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Abstract. We study the Landau-Lifshitz-Gilbert equation in a composite fer-

romagnetic medium made of two different materials with highly contrasted
properties. Over the so-called matrix domain, the effective field, the demagne-

tizing field and the bulk anisotropy field are scaled with regard to a parameter ε

representing the size of the matrix blocks. This scaling preserves the physics of
the magnetization as ε tends to zero. Using homogenization theory, we derive

the corresponding effective model. To this aim we use the concept of two-

scale convergence together with a new homogenization procedure for handling
with the nonlinear terms. More precisely, an appropriate dilation operator is

applied in a embedded cells network, the network being constrained by the

microscopic geometry. We prove that the less magnetic part of the medium
contributes through additional memory terms in the effective field.

1. Setting of the problem. Heterogeneous media are commonly adopted for elec-
tromagnetic applications in many branches of industry and science due to their abil-
ity to be tailored to meet specific requirements. For the reduction of eddy current
loss, medium to high frequency components for electrical and electronic devices are
frequently composed of heterogeneous soft magnets. Examples are the Mn-Zn fer-
rites, widely used in power electronics for transformers and inductor cores, or the
soft magnetic composites, very promising for high speed electrical machines (see for
instance part 1 in [3]). All these materials are designed for having both good mag-
netic properties and a quite high macroscopic resistivity. Nevertheless the interpre-
tation of the experimental data is very difficult because of their sensitivity to many
error sources. The development of analytical models for the determination of the

2010 Mathematics Subject Classification. Primary: 35Q60, 35B27; Secondary: 35K55, 82D40,
78A25.

Key words and phrases. Homogenization, composite ferromagnetic medium, Landau-Lifshitz-

Gilbert equation, two-scale convergence, dilation operator.
This work was partially supported by the Volubilis project MA/14/301.
∗Corresponding author: Catherine Choquet.

35

http://dx.doi.org/10.3934/dcdss.2018003


36 CATHERINE CHOQUET, MOHAMMED MOUMNI AND MOUHCINE TILIOUA

effective properties of heterogeneous materials has a long tradition. More recently,
thanks to the progress in computing power, the modeling of the electromagnetic be-
havior of heterogeneous media has been also faced by numerical approaches. As a
drawback, the numerical implementation leads to exorbitant computational burden
when fine spatial discretization have to coexist with the macroscopic sample size.

In the general context of problems described by differential equations in finely
periodic structures, homogenization techniques have been widely applied to deter-
mine effective properties. Anyway, such asymptotic processes are performant and
quite straightforward when dealing with global physical phenomena, while they
show some limits when local effects are not negligible, even if local correctors are
considered.

The main objective of this paper is to perform a rigorous derivation of the homog-
enized Landau-Lifshitz-Gilbert (LLG) equation associated to a highly contrasted
composite ferromagnetic material. This is a typical example where a nonlinear and
multiscale problem leads to difficulties for the justification of the effective model.
We develop a new method, based on the use of an appropriate sequence of embed-
ded cells together with dilation operators. The homogenization of the LLG equa-
tion is seldom addressed. A layered ferromagnetic medium was considered in [14].
The effective behavior of the demagnetization field operator in periodically perfo-
rated domains is studied in [23] using the classical two-scale convergence method.
Some nonlinear terms in the LLG model have the same structure than ones of the
Ginzburg-Landau functional. We thus also mention [18], [21], [7] and the references
therein.

The ferromagnetic medium is assumed to have two distinct components. The
matrix part consists of disjoint blocks where the dynamics are slow, surrounded by
a thin layer of another material with better magnetic properties. More precisely, the
medium occupies the set Ω ⊂ R3 which is assumed to be a bounded, two-connected
domain with a periodic structure controlled by a parameter ε > 0 which represents
the size of each block of the matrix (see also Figure 1). The standard period is a cell
Q consisting of a two-connected matrix block Qm with external smooth boundary
∂Qm, surrounded by a two-connected domain Qf . The ε-composite medium consists
of copies εQ covering Ω. We denote by ∂Ω the external (Lipschitz) boundary of Ω,
by γε the matrix boundary and by n and νε the corresponding exterior normals.
The exterior normal to Qm will be denoted by ν. For any ε > 0, we denote by Ωεm
the matrix part of the domain and by Ωεf the other part, so that

Ωεm = Ω ∩
{⋃
ξ∈A

ε(Qm + ξ)
}
, Ωεf = Ω \ Ωεm, Γε = Ω ∩

{⋃
ξ∈A

ε(∂Qm + ξ)
}

where A is an appropriate infinite lattice. We denote by J = (0, T ) the time interval
of interest, T > 0. For the sake of the simplicity we assume |Q| = 1, more precisely

Q = [−1/2; 1/2]3.

Let us now describe the PDEs system modeling the behavior of the magnetization
in such a medium. The magnetization vector Mε ∈ R3 is in the form

Mε = χεmm
ε + χεfM

ε

where χεm (resp. χεf ) is the characteristic function of Ωεm (resp. Ωεf ). The magneti-
zation is associated with the nonconvex constraint
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Figure 1. An example of periodic structure for the domain and
the standard cell

|Mε| =

{
1 in Ω,

0 in R3 \ Ω.
(1)

The time evolution of the magnetization vector may be described by the LLG
equation ([2], [15]):

1

1 + α2

(
∂tM

ε − αMε × ∂tMε
)

= −Mε ×Hεe(Mε) in Ω× J. (2)

The term parameterized by a factor α describes Gilbert damping torque and the
right-hand side accounts for torque by the effective field Hεe(Mε) which is given by

Hεe(Mε) = div
(
Aε∇Mε

)
+ φεva(Mε) +Hεd(Mε). (3)

Tensor Aε satisfies

χεm(x)Aε(x) = ε2χεm(x)Am(x, x/ε), χεf (x)Aε(x) = χεf (x)Af (x)

where Ak = (Akij)1≤i,j≤3, k = m, f , is a 3× 3 symmetric, positive-definite matrix

with coefficients valued in R3 and of class C∞(Ω) ⊗ C∞# (Q)1. We assume that Ak,
k = m, f , is uniformly coercive, i.e., there exists a constant A− > 0 such that, for
any (x, y) in Ω×Q, for any (ζ1, ζ2, ζ3) in R3,

3∑
i,j=1

Akij(x, y)ζiζj ≥ A−(

3∑
i=1

ζ2
i ) = A−|ξ|2.

We also assume that Am is an admissible test function for the two-scale convergence
(in the sense of [25]). The term φεva expresses the effects of the volume anisotropy
energy. It reads

φεva(Mε) = Kε
v

(
Mε − (Mε · u)u

)
where Kε

v > 0 is a scalar bounded function and the constant vector u is the direc-
tion of the easy magnetization axis. In what follows we thus simply assume that
φεva(Mε) = ∇Λ(Mε) is a continuous gradient function such that 0 ≤ Λ(u) ≤ Λ∞,
Λ∞ ∈ R+, for any u ∈ S2 and

φεva(Mε) = χεm(x)φva,m(x, x/ε,mε) + χεf (x)φva,f (x,M ε),

1All along the paper we use the subscript # to specify that we deal with Q-periodic functions.
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function φva,m being moreover periodic with regard to its second variable. In the
magnetostatic approximation context ([5]), the demagnetizing field Hεd(Mε) satis-
fies, in J × R3, the equation curlHεd = 0 and the stray field equation

div
(
µεHεd + χΩMε

)
= 0

where µε is the permeability. Classical models keeps the latter equations or simply
assume that Hεd is some potential depending on Mε. We consider both of these
modelings by assuming

Hεd = ∇Ξε(Mε) + Hε

∇Ξε(Mε) = εχεm∇Ξm(mε) + χεf∇Ξf (M ε)
(4)

where each continuous gradient function satisfies 0 ≤ Ξk(u) ≤ Ξ∞, Ξ∞ ∈ R+, for
any u ∈ S2, k = f,m, and where Hε = εχεmh

ε + (χεf + χR3\Ω)Hε satisfies

curl(Hε) = 0, (5)

div
(
εχεmh

ε + (χεf + χR3\Ω)Hε + εχεmm
ε + χεfM

ε
)

= 0. (6)

For the sake of the simplicity, we have assumed a constant permeability. We shall
consider a potential formulation of this problem. Indeed, due to (5), there exists
scalar potentials pε and P ε such that

Hε = εχεm∇pε + (χεf + χR3\Ω)∇P ε.

