(0,To)×R2

+

u′ε∂xP
ε
m∂AP

ε
m

−D
∫

(0,To)×R2
+

∂xP
ε
m

(
∂2
tx(P 0

m(x,A− uε(x)t)) + uε∂
2
xAP

0
m + u′ε∂AP

0
m

)
+ε

∫
(0,To)×R2

+

(u′ε)
2∂AP

ε
m∂

2
tAP

ε
m + ε

∫
(0,To)×R2

+

uε(u
′
ε)

2∂AP
ε
m∂

2
AAP

ε
m

−ε
∫

(0,To)×R2
+

(u′ε)
2∂AP

ε
m∂A

(
∂t(P

0
m(x,A− uε(x)t)) + uε∂AP

0
m

)
+Λv

∫
(0,To)×R2

+

v∂xP
ε
m

(
∂tP

ε
m + u∂AP

ε
m − ∂t(P 0

m(x,A− uε(x)t))− uε∂AP 0
m

)
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≤
∫

(0,To)×R2
+

(r − Λ∂γt P
0
m)
(
∂tP

ε
m + u∂AP

ε
m

−∂t(P 0
m(x,A− uε(x)t))− uε∂AP 0

m

)
. (43)

The first term reads Λv
∫

(0,To)×R2
+

∣∣∂tP εm + uε∂AP
ε
m|2. We also write

D

∫
(0,To)×R2

+

∂xP
ε
m∂

2
txP

ε
m =

D

2

∫ To

0

d

dt

∫
R2

+

|∂xP εm|2

=
D

2

∫
R2

+

|∂xP εm(To, ·, ·)|2 −
D

2

∫
R2

+

|∂xP 0
m|2 ;

D

∫
(0,To)×R2

+

∂xP
ε
m∂

2
AxP

ε
m =

D

2

∫ ∞
0

d

dA

∫
(0,To)×R+

|√uε∂xP εm|2 = 0 ;

ε

∫
(0,To)×R2

+

(u′ε)
2∂AP

ε
m∂

2
tAP

ε
m =

ε

2

∫ To

0

d

dt

∫
R2

+

|u′ε∂AP εm|2

=
ε

2

∫
R2

+

|u′ε∂AP εm(To, ·, ·)|2 −
ε

2

∫
R2

+

|u′ε∂AP 0
m|2 ;

ε

∫
(0,To)×R2

+

uε(u
′
ε)

2∂AP
ε
m∂

2
AAP

ε
m

=
ε

2

∫ ∞
0

d

dA

∫
(0,To)×R+

|√uεu′ε∂AP εm|2 = 0.

We estimate the other terms in 43 using 42 and the Cauchy-Schwarz and Young in-
equalities. We conclude with the Gronwall lemma that the following set of estimates
hold true: 

‖√Λv(∂tP
ε
m + uε∂AP

ε
m‖L2(0,T ;L2(R2

+)) ≤ Cε,
‖∂xP εm‖L∞(0,T ;L2(R2

+)) ≤ Cε,
‖ε1/2∂AP

ε
m‖L∞(R+;L2((0,T )×R+)) ≤ Cε,

(44)

where Cε is a generic constant depending on ε. We conclude that there exists
a unique (thanks to the linearity) weak solution P εm of 40, 38. Its regularity is
described by the functional spaces appearing in 42 and 44.

Then, bearing in mind that 42 does not depend on ε and letting ε→ 0, we prove
that the whole sequence (P εm) weakly converges in the space L∞(0, T ;L2(R2

+)) ∩
L2(0, T ;H1(R+;L2(R+))) to the unique solution P auxm of the linear problem 37-38.
Using the equivalence between 37-38 and 32-33, 35, we get the result announced in
the theorem.

We note that the solution P of 32-33, 35, which is characterized by

P = ΛvP
aux
m + ΛT Au(·x)·tI

1−γ
0,+ T A−u(·x)·tP

aux
m

with P auxm satisfying estimates 42, is such that
‖√ΛvP‖L∞(0,T ;L2(R2

+)) ≤ C,
‖∂xP‖L2(0,T ;L2(R2

+)) ≤ C,
‖g1/2
γ P‖L2(0,T ;L2(R2

+)) ≤ C.
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In particular, the third estimate with the fact that we work on a finite time interval
implies that

‖P‖L2(0,T ;L2(R2
+)) = ‖g−1/2

γ

(
g1/2
γ P

)
‖L2(0,T ;L2(R2

+)) ≤ CT γ/2 ≤ C.
Then, if we associate to any Λv > 0 the solution PΛv of 32-33, 35, we construct a
sequence (PΛv ) bounded in L2((0, T ) × R2

+) (with moreover (∂xP
Λv ) bounded in

L2((0, T )× R2
+)). There exists a subsequence, still denoted (PΛv ) for convenience,

and a function P ∗ ∈ L2((0, T )× R2
+) such that

PΛv ⇀ P ∗ weakly in L2((0, T )× R2
+),

∂xP
Λv ⇀ ∂xP

∗ weakly in L2((0, T )× R2
+).

