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UNIQUENESS FOR CROSS-DIFFUSION SYSTEMS ISSUING
FROM SEAWATER INTRUSION PROBLEMS

CATHERINE CHOQUET, JI LI, CAROLE ROSIER

Abstract. We consider a model mixing sharp and diffuse interface approaches
for seawater intrusion phenomenons in confined and unconfined aquifers. More

precisely, a phase field model is introduced in the boundary conditions on

the virtual sharp interfaces. We thus include in the model the existence of
diffuse transition zones but we preserve the simplified structure allowing front

tracking. The three-dimensional problem then reduces to a two-dimensional

model involving a strongly coupled system of partial differential equations
of parabolic and elliptic type describing the evolution of the depth of the

interface between salt- and freshwater and the evolution of the freshwater

hydraulic head. Assuming a low hydraulic conductivity inside the aquifer, we
prove the uniqueness of a weak solution for the model completed with initial

and boundary conditions. Thanks to a generalization of a Meyer’s regularity
result, we establish that the gradient of the solution belongs to the space Lr,

r > 2. This additional regularity combined with the Gagliardo-Nirenberg

inequality for r = 4 allows to handle the nonlinearity of the system in the
proof of uniqueness.

1. Introduction

Seawater intrusion in coastal aquifers is a major problem for water supply. The
study of efficient and accurate models to simulate the displacement of a saltwater
front in unsaturated porous media is motivated by the need of efficient tools for the
optimal exploitation of fresh groundwater.

Observations show that, near the shoreline, fresh and salty underground water
tend to separate into two distinct layers. It was the motivation for the derivation of
seawater intrusion models treating salt- and freshwater as immiscible fluids. Points
where the salty phase disappears may be viewed as a sharp interface. Nevertheless
the explicit tracking of the interfaces remains unworkable to implement without
further assumptions. An additional assumption, the so-called Dupuit approxima-
tion, consists in considering that the hydraulic head is constant along each vertical
direction. It allows to assume the existence of a smooth sharp interface. Classical
sharp interface models are then obtained by vertical integration based on the as-
sumption that no mass transfer occurs between the fresh and the salty area (see
[4, 11] and even the Ghyben-Herzberg static approximation). This class of models
allows direct tracking of the salt front. Nevertheless the conservative form of the
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equations is perturbed by the upscaling procedure. In particular the maximum
principle does not apply. Of course fresh and salty water are two miscible fluids.

Following [6], we can mix the latter abrupt interface approach with a phase field
approach (here an Allen–Cahn type model in fluid-fluid context see [1, 2, 5]) for
re-including the existence of a diffuse interface between fresh and salt water where
mass exchanges occur. We thus combine the advantage of respecting the physics of
the problem and that of the computational efficiency.

From a theoretical point of view, an advantage resulting from the addition of
the diffuse area compared to the sharp interface approximation is that the system
now has a parabolic structure, so it is not necessary to introduce viscous terms in a
preliminary fixed point for treating degeneracy as in the case of the sharp interface
approach. Another important point is that we can demonstrate a more efficient and
logical maximum principle from the point of view of physics, which is not possible
in the case of classical sharp interface approximation. But the main point is that
we can now show the uniqueness of the solution thanks to the parabolic structure
of the system that yields more regularity for the solution.

This article is devoted to the study of the wellposedness of the sharp-diffuse in-
terface seawater intrusion model. We focus on confined aquifers. As already men-
tioned, the problem consists in a coupled system of quasi-linear parabolic-elliptic
equations. It belongs to the wide class of cross-diffusion systems for which the
equations are coupled in the highest derivatives terms and there is no general the-
ory for such a kind of problem. For dealing with the nonlinearity in the uniqueness
proof, we first prove a Lr, r > 2, regularity result for the gradient of the unknowns.
More precisely we generalize to the quasilinear case, the regularity result given by
Meyers [10] in the elliptic case and extended to the parabolic case by Bensoussan,
Lions and Papanicolaou, for any elliptic operator A = −

∑n
i,j=1 ∂jaij(x)∂i (see [3]).

The results assume that the operator A satisfies an uniform ellipticity assumption
and that its coefficients are L∞ functions. The hypothesis on A ensure the exis-
tence of an exponent r(A) > 2 such that the gradient of the solution of the elliptic
equation (resp. of the parabolic equation) belongs to the space Lr with respect to
space (resp. Lr with respect to time and space). This additional regularity com-
bined with the Gagliardo-Nirenberg inequality let us handle the nonlinearity of the
system in the proof of uniqueness.

This article is organized as follows: First, in Section 2, we detail all the mathe-
matical notations and we present some auxiliary results. In Section 3, we present a
new proof of global in time existence for the problem. Sections 4 and 5 are devoted
to the proofs of the regularity and uniqueness results.

2. Auxiliary results

We consider an open bounded domain Ω of R2 describing the projection of the
aquifer on the horizontal plane. The boundary of Ω, assumed C1, is denoted by Γ.
The time interval of interest is (0, T ), T being any nonnegative real number, and
we set ΩT = (0, T )× Ω.

For the sake of brevity we shall write H1(Ω) = W 1,2(Ω) and

V = H1
0 (Ω), V ′ = H−1(Ω), H = L2(Ω).
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The embeddings V ⊂ H = H ′ ⊂ V ′ are dense and compact. For any T > 0, let
W (0, T ) denote the space

W (0, T ) :=
{
ω ∈ L2(0, T ;V ), ∂tω ∈ L2(0, T ;V ′)

}
endowed with the Hilbertian norm ‖ ·‖W (0,T ) =

(
‖ ·‖2L2(0,T ;V ) +‖∂t · ‖2L2(0,T ;V ′)

)1/2.
The following embeddings are continuous [9, Prop. 2.1 and Thm 3.1, chapter 1]

W (0, T ) ⊂ C([0, T ]; [V, V ′]1/2) = C([0, T ];H)

while the embedding
W (0, T ) ⊂ L2(0, T ;H) (2.1)

is compact (Aubin’s Lemma, see [12]). The following result by Mignot (see [8]) is
used in the sequel.

Lemma 2.1. Let f : R→ R be a continuous and nondecreasing function such that
lim sup|λ|→+∞ |f(λ)/λ| < +∞. Let ω ∈ L2(0, T ;H) be such that ∂tω ∈ L2(0, T ;V ′)
and f(ω) ∈ L2(0, T ;V ). Then

〈∂tω, f(ω)〉V ′,V =
d

dt

∫
Ω

(∫ ω(·,y)

0

f(r) dr
)
dy in D′(0, T ).

Hence for all 0 ≤ t1 < t2 ≤ T ,∫ t2

t1

〈∂tω, f(ω)〉V ′,V dt =
∫

Ω

(∫ ω(t2,y)

ω(t1,y)

f(r) dr
)
dy.

We now present two preliminary lemma, which are consequences of the Meyers
regularity results [10], first for an elliptic equation, then for a parabolic one. The
adaptation of these results will be crucial for proving the Lr(0, T ;W 1,r(Ω)), r > 2,
regularity of the solutions.
• Elliptic case. We recall the following result (see Lions and Magenes [9]):

∀p : 1 < p <∞,−∆ is an isomorphism from W 1,p
0 (Ω) to W−1,p(Ω).

We set G = (−∆)−1 and g(p) = ‖G‖L(W−1,p(Ω);W 1,p
0 (Ω)). We notice that g(2)=1.

Lemma 2.2. Let A ∈ (L∞(Ω))n be a symmetric tensor such that there exists α > 0
satisfying

n∑
i,j=1

Ai,j(x)ξiξj ≥ α|ξ|2, ∀x ∈ Ω and ξ ∈ Rn.

We set β = max1≤i,j≤n ‖Ai,j‖L∞(Ω). There exist r(α, β) > 2, such that, for any
f ∈W−1,r(Ω) and for any g0 ∈W 1,r(Ω), the unique solution u of the problem

∇ · (A∇u) = f, ∀x ∈ Ω

u ∈ H1
0 (Ω) + g0,

belongs to W 1,r(Ω). In addition, the following estimate holds:

‖u‖W 1,r(Ω) ≤ C(α, β, r)‖f −∇ · (A∇g0)‖W−1,r(Ω), (2.2)

where C(α, β, r) is a constant depending only on r and on constants α and β char-
acterizing the operator A.
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Remark 2.3. The proof given in [3] allows us to precise the constant C(α, β, r).
Let c be a positive real number. We set

µ =
α+ c

β + c
, ν =

c

β + c
, (2.3)

where c is introduced in order to ensure ν < µ. Since g(2) = 1 and 0 < 1−µ+ν < 1,
by using the properties of the map g, we can find r > 2 such that

0 < k(r) := g(r)(1− µ+ ν) < 1. (2.4)

Then, the smaller (1−µ+ν) is, the bigger r can be. The determination of r depends
on the constants α and β characterizing the elliptic operator A.

