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A factor 2 has been omitted in one term when transforming the equations in oscillatory domain to equations
in a strip.... This factor 2 exactly acts as a counterbalance to the new term we found in the limit. Hence, the
result of the main Theorem is not true and the paper has not to be considered. The effect of rugosities will
be at order one and not at main order.

More precisely, the main theorem has to be replaced by the following one.

Theorem 1 Let (u®,w®,p%) be a sequence of weak solutions of the Stokes system in the considered rough
domain.

The rescaled quantity (uf, L

1w, e?p®) o (z,h°(2)Z) two-scale converges to the weak solution (ug,w1,po) of
—ndzug + hiVapo =0,
Ozpo =0,
divz(hluo) + 8Z(w1 - vahl . UO) = 0,

in the rescaled domain. It means in particular that the classical Reynolds approximation holds true:

h3 h
divy <12177Vmp0) = div, <21ub> .

It means that the paper “Roughness-Induced Effect at Main order on the Reynolds Approximation”, STAM
Multiscale Model. Simul 8, 3, 997-1017, 2010, “only” gives a new justification of the Reynolds equation, in
the context of a rough domain where the main order roughness is perturbated by quite fast second order
oscillations:

h(z) = €(h1(z) + eha(z/€%)).

Yet the derivatives of the former profile induce higher order terms in the perturbation hs than in the main
profile h;.

on avait dit dans I'intro que les perturbations traitees s’arretaient a 'ordre a < 2. c’est vrai? du coup, ca
au moins on ’aurait ameliore...

For the convenience of the reader, we provide below the corrected proof of the result. It follows of course
the lines of the derivation in “Roughness-Induced Effect at Main order on the Reynolds Approximation”,
SIAM Multiscale Model. Simul 8, 3, 997-1017, 2010. Difference is the starting point, that is a correct system
of rescaled equations at the microscopic scale.
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Mathematical justification

We introduce the variable Z defined by

he(z) — e(hi(x) + eha(%))

Z =
to rescale the Stokes problem in the fixed domain Q = w x (0,1). According to this change of variable, we
look at the unknown u® = (u®,w®) and p° as

UE(Q;',Z)ZEE(:E7Z)7 wa(x,z):{[}g(ac’Z) and pe(x7z):15é($>z)

For the sake of simplicity, we omit the tilde in the new unknowns and we focus on standard Dirichlet boundary
conditions u® = uy on 9€). Stokes system reduces to the following equations in 2

R A hf V.he|? R V.h® R V.he|? R 1 R
—nAzu +77( W 2‘ e | )Zﬁzu + 2777 - ZV ,0zu° — 77| e | Z20%uf — nﬁé‘%u
V. he
+Vap® — ;; Zdzp° =0, (1)
A hf V.he|? V. he V.he|? 1
—nA,w® —|—77( xe — 2‘ x 5 | )Z@ZwE +2n xs VAV TR n‘ x 5 | Z20%w° — n—ga%ws
h he h he he
1
“‘EaZp‘S = 07 (2)
V. he 1
diV(uE) — he . Z(')Zus + E@zws =0. (3)

The estimates derived in in “Roughness-Induced Effect at Main order on the Reynolds Approximation”, STAM
Multiscale Model. Simul 8, 3, 997-1017, 2010, remain true. We thus assert that there exist limit functions
po € L2(Q; L2(T971Y)), up € L2(Q; HY(T41)), wo € L2(Q; HY(T4~1)) such that

e2pf 2 po, us 2 g and w2 wy,
with moreover Vxug = 0, Vxwy = 0. Since there was no mistake in the divergence equation in our former
work, proofs of Vxpy =0, Ozpg = 0, wg = 0 and of the limit divergence equation

hy div,(ug) — Vihy - ZOzup 4+ Ozw* = 0,

remain unchanged.

All the modifications have to be performed when passing to the limit in the momentum equation. We thus
detail this part of the proof.

We begin by the auxiliary results. In view of the estimates derived for u®, we define the “anisotropic”

two-scale limit u' € L2(Q; H'(T9"1)) such that V, (euf)> Vxul. Tt satisfies
Axhs
hy

Proof: On the one hand, we multiply the divergence equation by e¢(z, Z,x/c?) with ¢ € D(Q;CH(TI~1)).
We obtain

Lemma 0.1 The function u' is such that Axu' = Z0zug.

