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Abstract

We consider a model describing compressible nuclear waste disposal contami-

nation in porous media. The transport of brine and radionuclides is described

by a nonlinear coupled degenerate parabolic system. The viscosity of the fluid

is unbounded and concentrations and temperature dependent. We study the

asymptotic behavior of the model for little Peclet numbers.
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1 Introduction

We consider here a waste-disposal problem in which high-level radioactive waste is
burried in a salt dome. The salt then dissolves to create a brine and N radionuclides
are transported by a miscible compressible flow. We aim to study the asymptotic
behavior of the displacement for the expected regimes with a low Darcy rate of
flow. It corresponds to little associate Peclet numbers, lower than 1, when the
permeability of the rock is small. The dispersions effects are then neglectible with
regard to the diffusions ones (see [5]). We include in the model the mechanisms
of sorption, of radioactive filiation and decay and the important thermal effects
that they induce. The far-field repository is represented by a domain Ω of IR2 with
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smooth boundary Γ. The unit normal pointing outward Ω is denoted by ν. The time
interval of interest is (0, T ), ΩT = Ω× (0, T ), and ΓT = Γ× (0, T ). We denote by p
the pressure, by ĉ the salt concentration, by (ci)N−2

i=1 the concentration of (N − 2)
radionuclides and by θ the absolute temperature. The Darcy velocity is designated
by u. Due to the mass and energy conservation (cf [12, 5, 11]), the flow is governed
in ΩT by the system (1.1)-(1.5) below. The parameter ε describes the order of the
dispersions effects. Our aim is to study the asymptotic behavior of this system as
ε tends to zero and to justify the existence of physically relevant solutions for the
limit model

φ1F ∂tpε + φ∂tF + div(uε) = −q −
N∑

j=1

qj + R′s(ĉε), (1.1)

uε = − k

µ(cε, θε)
∇pε, (1.2)

∂tθε − div
( 1

d2(ρ(pε), θε)
(
φcp(θε)(Km(pε) + ε|uε|)∇θε −Hεuε

))

−θε − θ0

F
div

( cp(θε)
d2(ρ(pε), θε)

uε

)
+ C(ρ(pε), θε)uε · ∇θε − Uε

Fd2(ρ(pε), θε)

(

φ∂tF + q +
N∑

j=1

qj −R′s(ĉε)
)

=
−1

d2(ρ(pε), θε)
(qH + qHε), (1.3)

φ∂tĉε + uε · ∇ĉε − div(φ(Dm + ε|uε|)∇ĉε) + d3(ĉε) ∂tpε − φ∂tF ĉε

= ĉε

N∑

j=1

qj + (1− ĉε)R′s(ĉε), (1.4)

φKi ∂tci,ε + uε · ∇ci,ε − div(φ(Dm + ε|uε|)∇ci,ε) + d3i(ci,ε) ∂tpε − φ∂tF ci,ε

= −ci,ε R′s(ĉε)− qi + ci,ε

N∑

j=1

qj − λi Ki φ ci,ε

+
N−2∑

j=1,j 6=i

kij λj Kj φ cj,ε + kiN λN KN φ c̃ε, (1.5)

with

c = (ĉ, c1, .., cN−2), c̃ = 1−
N−2∑

j=1

cj − ĉ.

The diffusions effects are characterized by Km which is the heat conductivity of
rock and fluid, and by Dm which is the molecular diffusion. We assume

Km = Km(p) =
km

ρ(p)
, km > 0, Dm > 0. (1.6)

The specifical internal energy and the enthalpy are defined by

U = U(θ) = cp(θ) (θ − θ0), H = H(θ, p) = U0 + U +
p

ρ
.
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The density ρ satisfies

ρ = ρ(p) = ρ0 exp(cw(p− p0)). (1.7)