One may use the auxiliary sequence (P aux,Λvm ) to check easily that P ∗ is the unique
solution of the linear FFPE problem 34-35. Thus the whole sequence (PΛv ) con-
verges to P ∗. We have proven the following result.

Theorem 5.3. For any Λv > 0, let PΛv be the solution of the fMIM problem 32-
33, 35. As Λv → 0, the sequence (PΛv ) weakly converges in L2((0, T ) × R2

+) ∩
L2(0, T ;H1

x(R+;L2
A(R+))) to the solution P ∗ of the FFPE problem 34-35.

6. Observable behavior. In fluid mechanics, many experiments consist in mea-
suring the mean value of path integrals functionals for small scale motions of par-
ticles. For instance, Nuclear Magnetic Resonance (NMR) velocimetry measures

magnetization signals of the form < ei
∫ t
0
g(t′)x(t′)dt′ >, where x(t) represents the

projection of water molecules trajectories along the magnetic field gradient direc-
tion. Other examples are occupation times that play an important role in many
domains of physics, and the age of water in geophysics. The corresponding path

integrals have the form A =
∫ t

0
u(x(t′))dt′, which also represents the displacement

of a tagged fluid particle due to an average flow field u(·)−→ey coupled to diffusive
motion in the transverse direction.

In the critical case of anomalous diffusion corresponding to equation 1, we aim to
characterize the behavior of the “observable” quantity Ou corresponding to a path
integral of integrand u:

Ou =
〈
e−

∫ t
0
u(x(t′))dt′

〉
.

Expressing this quantity with regard to the density P , we recognize a A-Laplace
transform evaluated in p = 1:

Ou(x, t) =

∫
R+

e−AP (x, t, A) dA = P̃A(x, t, p = 1) := P̃ (x, t).

Proposition 4. Quantity P̃ is governed by the following p.d.e. a.e. in R× (0, T ):

∂tP̃ −
(
D∂2

xx − Λvv∂x
)(

(ΛvId + ΛJ1−γ)−1P̃
)

+uP̃ = uP|A=0 + r̃, (45)

where the memory operator J1−γ is defined by

J1−γP̃ (x, t) =
{( (·t)−γ

Γ(1− γ)
e−u(x)·t

)
∗ P̃ (x, ·t)

}
(x, t),

and P|A=0 is a boundary condition for equation 1.

Remark 9. Note that J1−γ is a short memory operator provided u(x) > 0 a.e.
x ∈ R.
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Proof. Applying the A-Laplace transform computed in p = 1 to equation 1, we get

∂tP̃ (x, t) =
(
D∂2

xx − Λvv∂x
)(

(ΛvId + ΛJ1−γ)−1P̃ (x, t)
)

−u(x)P̃ (x, t) + u(x)P (x, t, A = 0) + r̃A(x, t, p = 1), (46)

where operator (ΛvId + J1−γ)−1 is the A-Laplace transform computed in p = 1 of

HγΛ,Λv,u = (ΛvId + ΛT A·tu(·x)I
1−γ
0,+ T A−·tu(·x))

−1. As already mentioned in Remark 5,

the double Laplace symbol with respect to t and A (with Laplace variables λ and p)

of operator T A·tu(·x)I
1−γ
0,+ T A−u(·x)·t is (λ+ pu(x))γ−1 for any fixed x. Choosing p = 1,

we conclude that the t-Laplace symbol of J1−γ is (λ + u(x))γ−1. We recognize a
translation of the t-Laplace transform of a power-law operator. Applying the inverse
t-Laplace transform, we conclude that

J1−γP̃ (x, t) =
{( (·t)−γ

Γ(1− γ)
e−u(x)·t

)
∗ P̃ (x, ·t)

}
(x, t).

Appendix A. Some remarks about the power-law distribution of waiting

times. Assumption (Hlong
1 ) giving a power-law distribution of waiting times could

appear rather empirical. Yet our aim in the present annex is to emphasize that

(Hlong
1 ) has a physical or chemical nature, parameter γ reflecting the heterogeneity

of the medium.
For a first explicit example, let us show that assumption (Hlong

1 ) which is the
basis of the anomalous behavior observed in 1 may be justified by combining at the
micro-scale a very classical behavior (namely here isotropic diffusion) with a simple
geometrical heterogeneity.

Assume that semi-infinite dr-dimensional recirculation branches cross the main
propagation direction ~ex of the random walkers described in Section 2. Stagnation
periods of the random walk thus occur when a particle enters a recirculation branch.
This trapping occurs until the particle goes back (for the first time) to the main
propagation axis {y = 0}. We assume dr < 2. Fig. 2 gives an illustration of the
case dr = 1. Case 1 < dr < 2 corresponds to fractal structures (dr = 2df/dw where
dw is the diffusion coefficient on the fractal and df is the fractal dimension of the
crossing object).

Let Q(y, t) be the probability that a random walker is at y at time t after starting
at the origin of a transverse branch, that is y = 0. Let also F (y, t) be the corre-
sponding first passage probability. These two quantities are connected through

Q(y, t) = δyδt +

∫ t

0

F (y, t′)Q(0, t− t′) dt′.