Let us emphasize that Lemma 2.2 holds for all p such that 2 ≤ p ≤ r(α, β)
thanks to the classical interpolation inequalities.

The limit case corresponds to the settings where the operator A is proportional
to the Laplacian: then µ = 1, ν = 0 and (2.4) is satisfied for all r ≥ 2. Taking into
account the previous estimates, we can give an upper bound of C(α, β, r) as follows

C(α, β, r) ≤ (1− g(r)(1− µ+ ν))−1 g(r)
β + c

=
g(r)

(1− k(r))(β + c)
. (2.5)

Parabolic case. Let us give now a lemma for the parabolic context. We define
Xp = Lp(0, T ;W 1,p

0 (Ω)), endowed with the norm

‖∇v‖(Lp(ΩT ))n =
(∫ T

0

‖v(t)‖p
W 1,p

0 (Ω)
dt
)1/p

.

We introduce Yp = Lp(0, T ;W−1,p(Ω)) and we point out that the application v →
divx v sends (Lp(ΩT ))n into Lp(0, T ;W−1,p(Ω)). We endow Yp with the norm
‖f‖Yp = infdivx g=f ‖g‖(Lp(ΩT ))n . We can state the following Lemma (cf. [3]).

Lemma 2.4. Let A ∈ (L∞(Ω))n be a symmetric tensor defined as in Lemma 2.2.
Let f ∈ L2(0, T,H−1(Ω)) and u0 ∈ H, there exists u ∈ L2(0, T ;H1

0 (Ω)) solution of

∂u

∂t
+Au = f in ΩT , u(0) = u0.

Then, assuming that Γ is sufficiently regular, there exists r > 2, depending on
α, β and Ω such that if f ∈ Lr(0, T ;W−1,r(Ω)) and u0 ∈ W 1,r

0 (Ω) then u ∈
Lr(0, T ;W 1,r

0 (Ω)). Furthermore, there exists Ĉ(α, β, r) > 0 such that

‖u‖W 1,r
0 (Ω) ≤ Ĉ(α, β, r)(‖f‖Lr(0,T ;W−1,r(Ω)) + ‖u0‖W 1,r

0 (Ω)). (2.6)

Remark 2.5. As for lemma 2.2, it is possible to precise Ĉ(α, β, r) (cf. [3]). We
set P = ∂

∂t −∆, the operator associated with the homogeneous Dirichlet boundary
conditions. We know that, being given F ∈ Yp, there is a unique solution u ∈ Xp

such that
Pu = F in ΩT , u(0) = u0.

We set ĝ(p) = ‖P−1‖L(Yp;Xp), we recall that ĝ(2) = 1. Using the properties of the
map ĝ(·), we claim that there exists r > 2 such that

0 < k̂(r) := ĝ(r)(1− µ̂+ ν̂) < 1, (2.7)
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where the constants µ̂, ν̂ are defined by

µ̂ =
α+ ĉ

β + ĉ
and ν̂ =

ĉ

β + ĉ
, ∀ĉ > 0. (2.8)

Since ĉ > 0, we have ν̂ < µ̂. Again, the smaller (1 − µ̂ + ν̂), the bigger r, and
the determination of r will depend on the constants α, β characterizing the elliptic
operator A. The following condition is satisfied by the constant Ĉ(α, β, r)

Ĉ(α, β, r) ≤ (1− ĝ(r)(1− µ̂+ ν̂))−1 ĝ(r)
β + ĉ

=
ĝ(r)

(1− k̂(r))(β + ĉ)
. (2.9)

3. Global in time existence result

Mathematical setting. We consider that the confined aquifer is bounded by two
layers, the lower surface corresponds to z = h2 and the upper surface z = h1.
Quantity h2 − h1 is the thickness of the aquifer. We assume that depths h1, h2 are
constant, such that h2 > δ1 > 0 and without lost of generality we can set h1 = 0.
We introduce functions Ts and Tf defined by

Ts(u) = h2 − u ∀u ∈ (δ1, h2) and Tf (u) = u ∀u ∈ (δ1, h2).

Functions Ts and Tf are extended continuously and constantly outside (δ1, h2).
Ts(h) represents the thickness of the salt water zone in the reservoir, the previous
extension of Ts for h ≤ δ1 enables us to ensure a thickness of freshwater zone always
greater than δ1 in the aquifer. We also emphasize that the function Tf only acts
on the source term Qf for avoiding the pumping when the thickness of freshwater
zone is smaller than δ1.

In the case of confined aquifer, the well adapted unknowns are the interface
depth h and the freshwater hydraulic head f . The model reads (see [6]):

φ∂th−∇ ·
(
KTs(h)∇h

)
−∇ ·

(
δ∇h

)
+∇ ·

(
KTs(h)∇f

)
= −QsTs(h), (3.1)

−∇ ·
(
h2K∇f

)
+∇ ·

(
KTs(h)∇h

)
= QfTf (h) +QsTs(h). (3.2)

The above system is complemented by the boundary and initial conditions

h = hD, f = fD in Γ× (0, T ), (3.3)

h(0, x) = h0(x), in Ω, (3.4)

with the compatibility condition

h0(x) = hD(0, x), x ∈ Γ.

Let us now detail the mathematical assumptions. We begin with the characteris-
tics of the porous structure. We assume the existence of two positive real numbers
K− and K+ such that the hydraulic conductivity K is a bounded symmetric elliptic
and uniformly positive definite tensor

0 < K−|ξ|2 ≤
∑

i,j=1,2

Ki,j(x)ξiξj ≤ K+|ξ|2 <∞ x ∈ Ω, ξ ∈ R2, ξ 6= 0.

We assume that porosity φ is constant in the aquifer. Indeed, in the field envisaged
here, the effects due to variations in φ are negligible compared with those due to
density contrasts. From a mathematical point of view, these assumptions do not
change the complexity of the analysis but rather avoid cumbersome computations.
The parameter δ represents the thickness of the diffuse interface. The source terms
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Qf and Qs are given functions of L2(0, T ;H) and we assume that Qf ≥ 0 and
Qs ≤ 0.

The functions hD and fD belong to
(
L2(0, T ;H1(Ω)) ∩ H1(0, T ; (H1(Ω))′)

)
×

L2(0, T ;H1(Ω)) while function h0 belongs to H1(Ω). Finally, we assume that the
boundary and initial data satisfy conditions on the hierarchy of interfaces depths:

0 < δ1 ≤ hD ≤ h2 a.e. in Γ× (0, T ), 0 < δ1 ≤ h0 ≤ h2 a.e. in Ω.

Theorem 3.1 (Existence theorem). Assume a low spatial heterogeneity for the
hydraulic conductivity tensor

K+ <
h2

h2 − δ1
inf
(√δK−

3h2
,K−

)
. (3.5)

Then for any T > 0, problem (3.1)-(3.4) admits a weak solution (h, f) satisfying

(h− hD, f − fD) ∈W (0, T )× L2(0, T ;H1
0 (Ω)).

Furthermore the following maximum principle holds true :

0 < δ1 ≤ h(t, x) ≤ h2 for a.e. x ∈ Ω and for any t ∈ (0, T ).

Remark 3.2. Assumption (3.5) (so as (4.4)) makes only sense when considering
low values for K. For the present application, this point is not restrictive since the
soil permeability typically ranges from 10−8 to 10−3 m/s.

With the additional diffuse interface, the system has a parabolic structure, it is
thus no longer necessary to introduce viscous terms in a preliminary fixed point step
for avoiding degeneracy. But we still need to impose a minimal freshwater thickness
strictly positive inside the aquifer to prove an uniform estimate in L2(ΩT ) of the
gradient of f since the presence of the diffuse interface does not allow us to get this
estimate. Let us briefly sketch the strategy of the proof. First step consists in using
a Schauder fixed point theorem for proving an existence result for the problem.1

Then we establish that the solution satisfies the maximum principles announced in
Theorem 3.1: First, we show that h ≥ h2 a.e. in ΩT ; finally we prove that δ1 ≤ h
a.e. in ΩT under assumption Qf ≥ 0.