The real number cw is the compressibility of the fluid. The reference energy, tem-
perature, pressure and density U0, θ0, p0, ρ0, are given real numbers. A strong
coupling is induced in the system by the viscosity µ which is concentrations and
temperature dependent. There is no explicit model of the viscosity valid for any
nonnegative temperature. But µ → ∞ as the temperature goes to the tempera-
ture of transition liquid/solid (cf [10]). Denoting by θ− > 0 this temperature, we
thus assume that 1/µ(c, θ) is a given nonlinear and nonnegative function, defined
in (0, 1)N−1 × [θ−, +∞), satisfying

{
1/
√

µ ∈ W 1,∞((0, 1)N−1 × [θ−, +∞)),(
(c, θ) ∈ (0, 1)N−1 × [θ−,+∞) and µ(c, θ)−1 = 0

)
⇐⇒ θ = θ−.

(1.8)

The viscosity is then unbounded for temperatures in a neighborhood of θ−. The
crucial consequence is the degenerating of the parabolic pressure equation (1.1). We
denote by µ− the real number such that

0 < µ− ≤ µ(c, θ) ∀(c, θ) ∈ (0, 1)N−1 × (θ−,+∞). (1.9)

We have

d2(ρ, θ) = φ(x) cp(θ) + (1− φ(x))
ρR

ρ
cpR(θ),

C(ρ, θ) = (θ − θ0)Dθ

( cp(θ)
d2(ρ, θ)

)
.

The positive function cp (resp. cpR) is the specific heat of the fluid (resp. of the
rock), and ρR is the rock density constant. For these functions we have once again
no explicit model valid for a wide range of temperature. For a nuclear repository site
one generally adopts the following form of specific heat (see [9] for Yucca Mountain
and the references therein).

cp(R)(θ) = A0 + A1θ + A2θ
2 + A3θ

3,

with (A0, A1, A2, A3) ∈ IR4. This type of relation remains true during phase trans-
formations. Indeed these transitions absorb heat and then increase the specific heat
capacities of the constituents as a function of temperature. Consistently with the
latter relation, we assume that the heat capacities are defined in (θ−,+∞) and that

there exists some real numbers
( cp

d2

)
−

and
( 1

d2

)
+

such that





0 <
( cp

d2

)
−
≤ cp(θ)

d2(ρ, θ)
≤

( cp

d2

)−1

−
,

1
d2(ρ, θ)

≤
( 1

d2

)
+
,

∀θ ∈ (θ−,+∞), ∀p ∈ (m,M),( cp(θ) θ

d2(ρ, θ)
, Dθ

( cp(θ)
d2(ρ, θ)

)
θ
)
∈ (L∞((θ−,∞)× (m,M)))2.

(1.10)



230 C. Choquet

the real numbers m and M being defined in (1.20) below. The functions d3 and d3i

are defined for c ∈ (0, 1) by

d3(c) = φ1(x) c (1− F (x, t)) , d3i(c) = φ1(x) c (Ki − F (x, t)) .

The porosity φ (and φ1 = cwφ), the components of the permeability tensor k
and the retardation factors Ki are in L∞(Ω), while F (x, t) belongs to W 1,∞(ΩT ).
Moreover, for some real numbers 0 < F− ≤ F+, 0 < φ− ≤ φ+, 0 < k− ≤ k+ and
1 ≤ K− ≤ K+, we have





F− ≤ F (x, t) ≤ F+ a.e. in ΩT ,
φ− ≤ φ(x) ≤ φ+ a.e. in Ω,
k−|ξ|2 ≤ k(x)ξ · ξ, |k(x)ξ| ≤ k+|ξ| a.e. in Ω, ∀ξ ∈ IR2,
K− ≤ Ki(x) ≤ K+ a.e. in Ω, i = 1, ..N.