/eV'h - Z0 u5L+/8w5L:0
0 TN v ehs T g 7T hy +ehs

We recall that €8Zu53\ 0 and w2 0. Passing to the limit in the latter relation, we get

. o
d gt — Vxhs Z0,uf ——— —
/ O A

/ / (divx(u') — ivxhg - Z0zu0)¢ dX dx dZ = 0,
Q JTd-1 hl

that is
_1

diVX (ul) h
1

V xha - ZOzuq. (4)



On the other hand, we multiply Equation (1) by 3¢(z, Z, z/¢?) and we integrate by parts. We obtain

A hl + Axhe
€, 2 £ B 7 e e
/§2n€vu (EVed™ + Vxd) +/szn5 Byt ek dzu - ¢
Vol + £V xhs|? ne? 1
o 2 : > 4 -2 _— h _ hE) - 15 ZbE
/Q (h +ehg)? 0z ¢ /h1+ hs(v" 1+ ZVixh;) - eVurdz(Z47)

2 | whl % CXh§|2 € 2 e / £ €
. 7 e — .
+/ V (h1+ o) edzu® - 0z(Z%¢%) + n ahg)Qeazu dz¢

el 3 e L. 1 e 1 e c
_‘/Qg?’p (dlvw(¢ )+ ;dle(¢E)> + /Q mg;Qp g(thl + gVXh2) <07 (Z¢ ) =0. (5)

We choose ¢ in the form ¢ = curlxt to cancel the term containing divy(¢°). Passing to the limit in the
other terms, using dzpy = 0, we get

Axh
/ qul-VX(;H—// X2 Z205u0¢ = 0,
Q Tdfl Sz 'erfl hl

for any ¢ = curlx. It follows that

CurlX(AXu ) VX(AX}LQ) Z@Zug

hi
and then )
curlyu' = h—Vﬂ‘((hg) - ZOzuyp. (6)
1
We infer the result of the lemma from (4)-(6), using the formula Ayu! = Vxdivxu! — Vxcurlxu! and

VxVxhy — V)l(v)%hg = (Axh2)Id. Note that our mistake in “Roughness-Induced Effect at Main order on
the Reynolds Approximation”, STAM Multiscale Model. Simul 8, 3, 997-1017, 2010, has no influence on this
result thanks to the choice of the test function e3¢¢. (I

The pressure being such that lir%/ ep® divy (¢) = 0 for any ¢ € L?(2; H'(T%1)), we now have sufficient
e— Q

tools to pass to the limit in the momentum equation. We multiply Equation (1) by e2¢(z, Z) with ¢ € D(Q).

Since Ah/h — |Vh|?/h? = div(Vh/h), we obtain:

/nezwf V¢t —/ (Vb + SV xhs) - eVuED, (20)
Q Q hl +e hg g
[ gl T
Q (h1 +€h5)?

|Vhi + lvXh2|2 2 / n
+ 2 = Ozut - 07(7 — 0 zut -0
I (i vemyz 02w 92 ZO T | G oozt 029

1 1
— 2, € 1; P - €\ .
/Qs P dlvz(gb)Jr/Q h1 +ahg€ p°(Vahi + EthQ) 07(Z9)

Zaz’u,E . (]5

2
ne 1
— [ ————(V2h1+ =Vxha) Z0zu*V,¢ = 0. 7
g (Tt 29xhe) 20020 "
The correction corresponds to the new term in the second line of the former relation. We have:
3 1 & € I £ : hg _
B [ g VXN 02(20) = i | en” divx (;102(20)) =

Passing to the limit in (7), we get, using that ug = ug(z, Z) and dzpy = 0,

2
—n// Vs Vxwn 92(26) - // |th2\ xhal® 75, Uo¢+ﬁ// 'VX’”)‘Q' D10 07(229)
']l‘d 1 ']I‘d 1 'ﬂ‘d 1

| [ o [ [ mamono
77/Q/Td_1 ()2 0210 2@ o Jra PO vz



Now, one easily checks that the former relation is the energy formulation corresponding to

1 2\ 1 o
,n( thth)fzaZ(zaZuo) fn( IV x o )72 82 (d7u0)

Td—1 h1 Td—1 hl
1
—’7(/ |Vxh2|2) ﬁzazuo - %8%2110 + Vapo = 0.
Td-1 1 1
Integrating by parts the integral terms, one finally gets
—%5%2% + Vapo =0,
1
which corresponds to the classical Reynolds approximation. Theorem 1 is proved.

Remark 1 Of course the next order approzimation may be calculated to see the roughness-induced effect at
order one of the perturbation hs.