Step 1: Existence for the truncated system:
Definition of the map F = (F1,F2). For the fixed point strategy, we define
an application F : (W (0, T ) + hD) × (L2(0, T ;H1

0 (Ω)) + fD) → (W (0, T ) + hD) ×
(L2(0, T ;H1

0 (Ω)) + fD) by

F(h̄, f̄) =
(
F1(h̄, f̄),F2(h̄, f̄)

)
= (h, f),

1 More precisely, the present proof is based on the classical version of the Schauders fixed point
theorem applied to the initial problem. In [8], this fixed point theorem is applied to an auxiliary
truncated problem. The truncation is introduced to control the H1-norm of f . We thus had to

check that the map F defined below is sequentially continuous in L2(0, T ; H1(Ω). Here we rather
choose working with the strong topology L2(0, T ; L2(Ω)), which is possible since the truncation
term has been dropped.
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where the couple (h, f) is the solution of the following initial boundary value prob-
lem, for all w ∈ L2(0, T ;V ):∫ T

0

φ〈∂th,w〉V,V ′ dt+
∫

ΩT

(δ + Ts(h̄)K)∇h · ∇w dxdt

+
∫

ΩT

QsTs(h̄
)
w dxdt−

∫
ΩT

Ts(h̄)K∇f̄ · ∇w dxdt = 0,
(3.6)

∫
ΩT

h2K∇f · ∇w dxdt−
∫

ΩT

Ts(h̄)K∇h̄ · ∇w dxdt

−
∫

ΩT

(QsTs(h̄) +QfTf (h̄))w dxdt = 0.
(3.7)

We know from the classical theory of linear parabolic PDE’s that this variational
linear system has a unique solution. The end of the present subsection is devoted
to the proof of the existence of a fixed point of F in some appropriate subset.
Sequential continuity of F1 in L2(0, T ;H) when F is restricted to any
bounded subset of W (0, T ) × L2(0, T ;H1(Ω)). Assume that given a bounded
sequence (h̄n, f̄n) in (W (0, T )+hD)×(L2(0, T ;H1

0 (Ω))+fD) and a function (h̄, f̄) ∈
(W (0, T ) + hD)× (L2(0, T ;H1

0 (Ω)) + fD) such that

(hn, fn)→ (h, f) in (L2(0, T ;H))2.

We thus have

(h̄n, f̄n) ⇀ (h̄, f̄) weakly in W (0, T )× L2(0, T ;H1(Ω));

that is, h̄n ⇀ h̄ weakly in L2(0, T, V ) (the same for f̄n and f̄) and ∂th
n ⇀ ∂th

weakly in L2(0, T, V ′).
Set hn = F1(h̄n, f̄n) and h = F1(h̄, f̄). We first intend to show that hn → h

weakly in W (0, T ) and thus strongly in L2(0, T ;H) thanks to a classical result of
Aubin.

Pick a constant M > 0, that we will precise later on, such that

‖∇h̄n‖(L2(0,T ;H))2 ≤M and ‖∇f̄n‖(L2(0,T ;H))2 ≤M. (3.8)

For all n ∈ N, hn satisfies (3.6). Pick any τ ∈ [0, T ] and take w = (hn−hD)χ(0,τ)(t)
in (3.6). It yields

φ

∫ τ

0

〈∂t(hn − hD), hn − hD〉V ′,V dt+
∫

Ωτ

(δ +KTs(h̄n))∇hn · ∇hn dx dt

+
∫

ΩT

QsTs(h̄n
)
(hn − hD) dx dt−

∫
Ωτ

KTs(h̄n)∇f̄n · ∇(hn − hD) dx dt

=
∫

Ωτ

(δ +KTs(h̄n))∇hn · ∇hD dx dt− φ
∫ τ

0

〈∂thD, hn − hD〉V ′,V dt.

(3.9)

The functions hn−hD belong to W (0, T ) and hence to C([0, T ];L2(Ω)). Thanks to
Lemma 2.1, we can write∫ τ

0

〈∂t(hn − hD), hn − hD〉V ′,V dt =
1
2
‖hn(·, τ)− hD‖2H −

1
2
‖h0 − hD(·, 0)‖2H .

On the other hand, we have∫
Ωτ

(
δ +KTs(h̄n)

)
∇hn · ∇hn dx dt ≥ δ‖∇hn‖2L2(0,τ ;H)2 .
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The real number M > 0 is such that supn≥0 ‖∇f̄n‖(L2(0,T,H))2 ≤M . Using Cauchy-
Schwarz and Young inequalities, we obtain that, for any η1 > 0,∣∣ ∫

Ωτ

KTs(h̄n)∇f̄n · ∇hn dx dt
∣∣ ≤MK+l‖∇hn‖(L2(0,τ ;H))2

≤
K2

+M
2

η1
l2 +

η1

4
‖∇hn‖2(L2(0,τ ;H))2 ,

and ∣∣ ∫
ΩT

(
δ +KTs(h̄n)

)
∇hn · ∇hD dx dt

∣∣
≤ η1

4
‖∇hn‖2(L2(0,T ;H))2 +

(δ +K+h2)2

η1
‖∇hD‖2(L2(0,T ;H))2 .

Since it depends on hD, the next term is simply estimated by∣∣ ∫
ΩT

KTs(h̄n)∇f̄n · ∇hD dx dt
∣∣ ≤MK+h2‖hD‖L2(0,T ;H1).

Finally we have∣∣− ∫ T

0

φ〈∂thD, (hn − hD)〉V ′,V dt
∣∣

≤ φ2

2δ
‖∂thD‖2L2(0,T ;(H1(Ω))′) +

δ

2
‖hn‖2L2(0,T ;H1) +

δ

2
‖hD‖2L2(0,T ;H1),

and∣∣− ∫
ΩT

QsTs(h̄n)(hn − hD) dx dt
∣∣ ≤ ‖Qs‖2L2(0,T ;H)

φ
h2

2 +
φ

4
‖hn − hD‖2L2(0,T ;H).

We choose η1 such that δ−η1 ≥ η0 > 0 for some η0 > 0. Using the above estimates
in (3.9), we obtain for all τ ∈ [0, T ]

φ

4
‖(hn − hD)(·, τ)‖2H +

1
2

(δ − η1)‖∇u1,n‖2(L2(0,τ ;H))2

≤
K2

+M
2

η1
l2 +

φ

2
‖h0 − hD(·, 0)‖2H +

(δ +K+h2)2

η1
‖∇hD‖2(L2(0,T ;H))2

+MK+h2‖hD‖L2(0,T ;H1) +
φ2

2δ
‖∂thD‖2L2(0,T ;(H1(Ω))′)

+
δ

2
‖hD‖2L2(0,T ;H1) +

‖Qs‖2L2(0,T ;H)

φ
h2

2.

(3.10)

We infer from (3.10) that there exist real numbers AM = AM (δ,K, h0, h2, hD, l,M)
and BM = BM (δ,K, h0, h2, hD, l,M) depending only on the data of the problem
such that

‖hn‖L∞(0,T ;H) ≤ AM , ‖hn‖L2(0,T ;V ) ≤ BM . (3.11)
Thus the sequence (hn)n is uniformly bounded in L∞(0, T ;H) ∩ L2(0, T ;V ). Set

CM = max(AM , BM ).

We now prove that (∂t(hn − hD))n is bounded in L2(0, T ;V ′). Due to the
assumption hD ∈ H1(0, T ; (H1(Ω))′), it will follow that (hn)n is uniformly bounded
in H1(0, T ;V ′). We have

‖∂t(hn − hD)‖L2(0,T ;V ′)
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= sup
‖w‖L2(0,T ;V )≤1

∣∣ ∫ T

0

〈∂t(hn − hD), w〉V ′,V dt
∣∣

= sup
‖w‖L2(0,T ;V )≤1

∣∣ ∫ T

0

−〈∂thD, w〉V ′,V dt−
1
φ

(∫
ΩT

(
δ +KTs(h̄n)

)
∇hn · ∇w dxdt

+
∫

ΩT

KTs(h̄n)∇f̄n · ∇w dxdt−
∫

ΩT

QsTs(h̄n)w
)
dx dt

∣∣.
Since ∣∣ ∫

ΩT

(
δ +KTs(h̄n)

)
∇hn · ∇w dxdt

∣∣
≤
(
δ +K+h2

)
‖hn‖L2(0,T ;H1(Ω))‖w‖L2(0,T ;V ),

and since hn is uniformly bounded in L2(0, T ;H1(Ω)), we write∣∣ ∫
ΩT

(
δ +KTs(h̄n)

)
∇hn · ∇w dxdt

∣∣ ≤ (δ +K+h2

)
CM‖w‖L2(0,T ;V ). (3.12)

Furthermore we have∣∣ ∫
ΩT

Ts(h̄n))∇f̄n · ∇w dxdt
∣∣ ≤Mh2‖w‖L2(0,T ;V ), (3.13)

∣∣ ∫
ΩT

QsTs(h̄n)w dxdt
∣∣ ≤ ‖Qs‖L2(0,T ;H)h2‖w‖L2(0,T ;V ). (3.14)

Summing (3.12)–(3.14), we conclude that

‖∂t(hn − hD)‖L2(0,T ;V ′) ≤ DM , (3.15)

where

DM = ‖∂thD‖2L2(0,T ;(H1(Ω))′) + δCM +
h2

φ
(K+CM +M + ‖Qs‖L2(0,T ;H)).