(1.11)

The real number kji is the mass rate between the parent radionuclide j and the
daughter one i. Since the processes of radioactive decay and filiation compensate
themselves, the real numbers kji are such that

∑N
j=1,j 6=i kji = 1, 1 ≤ i ≤ N . Note

also that KN c̃ = F (x, t) − ∑N−2
j=1 Kj(x)cj − ĉ, where F (x, t) describes the total

sorption capacity of the rock. The real number λ−1
i > 0 is the half-life of the

radionuclide i. The salt source term is defined for c ∈ (0, 1) by

R′s(c) =
cs φ Ks fs

1 + cs
(1− c).

The real numbers cs, fs and Ks are rate constants characterizing salt dissolution
in the reservoir. The other source terms q, qi, qH belong to L∞(ΩT ), and qi(x, t) ≥ 0
a.e. in ΩT . We assume besides

cp

F

(
−q (1− F )−

N∑

j=1

qj + R′s(C)− φ∂tF
)
(θ− − θ0)

+q
(
U0 + (cw ρ(1/cw))−1

)
+ qH ≤ 0 ∀C ∈ (0, 1), (1.12)

where θ− > 0. It means that the reaction is always exothermic when θ is in a
neighborhood of θ− (cf [14]). This latter assumption is all the more reasonable
because we can choose a convenient reference temperature θ0.

We consider the following initial and boundary conditions.

uε · ν = 0 on ΓT , pε(x, 0) = pinit(x) in Ω, (1.13)
(Km(pε) + ε|uε|)∇θε · ν = 0 on ΓT , θε(x, 0) = θinit(x) in Ω, (1.14)
(Dm + ε|uε|)∇ĉε · ν = 0 on ΓT , ĉε(x, 0) = ĉinit(x) in Ω, (1.15)
(Dm + ε|uε|)∇ci,ε · ν = 0 on ΓT , ci,ε(x, 0) = ci,init(x) in Ω, (1.16)

with pinit ∈ H1(Ω) and (θinit, ĉinit, (ci,init)N−2
i=1 ) ∈ (L∞(Ω))N satisfying

m0 ≤ pinit(x) ≤ M0 a.e. in Ω, (1.17)
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0 < θ− ≤ θinit(x) a.e. in Ω, (1.18)

0 ≤ ĉinit(x), ci,init(x),
N−2∑

i=1

ci,init(x) + ĉinit(x) ≤ 1 a.e. in Ω. (1.19)

We define two real numbers m and M by

m = −(‖q‖∞+φ+‖∂tF‖∞)T +m0, M =
(cs φKs fs

1 + cs
+φ+‖∂tF‖∞

)
T +M0, (1.20)

where M0 is such that φ−( inf
(θ−,+∞)

cp) + (1− φ+)( inf
(θ−,+∞)

cpR) ρR/ρ(M) > 0. Then

d2(ρ, θ) > 0 if ρ ≤ ρ(M).
For any fixed real ε > 0, the following existence result is deduced from [2].

Theorem 1.1 Under the aforementioned hypotheses and for any fixed ε > 0, there
exists a weak solution (pε, θε, ĉε, (ci,ε)N−2

i=1 ) of Problem (1.1)-(1.5), (1.13)-(1.16)
satisfying

i) the function pε ∈ L∞(ΩT ), with m ≤ pε(x, t) ≤ M a.e. in ΩT , is so-
lution of (1.1)-(1.2), (1.13) verified in L2(0, T ; H−1(Ω)); the velocity uε =

− k

µ(cε, θε)
∇pε belongs to (L2(ΩT ))2 and

√
µ(cε, θε)uε is in (L2(ΩT ))2;

ii) the function (ĉε, c1,ε, .., cN−2,ε) ∈ (
L∞(ΩT ) ∩ L2(0, T ;H1(Ω))

)N−1 is such
that 0 ≤ ĉε(x, t), ci,ε(x, t) and

∑N−2
i=1 ci,ε(x, t) + ĉε(x, t) ≤ 1 a.e. in ΩT , while

θε ∈ L∞(ΩT ) ∩ L2(0, T ;H1(Ω)) and θε(x, t) ≥ θ− > 0 a.e. in ΩT .