In view of (6), (pε, P ε) is defined by

div
(
ε2χεm∇pε + (χεf + χR3\Ω)∇P ε + εχεmm

ε + χεfM
ε
)

= 0. (7)

We complete the model with initial, boundary and transfer conditions. The
initial data for the magnetization is

Mε(0, x) = Minit(x), |Minit(x)|2 = 1 a.e. in Ω. (8)

The stay field equation (7) is completed by an initial condition

ε2χεmp
ε + (χεf + χR3\Ω)P ε = Pinit at t = 0,

subject to the constraint

∆Pinit + div(χΩMinit) = 0.

The external boundary condition is a no-flux type

∂nAεM
ε = 0 on J × ∂Ω. (9)

At the interface Γε between the two parts of the composite medium, we assume the
continuity of the magnetization

mε = M ε on J × Γε (10)

and the conservation of the scaled fluxes across Γε as follows

ε2Aεm∇mε · νε = −Aεf∇M ε · νε on J × Γε, (11)

pε = P ε, (ε2∇pε + εmε) · νε = −(∇P ε +M ε) · νε on J × Γε. (12)
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Gathering all these elements, we finally get the following system

1

1 + α2

(
∂tM

ε − αMε × ∂tMε
)

= −Mε ×Hεe(Mε) in Ω× J,

Mε = χεmm
ε + χεfM

ε, |Mε| = 1,

Hεe(Mε) = div
(
Aε∇Mε

)
+ φεva(Mε) +Hεd(Mε),

φεva(Mε) = χεm(x)φva,m(x, x/ε,mε) + χεf (x)φva,f (x,M ε),

Hεd(Mε) = ∇Ξε(Mε) + Hε,

∇Ξε(Mε) = εχεm∇Ξm(mε) + χεf∇Ξf (M ε),

Hε = εχεm∇pε + (χεf + χR3\Ω)∇P ε,
div
(
ε2χεm∇pε + (χεf + χR3\Ω)∇P ε + εχεmm

ε + χεfM
ε
)

= 0 in Ω× J,

Mε(0, x) = Minit(x) in Ω, |Minit(x)|2 = 1 a.e. in Ω,

ε2χεmp
ε + (χεf + χR3\Ω)P ε = Pinit in Ω, at t = 0,

∆Pinit + div(χΩMinit) = 0,

∂nAεM
ε = 0 on J × ∂Ω,

mε = M ε on J × Γε,

ε2Aεm∇mε · νε = −Aεf∇M ε · νε on J × Γε,

pε = P ε, (ε2∇pε + εmε) · νε = −(∇P ε +M ε) · νε on J × Γε.

(13)

The aim of the paper is to derive an effective (homogeneous) model for this
composite microscopic problem, by letting ε→ 0. We prove that it is still a Landau-
Lifshitz-Gilbert equation, but with a new source term which is a memory term
produced by the slow dynamics part of the microscopic model. On the contrary,
the structure of the associated stray field equation is not modified by the matrix
part of the microscopic model.

We use various tools of the homogenization theory. We begin by exploiting the
periodic structure of the problem through two-scale convergence arguments ([20, 4]).
The process let us exhibit the existence of memory terms due to the less conductive
part of the domain in the effective model. But the ε-scaling in the matrix part of
(13) clearly does not allow to get compactness results and to pass to the limit in the
nonlinear terms. We thus adopt another approach. On the one hand, we introduce
a dilation operator, in the spirit of the periodic unfolding method of e.g. [11]. The
ε-scaling disappears, at the expense of doubling the space dimension. Classical
compactness results thus remain inaccessible. On the other hand, we thus exploit
the periodic structure in a new way. It is based on the intuition that the lattice
of matrix blocks tends to a set of points which is dense in Ω as ε tends to zero.
Around any of these points, we succeed in constructing a sequence of embedded
grids where we restrict the dimension and pass to the limit. We finally show that
the obtained information is sufficient to identify the limit problem in the whole
space. The method is original, even if a so-called density argument was already
mentioned (but not detailed neither used) in [8].

The outline of this work is the following. The effective model is provided in the
next section. The remaining part of the paper consists in its justification. For the
sake of completeness, in Section 3, we begin by checking that the effective model may
be computed through formal asymptotic expansions. Section 4 is devoted to the
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rigorous justification of the upscaling process, namely by proving that a subsequence
of solutions of Problem (13) converges in some sense to a solution of the effective
model. After stating uniform estimates, we apply two-scale convergence results to
some extension of the solution in the most conductive part of the domain, Ωεf . Next
we introduce the dilation operator, the embedded grids approach and the ‘density’
arguments for the solution in Ωεm.

2. Main result. Let (vj)j=1...3 and (wj)j=1...3 respectively the Q-periodic solu-
tions of the following problems{

−divy(Af (∇yvj + ej)) = 0 in Ω×Qf ,
Af (∇yvj + ej) · ν = 0 on Ω× ∂Qf ,

(14){
−divy(∇ywj + ej) = 0 in Qf ,
∇ywj · ν = −ej · ν on ∂Qf ,

(15)

where the vector ej , 1 ≤ j ≤ 3, is the jth unit vector of the canonical orthonormal
basis. We define AH and WH by

AHij =

∫
Qf

Af (ei +∇yvi) · (ej +∇yvj) dy, 1 ≤ i, j ≤ 3, (16)

WH
ij = |Qf |+

∫
Qf

∂iwj(y) dy, 1 ≤ i, j ≤ 3, (17)

The effective magnetization vector M and the effective demagnetizing field P satisfy

|Qf |∂tM − α|Qf |M × ∂tM = −(1 + α2)M ×
(

div(AH∇M) + |Qf |φva,f (M)

+Ξ′f (M)WH∇M +WH∇P −
∫
Qm

divy(Am(x, y)∇ym0) dy
)

in Ω× J, (18)

AH∇M · n = 0 on ∂Ω× J, (19)

div
(
χR3\Ω∇P + χΩW

H(∇P +M)
)

= 0 in R3 × J, (20)

Moreover the source terms involvingm0 and p0 are computed thanks to the following
problem:

∂tm0 − αm0 × ∂tm0

= −(1 + α2)m0 ×
(

divy(Am(x, y)∇ym0) + φva,m(x, y,m0)

+∇y(Ξm(y,m0)) +∇yp0

)
in Ω×Qm × J, (21)

divy(∇yp0 +m0) = 0 in Ω×Qm × J, (22)

m0 = M and p0 = P on ∂Qm. (23)

The problem is completed by the initial conditions:

M(x, 0) = m0(x, y, 0) = Minit(x), P (x, 0) = p0(x, y, 0) = Pinit(x) on Ω×Qm.
(24)

Remark 1. Inspection of the effective model reveals that the resulting homogenized
problem is a LLG type model that contains a term representing memory effects
which could be seen as a new magnetic excitation in the effective field. The memory
term is induced by the slow dynamics part of the model, and it appears solely in
the magnetization equation. The limiting stray field equation also depends on a
new permeability, namely a kind of averaged permeability.
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The effectiveness of the latter model is justified by a convergence result. Namely,
we use the concept of two-scale convergence introduced by G. Nguetseng [20] and
developed by G. Allaire [4]. We refer to [22] (see Subsection 2.5.2) for the time-
dependent settings. Let Ω′ be an open subset in R3. A sequence of functions (vε) in
L2(Ω′×J) is said to two-scale converge to a limit v0 belonging to L2(Ω′×J ;L2

#(Q)),

if for any function Ψ(x, y, t) ∈ D(Ω′ × J,C∞# (Q)) we have

lim
ε→0

∫
Ω′×J

vε(x, t)Ψ
(
x,
x

ε
, t
)
dx dt =

∫
Ω′×J

∫
Q

v0(x, y, t)Ψ(x, y, t)dx dy dt.