We have proved that the sequence
(
hn
)
n

is uniformly bounded in the space
W (0, T ). Using Aubin-Lions’ lemma, we can extract a subsequence (hnk)k, con-
verging strongly in L2(ΩT ), almost everywhere in (0, T )×Ω, and weakly in W (0, T )
to some limit denoted by v. From the a.e. convergence in ΩT , we see that for all
w ∈W (0, T ), Tl(h̄n)∇w → Tl(h̄)∇w strongly in L2(ΩT ) by dominated convergence.
It follows that v solves (3.6) and (3.3)-(3.4). By uniqueness of the solution of that
system, we conclude that v = h and that the whole sequence hn → h weakly in
W (0, T ) and strongly in L2(0, T ;H).

The sequential continuity of F1 in L2(0, T ;H) is established.
Sequential continuity of F2 in L2(0, T ;H) when F is restricted to any
bounded subset of W (0, T )×L2(0, T ;H1(Ω)) As above, we study the sequential
continuity of F2 by setting fn := F2(h̄n, f̄n), f := F2(h̄, f̄), and showing first
that fn → f in L2(0, T ;H1(Ω)) weakly. The key estimates are obtained using the
same type of arguments than those in the proof of the sequential continuity of F1.
The details are omitted. We only point out that we can use the estimate (3.11)
previously derived for hn to obtain the following estimates for fn:

‖fn‖L∞(0,T ;H) ≤ EM = EM
(
δ2,K, fD, h2, l,M,CM

)
, (3.16)

‖fn‖L2(0,T ;V ) ≤ FM = FM
(
δ2,K, fD, h2, l,M,CM

)
. (3.17)
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For proving the sequential compactness of fn in L2(0, T ;H), we need some fur-
ther work since we can not use a Aubin’s compactness criterium in the elliptic
context characterizing fn. We actually get a stronger result: we claim and prove
that h2fn−Ts(h̄n) converges in L2(0, T ;H1(Ω)), where Ts is any function such that
T ′s = Ts. Indeed, we recall that the variational formulations defining respectively
fn and f are, for any w ∈ L2(0, T ;V ),∫

ΩT

h2K∇fn · ∇w dxdt−
∫

ΩT

KTs(h̄n)∇h̄n · ∇w dxdt

−
∫

ΩT

(QsTs(h̄n) +QfTf (h̄n))w dxdt = 0,
(3.18)

∫
ΩT

h2K∇f · ∇w dxdt−
∫

ΩT

KTs(h̄)∇h̄ · ∇w dxdt

−
∫

ΩT

(QsTs(h̄) +QfTf (h̄))w dxdt = 0.
(3.19)

Choosing w = h2fn−Ts(h̄n)−h2fD +Ts(hD) in (3.18) we let n→∞. The already
known convergence results let us pass to the limit in

lim
n→∞

∫
ΩT

(QsTs(h̄n) +QfTf (h̄n))
(
h2fn − Ts(h̄n)− h2fD + Ts(hD)

)
dxdt

=
∫

ΩT

(QsTs(h̄) +QfTf (h̄))
(
h2f − Ts(h̄)− h2fD + Ts(hD)

)
dx dt.

Using moreover (3.19) for the test function w = h2f − Ts(h̄)− h2fD + Ts(hD), we
conclude that

lim
n→∞

∫
ΩT

K∇
(
h2fn − Ts(h̄n)− h2fD + Ts(hD)

)
· ∇
(
h2fn − Ts(h̄n)− h2fD + Ts(hD)

)
dx dt

=
∫

ΩT

K∇
(
h2f − Ts(h̄)− h2fD + Ts(hD)

)
· ∇
(
h2f − Ts(h̄)− h2fD + Ts(hD)

)
dx dt.

It follows that

lim
n→∞

∫
ΩT

K∇(Fn − F ) · ∇(Fn − F ) dx dt = 0

if Fn = h2fn−Ts(h̄n)−h2fD+Ts(hD) and F = h2f−Ts(h̄)−h2fD+Ts(hD). Since
Kξ · ξ ≥ K−|ξ|2 for any ξ ∈ R2 with K− > 0, the latter result and the Poincaré
inequality let us ensure that Fn → F in L2(0, T ;V ). Since Ts(h̄n)→ Ts(h̄) almost
everywhere in ΩT and h2 > 0, it follows in particular that fn → f in L2(0, T ;H).

Existence of C ⊂ W (0, T ) × L2(0, T ; (H1(Ω)) such that F(C) ⊂ C. We aim
now to prove that there exists a nonempty bounded closed convex set of W (0, T )×
L2(0, T ;H1(Ω)), denoted by C, such that F(C) ⊂ C. We notice that this result will
imply that there exists a real number M > 0, depending only on the initial data,
such that for (h, f) = F(h̄, f̄) ∈W , we have

‖∇h‖(L2(0,T ;H))2 ≤M and ‖∇f‖(L2(0,T ;H))2 ≤M. (3.20)



EJDE-2017/256 UNIQUENESS FOR CROSS-DIFFUSION SYSTEMS 11

Taking w = h− hD ∈ L2(0, T ;V ) (resp. w = f − fD ∈ L2(0, T ;V )) in (3.6) (resp.
(3.7)) leads to

φ

∫ T

0

〈∂th, h− hD〉V ′,V dt+
∫

ΩT

δ∇h · ∇(h− hD) dx dt

+
∫

ΩT

KTs(h̄)∇h · ∇(h− hD) dx dt+
∫

ΩT

QsTs(h̄
)
(h− hD) dx dt

−
∫

ΩT

KTs(h̄)∇f̄ · ∇(h− hD) dx dt = 0,

(3.21)

and ∫
ΩT

h2K∇f · ∇(f − fD) dx dt−
∫

ΩT

KTs(h̄)∇h̄ · ∇(f − fD) dx dt

−
∫

ΩT

(QsTs(h̄) +QfTf (h̄))(f − fD) dxdt = 0.
(3.22)

We apply Lemma 2.1 to the function f defined by f(u) = u for u ∈ R to compute
the first terms of (3.21). We obtain∫ T

0

〈∂t(h−hD), (h−hD)〉V ′,V dt =
1
2

∫
Ω

(h−hD)2(T, x) dx− 1
2

∫
Ω

(h−hD)2(0, x) dx.

Summing equations (3.21) and (3.22), we obtain

φ

2

∫
Ω

(h− hD)(T, x)2 dx+
∫

ΩT

δ∇(h− hD) · ∇(h− hD) dx dt

+
∫

ΩT

h2K∇(f − fD) · ∇(f − fD) dx dt

+
∫

ΩT

Ts(h̄)K∇(h− hD) · ∇(h− hD) dx dt

=
∫

ΩT

Ts(h̄)K∇(h̄− hD) · ∇(f − fD)
)
dx dt︸ ︷︷ ︸

(1)

+
∫

ΩT

KTs(h̄)∇(f̄ − fD) · ∇(h− hD) dx dt︸ ︷︷ ︸
(2)

+
φ

2

∫
Ω

(h− hD)(0, x)2 dx−
∫

ΩT

δ∇hD · ∇(h− hD) dx dt

−
∫

ΩT

h2K∇fD · ∇(f − fD) dx dt−
∫

ΩT

Ts(h̄)K∇hD · ∇(h− hD) dx dt

+
∫

ΩT

Ts(h̄)K∇hD · ∇(f − fD) dx dt+
∫

ΩT

KTs(h̄)∇fD · ∇(h− hD) dx dt

−
∫

ΩT

QsTs(h̄)(h− hD) dx dt+
∫

ΩT

(
QsTs(h̄) +QfTf (h̄)

)
(f − fD) dx dt.