In the present paper, we aim to prove the following convergence result.

Theorem 1.2 For extracted subsequences, the solution (pε, θε, ĉε, (ci,ε)N−2
i=1 ) of Pb.

(1.1)-(1.5), (1.13)-(1.16) converges in a weak sense to (p, θ, ĉ, (ci)N−2
i=1 ) which is a

weak solution of the following problem where the dispersions effects are completely
neglected.

φ1F ∂tp + φ∂tF + div(u) = −q −
N∑

j=1

qj + R′s(ĉ), (1.21)

u = − k

µ(c, θ)
∇p, (1.22)

∂tθ − div
( 1

d2(ρ(p), θ)
(
φcp(θ)Km(p)∇θ −H u

))− θ − θ0

F
div

( cp(θ)
d2(ρ(p), θ)

u
)

+C(ρ(p), θ)u · ∇θ − U

Fd2(ρ(p), θ)

(
φ ∂tF + q +

N∑

j=1

qj −R′s(ĉ)
)

=
−1

d2(ρ(p), θ)
(qH + qH), (1.23)
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φ∂tĉ + u · ∇ĉ− div(φDm∇ĉ) + d3(ĉ) ∂tp− φ∂tF ĉ

= ĉ

N∑

j=1

qj + (1− ĉ) R′s(ĉ), (1.24)

φKi ∂tci + u · ∇ci − div(φDm∇ci) + d3i(ci) ∂tp− φ∂tF ci = −ci R′s(ĉ)− qi

+ci

N∑

j=1

qj − λi Ki φ ci +
N−2∑

j=1,j 6=i

kij λj Kj φ cj + kiN λN KN φ c̃, (1.25)

provided by the following initial and boundary conditions

u · ν = 0 on ΓT , p(x, 0) = pinit(x) in Ω, (1.26)
Km(p)∇θ · ν = 0 on ΓT , θ(x, 0) = θinit(x) in Ω, (1.27)
Dm∇ĉ · ν = 0 on ΓT , ĉ(x, 0) = ĉinit(x) in Ω, (1.28)
Dm∇ci · ν = 0 on ΓT , ci(x, 0) = ci,init(x) in Ω. (1.29)

Furthermore, (p, θ, ĉ, (ci)N−2
i=1 ) has the same regularity properties as those of the

solution of the original problem described in (i) and (ii) of Theorem 1.

The simulation (see [11]) and the numerical analysis (see for instance [7, 4, 6])
of such problems where the dispersion effects are neglected has been extensively
studied in the past decade. But the rigorous justification of the model with ne-
glected dispersion is not addressed. We can only cite [1] who treat a simplified non
radioactive model with constant viscosity. And [3] considers the one-dimensional
case for a mixture of two species with different compressibilities (this adds a non-
linearity in the problem) but with a bounded viscosity. More generally, there are
very few mathematical results about fluid problems with unbounded viscosity (see
for instance the recent work [8] and the references therein).

The paper is organized as follows. Classical energy estimates are performed
in Section 2. We also state the compactness results which can be obtained with
arguments of Aubin’s type. Section 3 is devoted to the convergence analysis. We
use astute tools to get sufficient informations about the pressure behavior in spite
of the degenerating of Eq. (1.1).

2 Energy estimates and first compactness results

In what follows, the letter C denotes a generic quantity, independent of ε. We begin
with some properties of the pressure pε solution of (1.1)-(1.2), (1.13).

Lemma 2.1 The function pε ∈ L∞(ΩT ) ∩ L2(0, T ; H1(Ω)) solution of (1.1)-(1.2),
(1.13) satisfies

m ≤ pε(x, t) ≤ M a.e. in ΩT ,

‖pε‖L∞(0,T ;L2(Ω)) +
∥∥∥
( k−

µ(cε, θε)

)1/2

∇pε

∥∥∥
(L2(ΩT ))2

≤ C, ‖uε‖(L2(ΩT ))2 ≤ C1,
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where C (resp. C1) is a constant which only depends on T (resp. on T and
µ− defined in (1.9)). Furthermore, the function φ1F∂tpε is uniformly bounded
in L2(0, T ; (H1(Ω))′).