The convergence result is denoted by vε
2
⇀ v0.

We have the following properties (see [4]).

Proposition 1. (i) From each bounded sequence (vε) in L2 (Ω′ × J) we can ex-
tract a subsequence which two-scale converges.

(ii) Let (vε) be a bounded sequence in H1(Ω′ × J) which converges weakly to v in
H1(Ω′×J). Then (vε) two-scale converges to v and there exists a function v1 ∈
L2(Ω′ × J,H1

#(Q)) such that, up to a subsequence, (∇vε) two-scale converges
to ∇xv +∇yv1.

(iii) Let (vε) be a sequence in L2(Ω′×J) which two-scale converges to v0 ∈ L2(Ω′×
J ×Q). Assume that

lim
ε→0
‖vε‖L2(Ω′×J) = ‖v0‖L2(Ω′×J×Q).

Then for any sequence (wε) ⊂ L2(Ω′ × J) which two-scale converges to w0 ∈
L2(Ω′ × J ×Q), we have

vε(x, t)wε(x, t) ⇀

∫
Q

v0(x, y, t)w0(x, y, t) dy in D′(Ω′ × J).

Remark 2. Choosing Ω′ = Ω (resp. Ω′ = R3) in the definition and the properties
above, we obtain the functional setting which is well suited for the study of the
magnetization vector Mε (resp. of the demagnetizing field Hε).

The main result of the paper is the following.

Theorem 2.1. Let (Mε,Hε) be a solution of Problem (13) for ε > 0. There exists
a subsequence of an appropriate extension of χεf (Mε,Hε) on the one hand, and of

(Mε,Hε) on the other hand, which two-scale converges to a solution (M,P ) and
(m0, p0) of the effective model (18)-(24).

3. Formal asymptotic expansions. In the present section, purely formal com-
putations are developed for the guess of the effective model. These formal results
are made rigorous by the limit process stated and proved in the next section.

We now use formal asymptotic expansions. It means that, setting y = x/ε for
the fast space variable, we assume the following forms for the solutions:

χεf (x)M ε(x, t) = χf (y)
∑
i≥0

εiMi(x, y, t),

χεm(x)mε(x, t) = χm(y)
∑
i≥0

εimi(x, y, t),

(χεf + χR3\Ω)(x)P ε(x, t) = (χΩ(x)χf (y) + χR3\Ω(x))
∑
i≥0

εiPi(x, y, t),



42 CATHERINE CHOQUET, MOHAMMED MOUMNI AND MOUHCINE TILIOUA

χεm(x)pε(x, t) = χm(y)
∑
i≥0

εipi(x, y, t).

where we have denoted by χf (resp. χm) the characteristic function of Qf (resp.
Qm). We insert these expansions in (13). Selecting the terms according to the pow-
ers of epsilon, we obtain the following cascade of equations. First, we consider the
constraint (1). Whatever f ε = M ε or f ε = mε, we infer from (1) that

∑3
i=1 f0

2
i = 1

and
∑3
i=1 f0if1i = 0, that is

|M0| = 1 and M0 is orthogonal to M1 in Ωεf × J, (25)

|m0| = 1 and m0 is orthogonal to m1 in Ωεm × J. (26)

Next, terms of order ε−2, ε−1 and ε0 of (2) in Ωεf × J give the following three
equations:

0 = −(1 + α2)M0 × divy(Af∇yM0), (27)

0 = −(1 + α2)M0 ×
(

divx(Af∇yM0) + divy(Af∇xM0 +Af∇yM1)
)

−(1 + α2)M1 × divy(Af∇yM0)− (1 + α2)M0 ×∇yΞf (M0)

−(1 + α2)M0 ×∇yP0, (28)

∂tM0 − αM0 × ∂tM0

= −(1 + α2)M0 ×
(

divx(Af (∇xM0 +∇yM1))

+divy(Af (∇xM1 +∇yM2))
)
− (1 + α2)M1 ×

(
divx(Af∇yM0)

divy(Af (∇xM0 +∇yM1))− (1 + α2)M2 × divy(Af∇yM0)

−(1 + α2)M0 ×
(
∇xΞf (M0) + Ξ′f (M0)∇yM1 + Ξ′′f (M0)M1∇yM0

+Ξ
(3)
f (M0)M1M2∇yM0

)
− (1 + α2)M0 × φva,f (M0)− (1 + α2)M0 ×

(∇xP0 +∇yP1)− (1 + α2)M1 ×∇yP0. (29)

The same process in Ωεm × J gives:

∂tm0 − αm0 × ∂tm0 = −(1 + α2)m0 × divy(Am(x, y)∇ym0)− (1 + α2)m0

×φva,m(x, y,m0)− (1 + α2)m0 ×∇y(Ξm(y,m0))− (1 + α2)m0 ×∇yp0. (30)

The expansion of the boundary conditions for M ε and mε on Ω × ∂Qm × J leads
to:

Mi = mi, i ≥ 0, (31)

Af (x)∇yM0 · ν = 0, (32)

Af (x)(∇xM0 +∇yM1) · ν = 0, (33)

Af (x)(∇xM1 +∇yM2) · ν = −Am(x, y)∇ym0 · ν. (34)

The same work on the equations characterizing the demagnetizing field gives:

∆yP0 = 0, (35)

divx(∇yP0) + divy(∇xP0) + ∆yP1 + divy(χΩM0) = 0, (36)

∆xP0 + divx(∇yP1) + divx(χΩM0) + divy(∇xP1 +∇yP2 + χΩM1) = 0, (37)

divy(∇yp0 +m0) = 0, (38)

Pi = pi, i ≥ 0, (39)
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(∇xP1 +∇yP2 +M1) · ν = −(∇yp0 +m0) · ν, (40)

∇yP0 · ν∂Qf = 0, (41)

(∇xP0 +∇yP1 + χΩM0) · ν∂Qf = 0, (42)

the first three equations being satisfied in
(
((R3 \ Ω) × Q) ∪ (Ω × Qf )

)
× J , the

fourth one in Ω×Qm×J , the next two ones in Ω×∂Qm×J , and the last two ones
in
(
(R3 \ Ω)× ∂Q× J

)
∪
(
Ω× ∂Qf × J

)
.

Now we exploit the latter equations. First we infer from (27) completed with
(32) that M0 does not depend on the fast variable y. The same holds true for P0

in view of (35) and (41):

M0(x, y, t) = M0(x, t) in Ω× J, P0(x, y, t) = P0(x, t) in R3 × J.

Then we characterize function M1. On the one hand, the variational formulation
corresponding to (28) with (33) is∑

i,j

∫
Ω×J

M0 ×
(∫

Qf

Af ij
(
∂xiM0 + ∂yiM1

)
∂yjΦ dy

)
dxdt = 0

for any test function Φ ∈ L2(Ω × J ;H1(Qf )). On the other hand, in view of
assertions (25), we also have∑

i,j

∫
Ω×J

M0 ·
(∫

Qf

Af ij
(
∂xiM0 + ∂yiM1

)
∂yjΦ dy

)
dxdt = 0.

Since moreover divy(Af∇xM0) = 0, we can characterize M1 by

divy(Af∇yM1) = 0 in Ω×Qf × J,
Af∇yM1 · ν = −Af∇xM0 · ν in Ω× ∂Qm × J.

Then

M1(x, y, t) =

3∑
j=1

vj(x, y)∂xjM0(x, t) + α(x, t)

where functions wj are defined in (14) and α is some function which does not depend
on y. The first term on the right-hand side of equation (29) now reads

divx(Af (∇xM0 +∇yM1)) = divx
(
Af
(
Id + (∂yivj)

)
∇xM0

)
.

Similarly, we infer from (36) and (42) that

χΩ(x)χf (y)P1(x, y, t) = χΩ(x)χf (y)

3∑
j=1

wj(y)(∂jP0(x, t) +M0j) + β(x, t),

functions wj being defined by (15), and the two first terms in (37) read

divx(∇xP0 +∇yP1 + χΩM0) = divx
(
χR3\Ω(∇xP0 +∇yP1)

)
+ divx

(
χΩχf

(
Id + (∂yiwj)

)
(∇xP0 +M0)

)
.