We have

|(1)| ≤
∫

ΩT

δ

3
|∇(h̄− hD)|2 dx dt+

3(h2 − δ1)2K2
+

4δ

∫
ΩT

|∇(f − fD)|2 dx dt,
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|(2)| ≤
∫

ΩT

K−h2

3
|∇(f̄ − fD)|2 dx dt

+
3K2

+(h2 − δ1)
4K−h2

∫
ΩT

Ts(h̄)|∇(h− hD)|2 dx dt.

Also∣∣ ∫
ΩT

δ∇hD · ∇(h− hD) dx dt
∣∣ ≤ δ

2

∫
ΩT

|∇(h− hD)|2 dx dt+
δ

2

∫
ΩT

|∇hD|2 dx dt,∣∣ ∫
ΩT

h2K∇fD · ∇(f − fD) dx dt
∣∣

≤ h2K−
12

∫
ΩT

|∇(f − fD)|2 dx dt+
3K2

+h2

K−

∫
ΩT

|∇fD|2 dx dt,∣∣ ∫
ΩT

Ts(h̄)K∇hD · ∇(h− hD) dx dt
∣∣

≤ K−
8

∫
ΩT

Ts(h̄)|∇(h− hD)|2 dx dt+
2K2

+h2

K−

∫
ΩT

|∇hD|2 dx dt,∣∣ ∫
ΩT

Ts(h̄)K∇hD · ∇(f − fD) dx dt
∣∣

≤ h2K−
12

∫
ΩT

|∇(f − fD)|2 dx dt+
3K2

+h2

K−

∫
ΩT

|∇hD|2 dx dt,∣∣ ∫
ΩT

Ts(h̄)K∇fD · ∇(h− hD) dx dt
∣∣

≤ K−
8

∫
ΩT

Ts(h̄)|∇(h− hD)|2 dx dt+
2K2

+h2

K−

∫
ΩT

|∇fD|2 dx dt,∣∣ ∫
ΩT

QsTs(h̄)(h− hD) dx dt
∣∣

≤ δ

8

∫
ΩT

Ts(h̄)|∇(h− hD)|2 dx dt+
2C2

P

δ

∫
ΩT

Q2
sT

2
s (h̄) dx dt,

∣∣ ∫
ΩT

(
QsTs(h̄) +QfTf (h̄)

)
(f − fD) dxdt

∣∣
≤ h2K−

12

∫
ΩT

|∇(f − fD)|2 dx dt+
3C2

P

h2K−

∫
ΩT

(
QsTs(h̄) +QfTf (h̄)

)2
dx dt,

where the Poincaré’s constant is denoted by CP . Gathering these estimates, we
conclude that
φ

2

∫
Ω

(h− hD)(T, x)2 dx+
δ

2

∫
ΩT

|∇(h− hD)|2 dx dt+
h2K−

2

∫
ΩT

|∇(f − fD)|2 dx dt

+
(h2K−

4
−

3(h2 − δ1)2K2
+

4δ

)∫
ΩT

|∇(f − fD)|2 dx dt

+
(3K−

4
−

3K2
+(h2 − δ1)
4K−h2

)∫
ΩT

Ts(h̄)|∇(h− hD)|2 dx dt

≤ δ

3

∫
ΩT

|∇(h̄− hD)|2 dx dt+
K−h2

3

∫
ΩT

|∇(f̄ − fD)|2 dx dt
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+
φ

2

∫
Ω

(h− hD)(0, x)2 dx+
δ

2

∫
ΩT

|∇hD|2 dx dt

+
5K2

+h2

K−

∫
ΩT

|∇fD|2 dx dt+
5K2

+h2

K−

∫
ΩT

|∇hD|2 dx dt

+
1

2φ

∫
ΩT

Q2
sT

2
s (h̄) dx dt+

3C2
P

h2K−

∫
ΩT

(
QsTs(h̄) +QfTf (h̄)

)2
dx dt. (3.23)

Introducing the constant

C0 :=6
(φ

2

∫
Ω

(h− hD)(0, x)2 dx+
δ

2

∫
ΩT

|∇hD|2 dx dt

+
5K2

+h2

K−

∫
ΩT

|∇fD|2 dx dt+
5K2

+h2

K−

∫
ΩT

|∇hD|2 dx dt

+
1

2φ

∫
ΩT

Q2
sT

2
s (h̄) dx dt+

3C2
P

h2K−

∫
ΩT

(
QsTs(h̄) +QfTf (h̄)

)2
dx dt

) (3.24)

and recalling that the parameters satisfy (3.5), we infer that

δ‖∇(h− hD)‖2(L2(ΩT ))2 + h2K−‖∇(f − fD)‖2(L2(ΩT ))2 ≤ C0,

and
δ‖∇(h̄− hD)‖2(L2(ΩT ))2 + h2K−‖∇(f̄ − fD)‖2(L2(ΩT ))2 ≤ C0.

Note that (3.23) yields

‖∇(h− hD)‖L2(ΩT ) ≤
√
C0/δ, ‖∇(f − fD)‖L2(ΩT ) ≤

√
C0/h2K−

and
1
2

∫
Ω

(h− hD)(τ, x)2 dx ≤ C0, for all τ ≤ T.

Conclusion. We introduce the set
C :=

{
(h− hD, f − fD) ∈W (0, T )× L2(0, T ; (H1(Ω)) : (h(0, ·),
f(0, ·)) = (h0, f0), δ‖∇(h− hD)‖2L2(ΩT )

+ h2K−‖∇(f − fD)‖2L2(ΩT ) ≤ C0, ‖∂th‖L2(0,T,V ′) ≤ DM .
} (3.25)

where C0 is defined by (3.24) and M := max(
√
C0/δ,

√
C0/h2K−). Then C is a

nonempty, closed, convex, bounded set in (L2(0, T ;H))2, defined such that F(C) ⊂
C. Indeed, let us check that C is closed. Let (hn, fn)n be a sequence in C such
that (hn, fn) → (h, f) in L2(ΩT ). Since the sequence

(
hn
)
n

is uniformly bounded
in the space W (0, T ), we can extract a subsequence (hnk)k converging weakly in
W (0, T ) to some limit denoted by h̄. Then h = h̄ ∈ W (0, T ) and ‖h‖W (0,T ) ≤
lim infk→∞ ‖hnk‖W (0,T ). Similarly, since the sequence

(
fn
)
n

is uniformly bounded
in the space L2(0, T ;H1(Ω)), there exists a subsequence such that ∇fnk ⇀ ∇f
weakly in L2(ΩT ) and ‖f‖L2(0,T ;H1(Ω)) ≤ lim infk→∞ ‖fnk‖L2(0,T ;H1(Ω)). Since C is
also a bounded set in W (0, T ))×L2(0, T ;H1(Ω)), we also proved that F restricted
to C is sequentially continuous in (L2(0, T ;H))2. For the fixed point strategy, it
remains to show the compactness of F(C). Since we work in metric spaces, proving
its sequential compactness is sufficient. The compactness of F1(C) is straightforward
due to the Aubin’s theorem. Let us further detail the proof for F2(C). Let {fn} be
a sequence in F2(C). It is associated with a sequence {(h̄n, f̄n} in C. The Aubin’s
compactness theorem let us ensure that there exists a subsequence, not renamed
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for convenience, and h̄ ∈ W (0, T ) + hD such that h̄n → h̄ in L2(0, T ;H) and
almost everywhere in ΩT . Thus we can follow the lines beginning just after (3.17)
for proving that fn → f in L2(0, T ;H). The sequential compactness of F2(C) in
L2(0, T ;H) is proven.

We now have the tools for using the Schauder’s fixed point theorem [13, Corollary
3.6]. There exists (h − hD, f − fD) ∈ C such that F(h, f) = (h, f). Then (h, f) is
a weak solution of problem (3.1)–(3.4).
Step 2: Maximum Principles. We are going to prove that for almost every
x ∈ Ω and for all t ∈ (0, T ),

δ1 ≤ h(t, x) ≤ h2.

First show that h(t, x) ≤ h2 a.e. x ∈ Ω and for all t ∈ (0, T ). We set

hm =
(
h− h2

)+ = sup(0, h− h2) ∈ L2(0, T ;V ).