Indeed, before returning to y at time t, the walker has already reached y for the
first time at t′ ≤ t. Using a time Laplace transform we get at the entrance y = 0 of
the branch:

F̂ (0, p) = 1− 1

Q̂(0, p)
.

Assuming that the displacement is ruled by isotropic diffusion (characterized by a
diffusion coefficient Dr > 0), it is well-known (e.g. [22]) that

Q(0, t) = (4ΠDrt)
−dr/2, t > 0.
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Figure 2. A simple geometry of side branches.

Thus F̂ (0, p) = 1 − C(Dr)p
1−dr/2, C(Dr) ∈ R. Since by definition the survival

probability Ψ satisfies Ψ′(t) = −F (0, t) and Ψ(0) = 1, it follows that F̂ (0, p) =

−pΨ̂(p) + 1, thus Ψ̂(p) = C(Dr)p
−dr/2 and finally

Ψ(t) ∼∞ tdr/2−1.

We thus recover a power-law behavior satisfying assumption (Hlong
1 ) provided 0 <

dr < 2.
Note that we would obtain the same type of survival probability in case of sorp-

tion with diffusion-limited reactions since the form of Q is similar in this case (see
[22, 51] and [1] in a context of protein dynamics).

Note also that assuming dr = 1 as in Fig. 2 corresponds exactly to the setting
considered by Young in [55] (see remark 6 above), yet with a different approach.
Moreover, as in [55], we would get a similar result by considering recirculation
pockets of finite length L provided that L2/Dr � O(1).

Let us conclude with more abstract examples. Mandelbrot shows in [32] how

power γ in (Hlong
1 ) is related to sets of fractal dimension and cites many empirical

examples. A direct link with the fractal dimension is also stated in [19] for a
problem of Knudsen diffusion. We refer to [23] for implication of fractal structures
on conductivity. This viewpoint is widely used in percolation theory. The domain
might also be peppered with sites at which tracer molecules stick until dislodged, for
instance by particularly large thermal fluctuations. The waiting times then depend
on the probability distribution density of the energy barrier. Such phenomenon
characterizes many physical systems. Assuming that the jumping mechanism among
the local minima is described within the framework of Kramer’s reaction rate theory
yields to power-law models (see [21]). Power-law tails also characterize weakly
chaotic systems, see for instance [43, 42, 2]. We finally cite [36] which shows how
the sum of ergodic processes may approach a power-law distribution on any given
time interval.
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Appendix B. A property of the double Laplace transform of causal func-
tions.

B.1. Definition and statement. For the convenience of the reader, we recall
the definition of the double Laplace transform, following the lines of [12]. Laplace
transform is indeed a very common tool in “physical” literature devoted to the
present subject. Let G be a function, supported by the first quadrant R2

+ and
Lebesgue measurable in every finite rectangle {0 ≤ t1 ≤ T1} × {0 ≤ t2 ≤ T2}. The

double Laplace transform ˜̃G(λ, p) of G depends on λ and p, that are the Laplace
variables conjugate of the physical variables t1 and t2. We set

L[G](λ, p) = ˜̃G(λ, p) =

∫ ∞
0

∫ ∞
0

G(t1, t2)e−λt1−pt2dt1dt2,

if the limit of
∫ T1

0

∫ T2

0
G(t1, t2)e−λt1−pt2dt1dt2 exists as T1, T2 →∞ simultaneously

but independently.

Proposition 5. Let T 2
a denote the translation of amplitude a with respect to t2. Let

h be a causal function of t1, with Laplace transform h̃(λ). Let ∗1 denote convolutions
with respect to t1. The double Laplace transform L[T 2

U ·t1
(h∗1(T 2

−U ·t1
G)] of T 2

U ·t1
(h∗1

(T 2
−U ·t1

G)) is ˜̃G(λ, p)h̃(λ+ pU).

Proof. We note that in the convolution

(h ∗1 (T 2
−U ·tG(·t, ·A)))(t1, t2) =

∫ t1

0

h(t′)G(t1 − t′, A+ U(t1 − t′) dt′

=

∫ t1

0

h(t′)G(t1 − t′, t2 − Ut′)dt′

only the t′ such that t1 < Ut′ contribute to the integral. Hence,

L[T 2
U ·t1

(h ∗1 (T 2
−U ·t1

G)](λ, p)

=

∫
t1>0

e−λt1
∫

0<t′<t1

h(t′)

∫
t2>Ut′

G(t2 − Ut′, t1 − t′)e−pt2dt2dt′dt1,

where ∫
t2>Ut′

G(t2 − Ut′, t1 − t′)e−pt2 dt2

= e−pUt
′
∫
a>0

G(t1 − t′, a)e−pa da = e−pUt
′
G̃(t1 − t′, p).

Hence, we have

L[T 2
U ·t1

(h ∗1 (T 2
−U ·t1

G)](λ, p)

=

∫
t1>0

e−λt1
∫

0<t′<t1

h(t′)e−pUt
′
G̃(t1 − t′, p) dt′dt1,

where we recognize the convolution of G̃(·, p) with h(·)e−pU · computed at point t1.

This latter function has Laplace transform h̃(λ+ pU). Hence the Proposition.
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