Next step consists in integrating over Q the equations characterizing the main
order terms of the expansions, that is (29) and (37), in view of obtaining the effective
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model. In view of the latter computations, we get at first glance the following two
equations in Ω× J :

|Qf |∂tM0 − α|Qf |M0 × ∂tM0 = −(1 + α2)M0 ×
(

divx(AH∇xM0)

+

∫
Qf

divy(Af (∇xM1 +∇yM2)) dy
)
− (1 + α2)Ξ′f (M0)M0 ×WH∇xM0

−(1 + α2)|Qf |M0 × φva,f (M0)− (1 + α2)M0 ×WH∇xP0, (43)

and

divx
(
χR3\Ω∇xP0 + χΩW

H(∇xP0 +M0)
)

+

∫
Qf

divy(∇xP1 +∇yP2 +M1) dy = 0.

(44)
We also have, in view of (34),∫

Qf

divy(Af (∇xM1 +∇yM2)) dy = −
∫
∂Qm

Af (∇xM1 +∇yM2) · ν dσ(y)

= −
∫
∂Qm

Am(x, y)∇ym0 · ν dσ(y) = −
∫
Qm

divy(Am(x, y)∇ym0) dy (45)

and, in view of (40),∫
Qf

divy(∇xP1 +∇yP2 +M1) dy = −
∫
∂Qm

(∇xP1 +∇yP2 +M1) · ν dσ(y)

=

∫
∂Qm

(∇yp0 +m0) · ν dσ(y) =

∫
Qm

divy(∇yp0 +m0) dy = 0. (46)

Now, setting M0 = M and P0 = P , we notice that the effective model corresponds
to (43)-(46) and (30), (38).

4. Rigorous derivation of the effective model.

4.1. Uniform estimates on the microscopic model. The existence of a weak
solution for (13) may be stated using classical arguments for this type of problem
(see e.g. [5] and the references therein). Moreover we have the following estimates2

with regard to the scaling parameter ε.

Proposition 2. Assume that Minit ∈ H1(Ω). Then any weak solution of problem
(13) satisfies the following estimates:

‖χεf∂tM ε + χεm∂tm
ε‖L2(Ω×J) ≤ C,

‖χεf∇M ε + εχεm∇mε‖L∞(J;L2(Ω)) ≤ C,

|χεfM ε + χεmm
ε| = 1 a.e. in Ω× J,

and

‖(χR3\Ω + χεf )P ε + χεmp
ε‖L∞(J;L2(Ω)) ≤ C,

‖(χR3\Ω + χεf )∇P ε + εχεm∇pε‖L∞(J;L2(Ω)) ≤ C.

2All along the paper, letter C denotes some generic constant.
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Proof. The techniques used in the proof are similar to those developed for instance
in [15]. We rewrite the LLG equation in the form

α∂tM
ε − (1 + α2)Hεe(Mε)

= αMε ×
(
α∂tM

ε − (1 + α2)Hεe(Mε)
)
− (1 + α2)Hεe(Mε). (47)

Multiplying (47) by
(
(α∂tM

ε − (1 + α2)Hεe(Mε)
)
, we get

α

1 + α2
|∂tMε|2 = Hεe(Mε) · ∂tMε. (48)

Integrating with respect to space and then with respect to time, we obtain

E(Mε) +
2α

1 + α2

∫ t

0

∫
Ω

|∂tMε|2 dxdt ≤ E(Minit)

for any t ≥ 0, where the energy E(Mε) is defined by

E(Mε) =

∫
Ω

Aε|∇Mε|2 dx+

∫
Ω

Λ(Mε) dx+

∫
Ω

Ξ(Mε) dx+

∫
R3

|Hε|2 dx.

The hypothesis Minit ∈ H1(Ω) ensures that the initial energy E(Minit) is bounded
(see for example [16]). Proposition 2 is proved.

In view of exploiting the a priori estimates obtained in Ωεf which is an ε-dependent
domain, we first need to extend the functions M ε and χΩP

ε to the whole fixed do-
main Ω. To this aim, we first check that the structure of Ωε = Ωεf ∪ Γε ∪ Ωεm
satisfies the assumptions in [1]. We then can claim that there exist three real num-
bers ki = ki(Qf ) > 0, i = 1, 2, 3, and a linear and continuous extension operator
Πε : H1(Ωεf )→ H1

loc(Ω) such that

ΠεV = V a.e. in Ωεf ,∫
Ω(εk1)

|ΠεV |2 dx ≤ k2

∫
Ωεf

|V |2 dx,∫
Ω(εk1)

|∇(ΠεV )|2 dx ≤ k3

∫
Ωεf

|∇V |2 dx

for any V ∈ H1(Ωεf ). Here Ω(εk1) = {x ∈ Ω : dist(x, ∂Ω) > εk1}. To avoid dealing
with boundary layers, we make the following additional assumption on the structure
of the domain Ωε:

Ωεm = Ω(εk1) ∩
{
∪ξ∈Aε (Qm + ξ)

}
and Ωεf = Ω \ Ωεm.

It means that we assume that the blocks are removed in an εk1-neighborhood of
∂Ω. Therefore estimates in Proposition 2 lead to

‖ΠεM ε‖L∞(J;H1(Ω)) + ‖Πε(χΩP
ε)‖L∞(J;H1(Ω)) ≤ C. (49)

4.2. Exploitation of two-scale arguments. We infer from the estimates listed
in Proposition 2 and the estimates (49) the following convergences results.

Proposition 3. There exist limit functions M ∈ H1(J ;L2(Ω)) ∩ L∞(J ;H1(Ω)),
M1 ∈ L2(Ω × J ;H1

#(Qf )), P ∈ L∞(J ;H1(R3)), P1 ∈ L∞(J ;L2(R3;H1
#(Qf ))) on

the one hand, and m0 ∈ L2(Ω×J ;H1
#(Qm)), p0 ∈ L2(Ω×J ;H1

#(Qm)) on the other
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hand, such that, for some subsequence not relabelled for convenience, the following
convergence results hold true:

ΠεM ε →M in L2(Ω× J) and a.e. in Ω× J,
ΠεM ε ⇀M weakly in H1(J ;L2(Ω)) ∩ L2(J ;H1(Ω)),

∇(ΠεM ε)
2
⇀ ∇M +∇yM1,

χεfM
ε + χΩ

ε
m
mε 2

⇀m0, ∂t
(
χεfM

ε + χΩ
ε
m
mε
) 2
⇀ ∂tm0,

ε∇
(
χεfM

ε + χΩ
ε
m
mε
) 2
⇀ ∇ym0,

and

χR3\ΩP
ε + Πε(χΩP

ε)→ P in Lr(J ;L2(R3)),∀r ≥ 1, and a.e. in Ω× J,
χR3\ΩP

ε + Πε(χΩP
ε) ⇀ P weakly in L2(J ;H1(R3)),

∇
(
χR3\ΩP

ε + Πε(χΩP
ε)
) 2
⇀ ∇P +∇yP1,

χεfP
ε + χΩ

ε
m
pε

2
⇀ p0, ε∇

(
χεfP

ε + χΩ
ε
m
pε
) 2
⇀ ∇yp0.

We now aim using the latter convergence results to pass to the limit ε → 0 in
(13). First of all, notice that (23) is a direct consequence of the definition of the
two-scale limits (M,m0) and (P, P0).

Now, we exploit the constraint equation (1) in the following auxiliary lemma.

Lemma 4.1. For any 1 ≤ i ≤ 3, the vectors ∂xiM , ∂xiM + ∂yiM1 and ∂yiM1 are
perpendicular to the vector M almost everywhere in Ω× J ×Qf .