It satisfies ∇hm = χ{h>h2}∇h and hm(t, x) 6= 0 if and only if h(t, x) > h2,
where χ denotes the characteristic function. Let τ ∈ (0, T ). Taking w(t, x) =
hm(t, x)χ(0,τ)(t) in (3.1) yields:∫ τ

0

φ〈∂th, hmχ(0,τ)〉V ′,V dt+
∫ τ

0

∫
Ω

δ∇h · ∇hm dx dt

+
∫ τ

0

∫
Ω

KTs(h)∇h · ∇hm dx dt+
∫ τ

0

∫
Ω

KTs(h)∇f · ∇hm dx dt

+
∫ τ

0

∫
Ω

QsTs(h)hm dx dt = 0;

that is,∫ τ

0

φ〈∂th, hm〉V ′,V dt+
∫ τ

0

∫
Ω

δχ{h>h2}|∇h|
2 dx dt

+
∫ τ

0

∫
Ω

KTs(h)χ{h>h2}|∇h|
2 dx dt+

∫ τ

0

∫
Ω

KTs(h)∇f · ∇hm(x, t) dx dt

+
∫ τ

0

∫
Ω

QsTs(h)hm(x, t) dx dt = 0.

(3.26)

To evaluate the first term in the left-hand side of above equation, we apply Lemma
2.1 with function f defined by f(λ) = λ−h2, λ ∈ R. We set W1(0, T ) := W (0, T )×
L2(0, T ;H1(Ω)). We write∫ τ

0

φ〈∂th, hm〉V ′,V dt =
φ

2

∫
Ω

(
h2
m(τ, x)− h2

m(0, x)
)
dx =

φ

2

∫
Ω

h2
m(τ, x) dx,

since hm(0, ·) =
(
h0(·)−h2(·)

)+ = 0. Moreover since Ts(h)χ{h>h2} = 0 by definition
of Ts, the three last terms in the left-hand side of (3.26) are null. Hence (3.26)
becomes

φ

2

∫
Ω

h2
m(τ, x) dx ≤ −

∫ τ

0

∫
Ω

δχ{h>h2}|∇h|
2 dx dt ≤ 0.

Then hm = 0 a.e. in ΩT .
Now we claim that δ1 ≤ h(t, x) a.e. x ∈ Ω and for all t ∈ (0, T ). We set

hm =
(
h− δ1

)− ∈ L2(0, T ;V ).

Let τ ∈ (0, T ). We recall that hm(0, ·) = 0 a.e. in Ω by the maximum principle satis-
fied by the initial data h0. Moreover,∇(h−δ1)·∇hm = χ{δ1−h>0}|∇(h−δ1)|2. Thus,
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taking w(t, x) = hm(x, t)χ(0,τ)(t) in (3.1) and w(t, x) = h2−δ1
h2

hm(x, t)χ(0,τ)(t) in
(3.2) and adding the two equations gives∫ τ

0

φ〈∂th, hm(x, t)〉V ′,V dt+
∫

Ωτ

(δ +KTs(h))∇h · ∇hm dx dt

−
∫

Ωτ

KTs(h)∇f · ∇hm dx dt+
∫

ΩT

(h2 − δ1)K∇f · ∇hm dx dt

−
∫

Ωτ

Ts(h)
h2 − δ1
h2

K∇h · ∇hm dx dt

+
∫

Ωτ

(
QsTs(h)

(
1− h2 − δ1

h2

)
hm −QfTf (h)

h2 − δ1
h2

hm

)
dx dt = 0.

By definition of Ts(h), Ts(h)χ{h<δ1} = h2− δ1, we can simplify the above equation
as follows

φ

2

∫
Ω

h2
m(τ, x)dx+

∫
Ωτ

χ{h<δ1}δ∇h · ∇h dx dt

+
∫

Ωτ

QfTf (h)χ{h<δ1}(δ1 − h)
h2 − δ1
h2

dx dt

+
∫

Ωτ

(h2 − δ1)
(
1− h2 − δ1

h2

)
χ{h<δ1}K∇h · ∇h dx dt

+
∫

Ωτ

χ{h<δ1}(h− δ1)Qs(h2 − δ1)
(
1− h2 − δ1

h2

)
dx dt = 0.

We first note that 1 − (h2 − δ1)/h2 ≥ 0. Since moreover Qf ≥ 0 and Qs ≤ 0, the
previous equation leads to

1
2

∫
Ω

h2
m(τ, x)dx ≤ 0

and then hm = 0 a.e. in ΩT .

4. Regularity result

Thanks to a generalization of the Meyer’s regularity result given in section 2,
we establish that the gradient of the solution belongs to the space (Lr(ΩT ))2, for
some r > 2. We remind that the exponent r depends only on coefficients (α, β)
determined by the elliptic operator A. We are going to precise this dependency with
respect to the physical parameters. In our particular case, the tensor A defined
in Lemma 2.2 is equal to K. Then it is symmetric and α = K−, β = K+ and
g(r) = ‖(∆)−1‖L(W−1,r(Ω),W 1,r

0 (Ω)). Thus we have, for any real number c > 0,

µ =
K− + c

K+ + c
and ν =

c

(K+ + c)
, (4.1)

the positivity of c ensuring ν < µ. If r > 2 is such that k(r) := g(r)(1−µ+ ν) < 1,
then the exponent r is appropriate. Conversely, being given r > 2, we can always
adjust K− and K+ so that k(r) = g(r)(1− µ+ ν) < 1 (since tensor K is assumed
to be symmetric). Let us detail this part. We take c > 0 and we fix r > 2. We
choose the physical parameters (K−,K+) is in the following way:

g(r)
(
1− K−

K+ + c

)
< 1, ∀c > 0 ⇐⇒

(
K+ + c

)
<

g(r)
g(r)− 1

K−, ∀c > 0.
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Letting c→ 0, we obtain

K+ <
g(r)

g(r)− 1
K−. (4.2)

The condition (4.2) implies a low spatial heterogeneity for the hydraulic conductiv-
ity tensor, so as the assumption (3.5).

Concerning the parabolic equation, the tensor A defined in Lemma 2.4 is equal to
(δId+Tl(h̄)K), then it is symmetric. Thereby, we have α = δ

φ , β = δ
φ +K+

(h2−δ1)
φ

and ĝ(r) = ‖P−1‖L(Yr,Xr). It follows that

µ̂ =
α+ ĉ

β + ĉ
=

δ + φĉ

δ + φĉ+K+(h2 − δ1)
and

ν̂ =
ĉ

(β + ĉ)
=

φĉ

δ + φĉ+K+(h2 − δ1)
, ∀ĉ > 0.

(4.3)

Since ĉ > 0, we obtain ν̂ < µ̂. If r ≥ 2 is such that k̂(r) := ĝ(r)(1− µ̂+ ν̂) < 1, the
exponent r is appropriate.

As previously, let r > 2, we can always adjust h2, δ1,K+ and δ such that k̂(r) =
ĝ(r)(1− µ̂+ ν̂) < 1. Namely, we impose(

δ +K+(h2 − δ1) + φĉ
)
<

ĝ(r)
ĝ(r)− 1

δ, ∀ĉ > 0

⇐⇒ K+ <
1

ĝ(r)− 1
× δ

h2 − δ1
− φĉ

h2 − δ1
, ∀ĉ > 0.

Letting ĉ→ 0, we obtain the following limitation for hydraulic conductivity inside
the aquifer,

K+(h2 − δ1)
δ

<
1

ĝ(r)− 1
. (4.4)

Let r1(K−,K+) > 2 be the biggest real number such that g(r1)(1−µ−ν) < 1 where
µ and ν are defined by (4.1) and we denote by r2(δ, δ1, h2,K+) > 2 the biggest real
number such that ĝ(r2)(1− µ̂− ν̂) < 1 where µ̂ and ν̂ are defined by (4.3). We set

r(δ, δ1, h2,K−,K+) = Inf(r1(K−,K+), r2(δ, δ1, h2,K+)). (4.5)

Proposition 4.1. Let (h, f) be a solution of (3.1)–(3.4) and r(δ, δ1, h2,K−,K+) >
2 be the real number determined by (4.5). Furthermore we assume that there exists
γ, 0 < γ < 1, such that the physical parameters satisfy (3.5) and

K+(h2 − δ1)
δ

≤ (1− γ)× (1− k(r))
g(r)

× (1− k̂(r))
ĝ(r)

× h2

h2 − δ1
. (4.6)

If (hD, fD) ∈ Lr(0, T ;W 1,r(Ω))2, ∂thD ∈ Lr(0, T ;W−1,r(Ω)), h0 ∈ W−1,2(Ω) and
(Qs, Qf ) ∈ Lr(ΩT )2, then ∇h and ∇h1 are in (Lr(ΩT ))2. Moreover, we have

‖∇h‖(Lr(ΩT ))2 ≤ C1(φ, h2, h0, hD, fD, Qs, Qf ,K−,K+, δ, δ1), (4.7)

‖∇f‖(Lr(ΩT ))2 ≤ C2(φ, h2, h0, hD, fD, Qs, Qf ,K−,K+, δ, δ1). (4.8)

Proof. We turn back to the construction of the solution in Step 1 of Theorem 3.1.
We recall that this solution appears as the fixed point of an application. In the
following lines, we thus give the tools for incorporating the Lr(ΩT ), r > 2, regularity
result in this construction process.
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We set W1(0, T ) := X(0, T ) × L2(0, T ;H1(Ω)). Let (M ′,M ′′) be two strictly
positive real numbers that we will define later. We set

W̃ =
{

(g, g1) ∈ (W1(0, T ) ∩
(
Lr(0, T ;W 1,r(Ω))

)2 : g(0) = h0,

(g|Γ, g1|Γ) = (hD, fD), ‖(g; g1)‖W1(0,T ) ≤ KM ,

‖∇g1‖(Lr(ΩT ))2 ≤M ′; ‖∇g‖(Lr(ΩT ))2 ≤M ′′
}
,

(4.9)

where KM depends on the constants C0 and DM defined in (3.25). Our goal is
to check that the application F defined in the first step of Theorem 3.1 satisfies
F(W̃ ) ⊂ W̃ . Applying Lemma 2.4 to (3.6), we deduce that

‖∇h‖(Lr(ΩT ))2

≤ ĝ(r)

(1− k̂(r))(β̂ + ĉ)

{ (h2 − δ1)
φ

(
K+‖∇f̄‖(Lr(ΩT ))2 + ‖Qs‖Lr(ΩT )

)
+ ‖∂thD‖Lr(0,T ;W−1,r(Ω))

+
1
φ
‖h0‖W−1,2(Ω) +

δ +K+(h2 − δ1)
φ

‖∇hD‖(Lr(ΩT ))2

}
.

(4.10)

In the same way, applying Lemma 2.2 to (3.7), we obtain

h2‖∇f‖(Lr(ΩT ))2

≤ g(r)
(1− k(r))(β + c)

(
(h2 − δ1)

(
K+‖∇h‖(Lr(ΩT ))2 + ‖Qs‖Lr(ΩT )

)
+ h2‖Qf‖Lr(ΩT ) + h2‖∇fD‖(Lr(ΩT ))2

)
.

(4.11)

So, taking into account (4.10), we infer from (4.11) that

‖∇f‖(Lr(ΩT ))2

≤ g(r)
(1− k(r))(β + c)

× ĝ(r)

(1− k̂(r))(β̂ + ĉ)
×

(h2 − δ1)2K2
+

φh2
‖∇f̄‖(Lr(ΩT ))2

+
g(r)

h2(1− k(r))(β + c)

{( (h2 − δ1)2 × ĝ(r)K+

φ(1− k̂(r))(β̂ + ĉ)
+ (h2 − δ1)

)
‖Qs‖Lr(ΩT )

+
(h2 − δ1)ĝ(r)K+

(1− k̂(r))(β̂ + ĉ)

( 1
φ
‖h0‖W 1,r(Ω) +

δ +K+(h2 − δ1)
φ

‖∇hD‖(Lr(ΩT ))2

+ ‖∂thD‖Lr(0,T ;W−1,r(Ω))

)
+
(
h2‖Qf‖Lr′ (ΩT ) + ‖∇fD‖(Lr(ΩT ))2

)}
.

(4.12)

Let γ be such that 0 < γ < 1 and assume that φ, h2, K−, K+, δ and δ1 satisfy, for
any positive real numbers c and ĉ,

g(r)
(1− k(r))(β + c)

× ĝ(r)

(1− k̂(r))(β̂ + ĉ)

(h2 − δ1)2K2
+

φh2
≤ 1− γ. (4.13)
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Using β = K+ and β̂ = δ
φ + K+

(h2−δ1)
φ , it is easy to check that assumption (4.6)

implies (4.13), indeed (4.6) holds if and only if

K+ ≤ (1− γ)× (1− k(r))
g(r)

× (1− k̂(r))
ĝ(r)︸ ︷︷ ︸

η<1

× h2

h2 − δ1
× δ

(h2 − δ1)

which in turn implies

K+ ≤ (1− γ)× (1− k(r))
g(r)

× (1− k̂(r))
ĝ(r)

× h2

h2 − δ1 − ηh2
× δ

(h2 − δ1)

=⇒ K+(1− η h2

h2 − δ1
) ≤ (1− γ)× (1− k(r))

g(r)
× (1− k̂(r))

ĝ(r)
× δh2

(h2 − δ1)2

=⇒ K+ ≤ (1− γ)× (1− k(r))
g(r)

× (1− k̂(r))
ĝ(r)

×
h2

(
δ +K+(h2 − δ1)

)
(h2 − δ1)2

=⇒ (4.13).

The constant M ′ is chosen such that the initial and boundary conditions and the
source terms satisfy

1
γ
× g(r)
h2(1− k(r))(β + c)

{ (h2 − δ1)ĝ(r)K+

(1− k̂(r))(β̂ + ĉ)

( (h2 − δ1)
φ

‖Qs‖Lr(ΩT )

+
1
φ
‖h0‖W 1,r(Ω) +

δ +K+(h2 − δ1)
φ

‖∇hD‖(Lr(ΩT ))2

+ ‖∂thD‖Lr(0,T ;W−1,r(Ω))

)
+
(

(h2 − δ1)‖Qs‖Lr(ΩT ) + h2‖Qf‖Lr(ΩT ) + h2‖∇fD‖Lr(ΩT )2

)}
≤M ′.

(4.14)

Considering (4.12), (4.13) and (4.14), we deduce that

‖∇f‖(Lr(ΩT ))2 ≤M ′,

and
‖∇h‖(Lr(ΩT ))2

≤M ′′ :=
ĝ(r)

(1− k̂(r))(β̂ − ĉ)

( (h2 − δ1)
φ

(
K+M

′ + ‖Qs‖Lr(ΩT )

+ ‖∂thD‖Lr(0,T ;W−1,r(Ω))

)
+

1
φ
‖h0‖W 1,r(Ω)

+
δ +K+(h2 − δ1)

φ
‖∇hD‖(Lr(ΩT ))2

)
.

(4.15)

Let W̃ be the bounded closed convex defined by (4.9), (4.14) and (4.15). In-
deed, let us check that D is closed. Let (hn, fn)n be a sequence of D such that
(hn, fn) → (h, f) in L2(ΩT ). We know that ∇hnk ⇀ ∇h weakly in L2(ΩT ) and
∇fnk ⇀ ∇f weakly in L2(ΩT ). Since the sequence

(
∇hnk ,∇fnk

)
k

is uniformly
bounded in the space (Lr(ΩT ))2 with r > 2, then (∇h,∇f) ∈ (Lr(ΩT ))2, moreover
‖∇h‖(Lr(ΩT ))2 ≤ M ′′ and ‖∇f‖(Lr(ΩT ))2 ≤ M ′. We proved that F(W̃ ) ⊂ W̃ . It
follows from the Schauder theorem that there exist (h̃, f̃) ∈ W̃ such that F(h̃, f̃) =
(h̃, f̃). This fixed point of F is a weak solution of the truncated problem. The proof
of the maximum principle then remains of course unchanged. �
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5. Uniqueness

We are now able to establish the result of uniqueness yielding the wellposedness
of the problem in the space W (0, T ).

Theorem 5.1. Let (h2,K−,K+, δ, δ1) ∈ (R+
∗ )5 satisfying (3.5) and (4.2), (4.4) and

(4.6) for r = 4. If h0 ∈ W 1,4(Ω), (hD, fD) ∈ L4(0, T ;W 1,4(Ω))2 and (Qs, Qf ) ∈
L4(ΩT )2, then the solution of the system (3.1)-(3.4) is unique in

(
W (0, T ) +hD

)
×(

L2(0, T ;H1(Ω)) + fD
)
.

Remark 5.2. Assumption (4.6) is stronger than (4.4) except when the thickness
of freshwater zone inside the aquifer, δ1, is sufficiently large.

Proof of Theorem 5.1. Let (h, f) and (h̄, f̄) be two solutions of (3.1)-(3.4). Setting
u = h− h̄ ∈W (0, T ) and v = f − f̄ ∈ L2(0, T ;V ), (u, v) is a solution of the system

φ∂tu−∇ · (δ +KTs(h̄))∇u−∇ · (K(Ts(h)− Ts(h̄))∇h)

+∇ · (K(Ts(h)− Ts(h̄))∇f) +∇ · ((KTs(h̄)∇v) = 0,

−h2∇ · (K∇v) +∇ · (K(Ts(h)− Ts(h̄))∇h) +∇ · (KTs(h̄)∇u) = 0.