Proof. First we look for the derivative of the limit constraint. On the one hand,

due to the a.e. convergence of ΠεM ε, we know that χεf |M ε| 2
⇀ χf (y)|M | and thus

χεf |M ε|⇀ |Qf | |M | weakly in L2(Ω× J). (50)

On the other hand, since χεf |M ε| = χεf , we also have χεf |M ε| 2
⇀ χf (y) (see Propo-

sition 1 (iii)) and thus

χεf |M ε|⇀ |Qf | weakly in L2(Ω× J). (51)

We conclude from (50)-(51) that |Qf ||M | = |Qf | and thus

|M | = 1 a.e. in Ω× J.

Deriving the latter relation with regard to xi, for any 1 ≤ i ≤ 3, we compute that
∂xiM ·M = 0 a.e. in Ω× J . Thus the first result announced in the lemma.

Now we look for the limit of the derivative of the constraint. Let 1 ≤ i ≤ 3. Due
to χεf |M ε| = 1, we have χεf∂xiM

ε ·M ε = 0 a.e. in Ω× J . Thus

0 = lim
ε→0

∫
Ω×J

χεf (x) (∂xiM
ε(x, t) ·M ε(x, t)) Ψ(x, t, x/ε) dxdt

=

∫
Ω×J

∫
Qf

(
(∂xiM(x, t) + ∂yiM1(x, y, t)) ·M(x, t)

)
Ψ(x, y, t) dxdydt

for any function Ψ(x, y, t) ∈ D(Ω × J ;C∞# (Q)). It means that ∂xiM + ∂yiM1 is
actually perpendicular to M . Due to the first part of the proof, the same holds true
for ∂yiM1.
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We now pass to the two-scale limit in the part of (13) that only contains linear
operators. Let Ψ ∈ D(R3× J), Ψ1 ∈ D(R3× J ;C∞# (Q)) and ψ ∈ D(Ω× J ;C∞# (Q))

such that ψ(x, y, t) = 0 if y ∈ Qf . Notice that these functions are test admissible
for the two-scale convergence ([25]). We have∫

R3×J

(
(χR3\Ω + χεf )∇P ε + χεfM

ε + ε2χΩ
ε
m
∇pε + εχΩ

ε
m
mε
)
·
(
∇xΨ(x, t)

+ε∇xΨ1(x, x/ε, t) +∇yΨ1(x, x/ε, t) +∇xψ(x, x/ε, t)

+
1

ε
∇yψ(x, x/ε, t)

)
dxdt = 0.

Letting ε→ 0 in the latter relation we get∫
R3×J

χR3\Ω

∫
Q

(∇P +∇yP1) · (∇xΨ +∇yΨ1) dy dxdt

+

∫
R3×J

χΩ

∫
Qf

(∇P +∇yP1 +M) · (∇xΨ +∇yΨ1) dy dxdt

+

∫
Ω×J

∫
Qm

(∇yp0 +m0) · ∇yψ dy dxdt = 0. (52)

Thanks to classical density arguments, the latter relation holds true for any Ψ ∈
L∞(J ;H1(R3)), Ψ1 ∈ L∞(J ;H1(R3;C∞# (Q))) and ψ ∈ L∞(J ;H1(Ω;C∞# (Q))) such

that ψ(x, y, t) = 0 if y ∈ Qf . Choosing Ψ1 = 0 and ψ = 0 in (52), bearing in mind
that

∫
Q
∇yP1dy = 0 thanks to the Q-periodicity of P1, we recover the variational

formulation of the following problem

divx

(
χR3\Ω∇P + χΩ

∫
Qf

(∇P +∇yP1 +M) dy
)

= 0 in R3 × J, (53)

where P1 is characterized in Ω× J by (choose Ψ = ψ = χR3\ΩΨ1 = 0 in (52))

divy(∇P +∇yP1 +M) = 0 in Qf ,

∇yP1 · ν = −(∇P +M) · ν on ∂Qf .

It follows that χΩ(x)χf (y)P1(x, y, t) = χΩ(x)χf (y)
∑3
j=1 wj(y)(∂jP (x, t) + Mj) +

β(x, t), where β is some function which does not depend on y and where wj , 1 ≤
j ≤ 3, is defined in (15). Therefore

divx
(
χΩ(∇P +∇yP1 +M)

)
= divx

(
χΩ

(
Id + (∂yiwj)

)
(∇P +M)

)
and

divx

(
χR3\Ω∇P + χΩ

∫
Qf

(∇P +∇yP1 +M) dy
)

= divx
(
χR3\Ω∇P + χΩW

H(∇P +M)
)
,

where WH is defined in (17). Equation (53) is thus actually (20) in the effective
model. Finally, choosing Ψ = Ψ1 = 0, we recover (22).

The same type of computations for the limit behavior of (2)-(4), (8)-(11) give a
more frustrating result because of the numerous nonlinearities. More precisely, we
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get ∫
Ω×J

∫
Qf

(
∂tM − αM × ∂tM

)
·Ψ dydxdt+

∫
Ω×J

∫
Qm

∂tm0 · (Ψ + ψ) dydxdt

−α lim
ε→0

∫
Ωεm×J

(mε × ∂tmε) · (Ψ(x, t) + ψ(x, x/ε, t)) dxdt

= (1 + α2)
(∫

Ω×J

∫
Qf

∑
i,j

(
M ×Af ij(∂xiM + ∂yiM1)

)
· (∂xjΨ + ∂yjΨ1) dydxdt

−
∫

Ω×J

∫
Qf

φva,f (M) ·Ψ dydxdt

−
∫

Ω×J

∫
Qf

(
M × (Ξf )′(M)(∇M +∇yM1)

)
·Ψ dydxdt

− lim
ε→0

∫
Ωεm×J

(
mε × (ε∇Ξεm(mε) + φεva,m(mε))

)
·
(
Ψ(x, t) + ψ(x, x/ε, t)

)
dxdt

+ lim
ε→0

∫
Ωεm×J

∑
i,j

(
mε ×Aεmijε∂xim

ε
)
· ∂yjψ(x, x/ε, t) dxdt

)
(54)

for any test functions Ψ ∈ L∞(J ;H1(Ω)), Ψ1 ∈ L∞(J ;H1(Ω;C∞# (Q))) and ψ ∈
L∞(J ;H1(Ω;C∞# (Q))) such that ψ(x, y, t) = 0 if y ∈ Qf . Let us define `i ∈
L2(Ω× J ;L2

#(Q)), 1 ≤ i ≤ 3, by

mε × ∂tmε 2
⇀ `1,

mε × (ε∇Ξεm(mε) + φεva,m(mε))
2
⇀ `2,

mε ×Aεm(ε∇mε)
2
⇀ `3.

Choosing Ψ = Ψ1 = 0 in (54), we obtain the following “characterization” for m0 in
Ω× J ×Qm:

∂tm0 − α`1 = −(1 + α2)`2 − (1 + α2)divy(`3). (55)

Next, choosing Ψ1 = ψ = 0 in (54) and using Lemma 4.1 for simplifying the vectorial
product in the boundary condition, we assert that

|Qf |∂tM − α|Qf |M × ∂tM +

∫
Qm

(
∂tm0 − α`1 + (1 + α2)`2

)
dy

= −(1 + α2)M × divx

(∫
Qf

Af (∇M +∇yM1) dy
)

−(1 + α2)M × φva,f (M)

−(1 + α2)M × (Ξf )′(M)
(∫

Qf

(∇M +∇yM1) dy
)

in Ω× J, (56)∫
Qf

Af (∇M +∇yM1) dy · n = 0 on ∂Ω× J. (57)

Using Ψ = ψ = 0 in (54) we get moreover for M1

−divy
(
Af (∇M +∇yM1)

)
= 0 in Ω×Qf × J,

Af∇yM1 · ν = −Af∇M · ν on (∂Qm ∩ ∂Qf )× J,
which leads to express M1 using (vi)1≤i≤3 (see the characterization of M1 in Section
3). Thus (56)-(57) actually reads (bearing also in mind (55) for the expression of
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the non-explicit term):

|Qf |∂tM − α|Qf |M × ∂tM
= −(1 + α2)M × div(AH∇M)− (1 + α2)M × φva,f (M)

−(1 + α2)(Ξf )′(M)M ×WH∇M + (1 + α2)

∫
Qm

divy(`3) dy in Ω× J, (58)

AH∇M · n = 0 on ∂Ω× J. (59)

In the next subsection, we introduce another strategy for computing the non-
explicit terms `i, 1 ≤ i ≤ 3. Nevertheless, we already can prove that the effective
problem, even with this partial formulation, is well-posed.

Lemma 4.2. Problem (58)-(59) associated with (55), (23) and (24) admits a weak
solution.

Proof. For our purpose, we look for a regularity result for the term
∫
Qm

divy(`3)dy.

Since all the two-scale limits are defined in L2(Ω×J ×Qm), we know that equation
(55) is satisfied in H−1(Ω× J ×Qm). Then we can write, for any ϕ ∈ H1

0 (J),∫
J

∂tm0 · ϕdt− α
∫
J

`1 · ϕdt = −(1 + α2)

∫
J

`2 · ϕdt

−(1 + α2)

∫
J

divy(`3) · ϕdt in H−1(Ω×Qm).

We conclude that
∫
J

divy(`3)dt has the same regularity than −
∫
J

(m0 · ∂tϕ− α`1 ·
ϕ+ (1 + α2)`2 · ϕ)dt, that is belongs to L2(Ω×Qm). We are allowed to make the
following computation

−(1+α2)

∫
Qm

divy

(∫
J

`3 ·ϕdt
)
dy = −(1+α2)

∫
J

∫
∂Qm

((`3 ·ϕ)·ν) dσ(y)dt ∈ L2(Ω).

The source term
∫
Qm

divy(`3)dy in (58) thus belongs to L2(Ω×J). The existence of

some weak solution to (58)-(59), (23)-(24) is then ensured by the classical parabolic
theory.

4.3. Exploitation of an appropriate dilation operator. It remains to pass to
the limit in the nonlinear matrix terms of the problem for giving an explicit form
to the terms `i, 1 ≤ i ≤ 3, in (55). We thus have to use another technique than the
two-scale convergence. A first idea consists in introducing a dilation operator for
upscaling the fast variable x/ε and thus removing the ε-weight in the H1 estimates.
Such an operator was formally used in [6]. It is also behind the periodic unfolding
method of Cioranescu et al [11]. For each ε > 0, we define a dilation operator ·̃
mapping measurable functions on Ωεm × J to measurable functions on Ω×Qm × J
by

ũ(x, y, t) = u(cε(x) + εy, t) for y ∈ Qm, (x, t) ∈ Ω× J,
where cε(x) denotes the lattice translation point of the ε-cell domain containing x.
This dilation annihilates the scaling distinction between the slow variable x and the
fast variable y = x/ε.

Assume for instance a simple but not restrictive description of the periodic struc-
ture of Ωε, more precisely A = Z3 and

Ωε = Ω ∩
( ⋃
k∈Z3

ε(Q+ k)
)
.
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Since Ωεm = Ω(εk1) ∩ (∪k∈Z3ε(Qm + k)), quantity cε(x) is the center of the ε-copy
of Q containing x and cε(x) = εk if x ∈ ε(Qm + k). Thus the function ũ does not
depend on x in each given block ε(Qm + k), k ∈ Z3, of Ω. We extend this operator
from Qm to ∪k(Qm + k) periodically.

The dilation operator has the following properties (see [6]).

Proposition 4. Any function u ∈ L2(J ;H1(Ωεm)) satisfies

‖ũ‖L2(Ω×J×Qm) = ‖u‖L2(Ω×J), ∇yũ = ε∇̃xu a.e. in Ω× J ×Qm.

If v, w ∈ L2(0, T ;H1(Ωεm)), then we have

(ṽ, w̃)L2(Ω×J×Qm) = (v, w)L2(Ωεm×J),

‖∇y ṽ‖(L2(Ω×J×Qm))3 = ε
∥∥∇̃xv∥∥(L2(Ωεm×J))3

,

(ṽ, w)L2(Ω×J×Q) = (v, w̃)L2(Ω×J×Q).

Moreover, if g ∈ L2(Ω× J) is considered to be an element of L2(Ω× J ×Qm), then

g̃ → g strongly in L2(Ω× J ×Qm) as ε→ 0.

This subsection is not completely disconnected from the latter one. Indeed, as
emphasized in the following result, the limiting process based on two-scale conver-
gence and the one based on weak convergence of dilated sequences are equivalent
(see [8]).

Proposition 5. If (vε) is a bounded sequence of L2(Ωεm×J) such that ṽε converges
weakly to ṽ in L2(Ω × J ;L2

#(Qm)) and χεm v
ε two-scale converges to v0, then we

have

ṽ = v0 a.e. in Ω× J ×Qm.

It means that for computing the non-explicit terms in (55), it is “sufficient”

to fully characterize the weak limit of (m̃ε, p̃ε), m̃ε (resp. p̃ε) being the dilated
magnetization vector (resp. field potential). It is thus natural to write the equations

satisfied by (m̃ε, p̃ε).

Lemma 4.3. The dilated quantities (m̃ε, p̃ε) satisfy the following set of equations

∂tm̃ε − αm̃ε × ∂tm̃ε = −(1 + α2)m̃ε ×
(
divy(Am(x, y)∇ym̃ε)

+φva,m(x, y, m̃ε) +∇yΞm(x, y, m̃ε) +∇yp̃ε
)
, (60)

divy(∇yp̃ε + m̃ε) = 0, (61)

which are satisfied in L2(J ;H−1(Qm)) for almost every x ∈ Ωεm. The boundary and
initial conditions are

m̃ε = M̃ ε and p̃ε = P̃ ε in H1/2(Qm) for a.e.(x, t) ∈ Ωεm × J, (62)

m̃ε|t=0 = M̃init, p̃ε|t=0 = P̃init in Ωεm ×Qm. (63)

Proof. We detail for instance the derivation of the equation (60) satisfied by m̃ε. The
derivation of the one for p̃ε follows the same lines. For any given ψ ∈ L2(J ;H1

0 (Qm)),

we define ψ̂ by

ψ̂(x, z, t) =

{
ψ
(
(z − cε(x))/ε, t

)
if z ∈ εQm + cε(x)

0 else.
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We multiply (2) by ψ̂ such that ψ|t=T = 0. We integrate over Ωεm. We recall

that Ωεm = ∪x∈Ω

(
εQm + cε(x)

)
. Moreover, (εQm + cε(x1)) ∩ (εQm + cε(x2)) = ∅ if

cε(x1) 6= cε(x2). We thus get, for almost every x ∈ Ωεm:

−
∫
J

∫
εQm+cε(x)

(mε∂tψ̂(x, z, t) + αmε × ∂tmεψ̂(x, z, t)) dzdt

= −(1 + α2)

∫
J

∫
εQm+cε(x)

mε ×
(
ε2Aεm(x, z)∇mε(z, t) · ∇zψ̂(x, z, t)

+φva,m(x, z,mε) ψ̂(x, z, t) + ε(∇Ξεm(x, z,mε) +∇pε) ψ̂(x, z, t)
)
dzdt

+

∫
εQm+cε(x)

Minit(x) ψ̂(x, z, 0) dz.

Let x ∈ Ωεm. Let k ∈ Z3 be defined by εk = cε(x). We introduce the change of
variable z 7→ ε(y + k). We obtain

−
∫
J

∫
Qm

(m̃ε∂tψ + αm̃ε × ∂tm̃εψ) dydt = −(1 + α2)

∫
J

∫
Qm

m̃ε

×
(
Am(x, y)∇m̃ε(z, t) · ∇yψ + φva,m(x, y, m̃ε)ψ

+(∇yΞm(x, y, m̃ε) +∇yp̃ε)ψ
)
dydt+

∫
Qm

M̃init(y)ψ(y, 0) dy.

The latter is the variational formulation of (60) with the initial condition m̃ε|t=0 =

M̃init. We give some precisions about the boundary condition. Of course we can
enlarge the definition of the dilation operator to a subset of Ω(εk1) strictly contain-

ing Ωεm. This gives sense to the boundary condition m̃ε = M̃ ε on ∂Qm × J . The
result has been established for almost every x ∈ ε(Qm+k) and for all k ∈ Z3. Then
it is valid almost everywhere in Ωεm.