We point out that all the estimates previously established for time T , are valid for
any t ≤ T . Furthermore h, h̄ ∈ [δ1, h2], thus Ts(h) − Ts(h̄) = h̄ − h = −u and the
previous system can be simplified as follows:

φ∂tu−∇ · (δ +KTs(h̄))∇u+∇ · (Ku∇h)−∇ · (Ku∇f) +∇ · ((KTs(h̄)∇v) = 0,

−h2∇ · (K∇v)−∇ · (Ku∇h) +∇ · (KTs(h̄)∇u) = 0.

Let t ∈ [0, T ]. Using the variational formulation of two latter equations in Ωt :=
(0, t)× Ω, we obtain, for any (w1, w2) ∈ (W (0, T ))2:

φ

∫
Ωt

∂tuw1 dx ds+
∫

Ωt

(
(δ +KTs(h̄))∇u · ∇w1 −Ku∇h · ∇w1 +Ku∇f · ∇w1

−KTs(h̄)∇v · ∇w1

)
dx ds = 0,

h2

∫
Ωt

K∇v · ∇w2 dx ds+
∫

Ωt

Ku∇f · ∇w2 dx ds−
∫

Ωt

KTs(h̄)∇v · ∇w2 dx ds = 0.

Taking w1 = u and w2 = v, since u(t = 0, .) = 0 a.e. on Ω, we obtain after
summation of the two previous equations

φ

2

∫
Ω

u2(t, x) dx+
∫

Ωt

(δ +KTs(h̄))∇u · ∇u dx ds+ h2

∫
Ωt

K∇v · ∇v dx ds

− 2
∫

Ωt

KTs(h̄)∇v · ∇u dx ds+
∫

Ωt

Ku∇f · ∇u dx ds

+
∫

Ωt

Ku∇h · ∇(v − u) dx ds = 0;

that is
φ

2

∫
Ω

u2(t, x) dx+
∫

Ωt

δ∇u2 dx ds+
∫

Ωt

KTs(h̄)∇(u− v) · ∇(u− v) dx ds

+
∫

Ωt

h̄K∇v · ∇v dx ds+
∫

Ωt

Ku∇(f − h) · ∇u dx ds+
∫

Ωt

Ku∇h · ∇v dx ds = 0.
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Thanks to the definition of Ts(h̄), we obtain

0 ≤
∫

Ωt

KTs(h̄)∇(u− v) · ∇(u− v) dx ds

and furthermore, since h̄ ∈ [δ1, h2],

δ1K−

∫
Ωt

|∇v|2 dx ds ≤
∫

Ωt

h̄K∇v · ∇v dx ds.

We have also∣∣ ∫ t

0

∫
Ω

Ku∇(f − h) · ∇u dx ds
∣∣

≤
∫ t

0

K+

(∫
Ω

u4 dx
)1/4(∫

Ω

|∇(f − h)|4 dx
)1/4(∫

Ω

|∇u|2 dx
)1/2

ds.

(5.1)

Using Proposition 4.1 for r = 4 leads to(∫
ΩT

|∇h|4 dx dt
)1/4

≤ C4,1 and
(∫

ΩT

|∇f |4 dx dt
)1/4

≤ C4,2,

hence (∫
ΩT

|∇(f − h)|4 dx dt
)1/4

≤ C4,1 + C4,2 := C4.

Also the Gagliardo-Nirenberg inequality for r = 4 can be written as(∫
Ω

|u|4 dx
)1/4

≤ CG‖u‖1/2L2(Ω)‖∇u‖
1/2
(L2(Ω))2 .

Combining Gagliardo-Nirenberg and Young inequalities applied to (5.1), we obtain∣∣ ∫
Ωt

Ku∇(f − h) · ∇u dx ds
∣∣

≤ K+

(∫ t

0

‖u‖2L2(Ω)‖∇u‖
2
(L2(Ω))2dt

)1/4(∫
ΩT

|∇(f − h)|4 dx ds
)1/4

×
(∫

Ωt

|∇u|2 dx ds
)1/2

≤ K+CGC4 max
t∈(0,t)

‖u‖1/2L2(Ω)

(∫
Ωt

|∇u|2 dx ds
)3/4

≤ K+CGC4

(1
8
ε−3
1 max

t∈(0,t)
‖u‖2L2(Ω) + 2ε1

∫
Ωt

|∇u|2
)
, ε1 > 0.

As the same time,∣∣ ∫ t

0

∫
Ωt

Ku∇h · ∇v dx ds
∣∣

≤
∫ t

0

K+(
∫

Ω

u4 dx)1/4
(∫

Ω

|∇h|4 dx
)1/4(∫

Ω

|∇v|2 dx
)1/2

dt

≤ K+CG

∫ t

0

‖u‖1/2L2(Ω)‖∇u‖
1/2
(L2(Ω))2

(∫
Ω

|∇h|4
)1/4(∫

Ω

|∇v|2 dx
)1/2

ds

≤ K+CG

(∫ t

0

‖u‖2L2(Ω)‖∇u‖
2
(L2(Ω))2 ds

)1/4(∫
ΩT

|∇h|4 dx ds
)1/4
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×
(∫

Ωt

|∇v|2 dx ds
)1/2

≤ K+CGC4,1 max
t∈(0,t)

‖u‖1/2L2(Ω)

(∫
Ωt

‖∇u‖2 dx ds
)1/4(∫

Ωt

|∇v|2 dx ds
)1/2

≤ K+CGC4,1

( 1
2ε1

max
t∈(0,t)

‖u‖L2(Ω)

(∫
Ωt

|∇u|2 dx ds
)1/2

+
ε1
2

∫
Ωt

|∇v|2 dx ds
)

≤ K+CGC4,1

( 1
16ε31

max
t∈(0,t)

‖u‖2L2(Ω) + ε1

∫
Ωt

|∇u|2 dx ds
)

+
K+CGC4,1ε1

2

∫
Ωt

|∇v|2 dx ds.

Finally, we obtain
φ

2

∫
Ω

u2(t, x) dx+ (δ −K+CGε1(2C4 + C4,1))
∫

Ωt

|∇u|2 dx ds

+ (δ1K− −
K+CGC4,1

2
ε1)
∫

Ωt

|∇v|2 dx ds

≤ K+

8ε31
CG(C4 +

C4,1

2
) max
t∈(0,T )

∫
Ω

u2(t, x) dx.

(5.2)

Fix ε1 > 0 such that

δ −K+ε1CG(2C4 + C4,1) > 0 and δ1K− −
K+C4,1CG

2
ε1 > 0.

Hence, passing to the maximum for t ∈ (0, T ) on the left-hand side of (5.2), we
obtain

φ

2
max
t∈(0,T )

∫
Ω

u2(t, x) dx ≤ K+

8ε31
CG(C4 +

C4,1

2
) max
t∈(0,T )

∫
Ω

u2(t, x) dx;

that is

(
φ

2
− K+

8ε31
CG(C4 +

C4,1

2
)) max
t∈(0,T )

∫
Ω

u2(t, x) dx ≤ 0. (5.3)

If φ satisfies
φ

2
−K+CG

16ε31
(2C4+C4,1) > 0, ε1 < inf

( 2δ1K−
K+C4,1CG

,
δ

K+(2C4 + C4,1), CG)

)
, (5.4)

the relation (5.3) implies that maxt∈(0,T )

∫
Ω
u2(t, x) dx = 0 and so u = 0 a.e. in

ΩT .
This information combined with the inequality (5.2) yields

∫
ΩT
|∇v|2dx dt = 0.

Since v ∈ L2(0, T ;H1
0 (Ω)), we conclude that v = 0 a.e. in ΩT .

Conditions (5.4) may look very restrictive. However, we can pick the coefficient φ
arbitrary large (by introducing an appropriate time scaling), so that the conditions
(5.4) can indeed be satisfied. Setting

t0 =
T × 8ε31

K+CG(2C4 + C4,1)
,

we proved the uniqueness for the short time t ∈ [0, t0]. But taking t = t0 as new
initial time, the uniqueness is obtained for all t0 ≤ t ≤ 2t0. Using this observation
inductively, we derive the uniqueness on the whole range of study [0, T ]. The proof
of Theorem 5.1 is complete. �
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