The good point in (60)-(63) is clearly that the ε-scaling does not appear any-
more. The uniform estimates leading to the following convergences, possibly for
subsequences not relabeled for convenience, are thus straightforward:

m̃ε ⇀m0, p̃ε ⇀ p0 weakly in L2(Ω× J ×Qm),

∇ym̃ε ⇀ ∇ym0, ∇yp̃ε ⇀ ∇yp0 weakly in L2(Ω× J ×Qm).

Notice that we have used Proposition 5 to ensure that the limit functions (m0, p0)
appearing here are actually the same than the ones already defined in Proposition
3. Moreover the equation satisfied by p0 has already been derived in the latter
subsection. Nevertheless, we still do not have any compactness result for m̃ε(x, y, t)
because we have no information on the boundedness of its partial derivative with
respect to x. This difficulty also appeared in [8] and [19]. These authors solved
it either by comparing the dilated problem with their formal guess for the limit
problem ([8]) or by proving that they actually deal with a Cauchy sequence ([19]).
The complex structure of our equation does not allow such approaches.

We thus adopt another method and we develop rigorously an idea already present
in [10]. Due to the definition of the dilation operator, one checks easily that the
dilated functions restricted to a given matrix cell of Ωε do not depend on x. Let
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k ∈ Z3. Let (m̃ε
k, p̃

ε
k) be defined by

m̃ε
k(y, t) =

{
m̃ε(x, y, t)|x∈ε(Qm+k) if k is such that ε(Qm + k) ∩ Ω 6= ∅,
0 else,

p̃εk(y, t) =

{
p̃ε(x, y, t)|x∈ε(Qm+k) if k is such that ε(Qm + k) ∩ Ω 6= ∅,
0 else.

Notice that quantities f̃ εk, f = m, p, have sense even if f̃ ε(x, ·, ·) ∈ L2(Qm × J) is
defined only for a.e. x ∈ Ω. Indeed, since |ε(Qm + k)| = ε|Qm| 6= 0, there exists

xm ∈ ε(Qm + k)∩Ωε and xp ∈ ε(Qm + k)∩Ωε such that m̃ε(xm, ·, ·) ∈ L2(Qm× J)

and p̃ε(xp, ·, ·) ∈ L2(Qm × J) and which let us define m̃ε
k and p̃εk.

For any ε > 0 such that ε(Qm + k)∩Ω 6= ∅, (m̃ε
k, p̃

ε
k) is clearly a solution of (60)-

(63) in Qm × J . On the other hand, any f̃k associated with some f ∈ L2(Ω × J)
belongs to L2(Qm × J) with

‖f̃k‖L2(Qm×J) =
1

ε|Qm|
‖f̃‖L2(ε(Qm+k)×Qm×J) ≤

1

ε|Qm|
‖f̃‖L2(Ω×J×Qm).

Thus, we have enough regularity properties to get with (60)-(63) the same estimates

for (m̃ε
k, p̃

ε
k) than the ones obtained for (m̃ε, p̃ε). But here the estimate of ∇ym̃ε

k

gives a uniform bound in H1(Qm) for m̃ε
k and thus enough compactness results to

pass to the limit ε → 0 in (60). Furthermore, notice that k = (k1, k2, k3) ∈ Z3 is
such that ε(Qm + k) ∩ Ω 6= ∅ if ki < |Ω|i/ε, i = 1, .., 3 (where |Ω|i denotes here the
value of the measure of Ω in the ith direction). Then, for any k ∈ Z3, there exists
ε(k) > 0 such that for any ε < ε(k), ε(Qm + k) ∩ Ω 6= ∅. Denoting by (m̃k, p̃k) the

limit in L2(Qm × J) of (m̃ε
k, p̃

ε
k), we get the following system:

∂tm̃k − αm̃k × ∂tm̃k = −(1 + α2)m̃k ×
(
divy(Am(x, y)∇ym̃k)

+φva,m(x, y, m̃k) +∇yΞm(x, y, m̃k) +∇yp̃k
)
, (64)

divy(∇yp̃k + m̃k) = 0. (65)

Another basic idea is that the subgrid defined in Ω by {k ∈ Z3; ε(Qm+k)∩Ω 6= ∅}
seems to become dense in Ω as ε → 0. Let us show that this point is sufficient to
pass to the limit, at least in some part of the domain. Thanks to Section 2, we
already know that our aim is to show that the limit (m0, p0) also satisfies (64)-(65),
that is (21)-(22). In brief, we are going to prove that m0(x, ·, ·) = m∗0(x)(·, ·) in
L2(Qm × J) for almost every x ∈ Ω, where m∗0(x)(·, ·) is defined by

∂tm
∗
0(x)− αm∗0(x)× ∂tm∗0(x) = −(1 + α2)m∗0(x)×

(
divy(Am(x, y)∇ym∗0(x))

+φva,m(x, y,m∗0(x)) +∇y(Ξm(y,m∗0(x))) +∇yp0(x, ·, ·)
)

in Qm × J,
m∗0(x)(y, 0) = Minit(x) in Qm,
m∗0(x)(y, t) = M(x, t) on ∂Qm × J.

(66)
A crucial point is that, for any given (Minit(x),M(x, ·)) ∈ R3×L∞(J), there exists
a unique solution m∗0(x) ∈ L2(J ;H1

#(Qm)) ∩H1(J ;L2
#(Qm)) of problem (66) (see

[17], [24], [12], [13]).
We define the set C ⊂ Ω by

C = {x0 ∈ Ω; ∃ε0 > 0, ∃x ∈ Ω s.t. x0 = cε0(x)}.



EFFECTIVE LLG EQUATION IN A CONTRASTED COMPOSITE MEDIUM 53

Figure 2. A simple setting, Ω = [−1/2; 3/2]3. Representation of
Ω1, Ω1/2 and Ω1/3 with the corresponding points belonging to C.

It means that C is the set of all points of Ω that are the center of an ε0-copy of Q
(and thus of Qm) at some step, ε0, of the convergence process ε→ 0. We also define

Cε = {x0 ∈ Ω; ∃x ∈ Ω s.t. x0 = cε(x)}.

We have C =
⋃
ε>0 Cε.

We begin by restricting the limit process to the set C × J . To this aim, we
develop our embedded grids approach. Let x0 ∈ C. There exists some ε0 > 0 such
that x0 ∈ Ωε0m and x0 is the center of an ε0-copy of Q. One checks easily3 that x0

remains the center of an ε-copy of Q for any ε ≤ ε0. See also Figure 2.
We then can choose a particular numbering for the description of Ωε, ε ≤ ε0:

Ωε = Ω ∩
(
x0 +

⋃
k∈Z3

ε(Q+ k)
)
. (67)

It means that for any ε ≤ ε0, x0 is the center of the (0, 0, 0)th ε-copy of Q. We

thus can exploit the latter remarks on the restricted functions m̃ε
k for the value

k = 0 = (0, 0, 0). We set for (y, t) ∈ Qm × J

m̃ε
0x0

(y, t) = m̃ε
0(y, t) for the numbering (67). (68)

Lemma 4.4. Let x0 ∈ C. As ε tends to zero, the whole sequence m̃ε
0x0

converges

in L2(J ;L2
#(Qm)) to the function m∗0(x0) uniquely defined by (66).

Proof. The proof is a particular case of the derivation of (64)-(65), namely for k = 0.
We thus know that

m̃ε
0x0
→ m̃0 in L2(J ;L2

per(Qm))

where m̃0 satisfies

∂tm̃0 − αm̃0 × ∂tm̃0 = −(1 + α2)m̃0 ×
(
divy(Am(x, y)∇ym̃0)

+φva,m(x, y, m̃0) +∇yΞm(x, y, m̃0) +∇yp̃0
)
,

divy(∇yp̃0 + m̃0) = 0,

completed by the initial and boundary conditions

m̃0(y, 0) = Minit(x0) in Qm, m̃0(y, t) = M(x0, t) on ∂Qm × J.

3Since we have mentioned for the sake of simplicity at the beginning of the subsection that
Ωε = Ω∩

(⋃
k∈Z3 ε(Q+k)

)
, it means that (0, 0, 0) ∈ C. This assumption is of course unimportant.
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Indeed, as already mentioned, we can enlarge the definition of the dilation operator
to a subset of Ω(εk1) strictly containing Ωεm. This gives sense to the boundary

condition m̃ε = M̃ ε on ∂Qm × J . In particular

m̃ε
0x0

(y, t) = M̃ ε
0x0

(y, t) on ∂Qm × J. (69)

The weak L2 limit of M̃0 is equal to the two-scale limit of M ε. Since ΠεM ε strongly
converges in L2(Ω× J) to M , function M (which does not depend on y) is also the
two-scale limit of the restriction M ε. Using the continuity of the trace operator,
(69) gives at the limit ε → 0 the condition m̃0(y, t) = M(x0, t) on ∂Qm × J . We
have proved that m̃0 satisfies (66). The solution of (66) being unique for any fixed

x = x0 ∈ Ω, the whole sequence m̃ε
0x0

converges to the solution of (66). This ends
the proof of the lemma.

Remark 3. The latter lemma means that the limit matrix magnetization m0 is
such that m0|x=x0

= m∗0(x0) for a.e. x0 ∈ C. Indeed, denoting by χ|x0+εQm the
characteristic function of x0 + εQm, we have

m̃ε
0(y, t) = m̃ε(x, y, t)χ|x0+εQm(x).

As ε → 0, the sequence of embedded sets (x0 + εQm) tends to {x0}. As already

mentioned m̃ε ⇀m0 weakly in L2(Ω× J ;L2
#(Qm)) where m0 is the two-scale limit

defined in Proposition 3. It follows that, for any ϕ ∈ L2(J ;L2
#(Qm)),

lim
ε→0

∫
Qm×J

m̃ε
0 ϕdydt = lim

ε→0

∫
Qm×J

m̃ε(x, y, t)χ|x0+εQm(x)ϕ(y, t) dydt

=

∫
Qm×J

m0(x0, y, t)ϕ(y, t) dydt a.e. x0 ∈ C.

The limit behavior of (m̃ε|x=x0
) of course does not depend on the choice of the

numbering of the ε-copies of Q in Ωεm. Problem (66) thus characterizes the limit

behavior of the restriction of m̃ε in C. This point is however not sufficient for our
purpose. Indeed, on the one hand C is dense in Ω, but on the other hand the
a.e.-convergence in C is not sufficiently meaningful since |C| = 0.

The end of the paper consists in extending the result of the latter lemma from
C to Ω. Let m∗0 be defined by m∗0(x, y, t) = m∗0(x)(y, t) where m∗0(x) is defined by
(66). Let us prove that we have actually m0 = m∗0 in L2(Ω× J ;L2

#(Qm)), that is

lim
ε→0

∫
Ω×Qm×J

(m̃ε −m∗0)ϕdxdydt = 0 (70)

for any ϕ ∈ L2(Ω × J ;L2
#(Qm)), or, equivalently by density, for any compactly

supported test function, ϕ ∈ Cc(Ω × J ; C#(Qm)). For the structuration of the
paper, we announce this final result in the following lemma.

Lemma 4.5. Let ϕ ∈ Cc(Ω× J ; C#(Qm)). Let η > 0. There exists ε′ > 0 such that
for any ε < ε′, ∣∣∣∫

Ω×Qm×J

(
m̃ε −m∗0

)
ϕdxdydt

∣∣∣ ≤ η.
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Proof. Let Lε =
∫

Ω×Qm×J
(
m̃ε−m∗0

)
ϕdxdydt. Function m̃ε being constant on each

given ε-cell, we write Lε in the following form.

Lε =
∑
xεi∈Cε

∫
(xεi+εQm)×Qm×J

(
m̃ε(xεi , y, t)−m∗0(x, y, t)

)
ϕ(x, y, t) dxdydt

=
∑
xεi∈Cε

∫
(xεi+εQm)×Qm×J

(
m̃ε(xεi , y, t)−m∗0(xεi , y, t)

)
ϕ(x, y, t) dxdydt

+
∑
xεi∈Cε

∫
(xεi+εQm)×Qm×J

(
m∗0(xεi , y, t)−m∗0(x, y, t)

)
ϕ(x, y, t) dxdydt. (71)

Let us estimate the two terms in the right-hand side of (71).
First, using the notations of Lemma 4.4 and the Cauchy-Schwarz inequality, we

write ∣∣∣ ∑
xεi∈Cε

∫
(xεi+εQm)×Qm×J

(
m̃ε −m∗0

)
(xεi , y, t)ϕ(x, y, t) dxdydt

∣∣∣
=
∣∣∣ ∑
xεi∈Cε

∫
(xεi+εQm)×Qm×J

(
m̃ε

0xεi
(y, t)−m∗0(xεi)(y, t)

)
ϕ(x, y, t) dxdydt

∣∣∣
≤
∑
xεi∈Cε

∥∥m̃ε
0xεi
−m∗0(xεi)‖L2(Qm×J)

∫
xεi+εQm

‖ϕ‖L2(Qm×J) dx

≤ max
u∈Cε

∥∥m̃ε
0u −m

∗
0(u)‖L2(Qm×J)‖ϕ‖L∞(Ω;L2(J;L2

#(Qm)))

∑
xεi∈Cε

|εQm|

≤ C max
u∈Cε

∥∥m̃ε
0u −m

∗
0(u)‖L2(Qm×J).

Indeed,
∑
xεi∈Cε

|εQm| ≤ C|Ω| ≤ C. In view of Lemma 4.4, for any u ∈ Cε ⊂ C we

have limε→0

∥∥m̃ε
0u −m∗0(u)‖L2(Qm×J) = 0. Then, there exists ε1 > 0 such that for

any ε < ε1, we have∣∣∣ ∑
xεi∈Cε

∫
(xεi+εQm)×Qm×J

(
m̃ε −m∗0

)
(xεi , y, t)ϕ(x, y, t) dxdydt

∣∣∣ ≤ η/3. (72)

Next, the second term in the right-hand side of (71) reads:∑
xεi∈Cε

∫
(xεi+εQm)×Qm×J

(
m∗0(xεi , y, t)−m∗0(x, y, t)

)
ϕ(x, y, t) dxdydt

=

∫
Ω×Qm×J

(
m∗0(cε(x), y, t)−m∗0(x, y, t)

)
ϕ(x, y, t) dxdydt. (73)

Lusin’s theorem applies to function m∗0. Namely, for any µ > 0, there exists a closed
set Ωµ with |Ω \ Ωµ| < µ such that the restriction of m∗0 to Ωµ is continuous. We
choose µ such that∣∣∣∫

(Ω\Ωµ)×Qm×J

(
m∗0(cε(x), y, t)−m∗0(x, y, t)

)
ϕ(x, y, t) dxdydt

∣∣
≤ C‖m∗0‖L2(Ω×Qm×J)µ

1/2 ≤ η/3. (74)
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We recall that cε(x) → x as ε → 0. Thus limε→0

∫
Ωµ×Qm×J

(
m∗0(cε(x), y, t) −

m∗0(x, y, t)
)
ϕ(x, y, t) dxdydt = 0 and there exists ε2 > 0 such that, for any ε < ε2,∣∣∣∫

Ωµ×Qm×J

(
m∗0(cε(x), y, t)−m∗0(x, y, t)

)
ϕ(x, y, t) dxdydt

∣∣ ≤ η/3. (75)

Finally, using (71)-(75), we conclude that, for any given ϕ ∈ Cc(Ω× J ; C#(Qm))
and η > 0, there exists ε′ = min(ε1, ε2) > 0 such that |Lε| < η for any ε < ε′,
fulfilling the statement of the lemma.

5. Conclusion. Beyond the particular application considered in the present paper,
we believe that the precise description of the embedded grids approach and of the
density arguments coupled with the dilation method for the homogenization of
nonlinear terms will be a very useful tool for many applications. This description
is, as far as we know, completely original.
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