Proof. The first estimate is a direct consequence of the construction of pε in [2].
One also can check that since the right hand-side terms of (1.1) belong to L∞(ΩT ),
a maximum principle with Hypothese (1.17) leads to m ≤ pε(x, t) ≤ M a.e. in ΩT .
We now multiply Eq. (1.1) by pε and integrate by parts over Ω. We obtain

1
2

d

dt

∫

Ω

φ1F |pε|2 dx +
∫

Ω

(φpε − 1
2
φ1|pε|2) ∂tF dx

+
∫

Ω

k

µ(cε, θε)
∇pε · ∇pε dx = −

∫

Ω

(
q +

N∑

j=1

qj −R′s(ĉε)
)
pε dx.

We estimate the second term of the left hand-side and the right hand-side of
the latter relation using the assumptions φ1, φ ∈ L∞(Ω), ∂tF ∈ L∞(ΩT ), q, qj ∈
L∞(ΩT ) and ĉε ∈ L∞(ΩT ) (see the maximum principle (ii) of Theorem 1). With
Assumption (1.11) for k, we get

1
2

d

dt

∫

Ω

φ1F |pε|2 dx +
∫

Ω

k−
µ(cε, θε)

|∇pε|2 dx ≤ C

∫

Ω

|pε|2 dx + C.

We then use the Gronwall lemma and the assumption φ1F ≥ cwφ−F− > 0 to obtain
the estimates for pε in L∞(0, T ; L2(Ω)) and for ∇pε in (L2(ΩT ))2. The estimate for
uε in (L2(ΩT ))2 then follows from Assumption (1.9). Finally, multiplying Eq. (1.1)
by any test function ψ ∈ L2(0, T ;H1(Ω)), one checks that

|〈φ1F ∂tpε, ψ〉L2(0,T ;(H1(Ω))′)×L2(0,T ;H1(Ω))| ≤ C(‖ψ‖L1(ΩT ) + ‖∇ψ‖(L2(ΩT ))2).

This ends the proof of Lemma 1. ¥

We now study the temperature problem (1.3)-(1.14). We claim the following
result.

Lemma 2.2 For any ε > 0, the function θε solution of (1.3)-(1.14) is in the space
L∞(0, T ; L2(Ω)) ∩ L2(0, T ; H1(Ω)) and it satisfies:

i) θε(x, t) ≥ θ− > 0 almost everywhere in ΩT ;

ii) the sequence (θε) is uniformly bounded in L∞(0, T ; L2(Ω)) ∩L2(0, T ; H1(Ω)),
and ((ε|uε|)

1
2∇θε) is uniformly bounded in the space (L2(ΩT ))2;

iii) the sequence (θε) is sequentially compact in L2(ΩT ).

Proof. Assuming (1.6)-(1.12), the existence of a solution θε to the parabolic problem
(1.3), (1.14) with θ− ≤ θε(x, t) a.e. in ΩT is given by the construction in [2]. To
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prove ii), we multiply Eq. (1.3) by θε and integrate over Ω. Integrating by parts,
we obtain

1
2

d

dt

∫

Ω

|θε(·, t)|2 dx +
∫

Ω

φcp(θε)
d2(ρ(pε), θε)

(Km + ε|uε|)∇θε · ∇θε dx

−
∫

Ω

Hε

d2(ρ(pε), θε)
(uε · ∇θε) dx +

∫

Ω

C(ρ(pε), θε) θε uε · ∇θε dx

−
∫

Ω

θε − θ0

F
div

( cp(θε)
d2(ρ(pε), θε)

uε

)
θε dx

−
∫

Ω

Uε

Fd2(ρ(pε), θε)
(
φ∂tF + q +

N∑

j=1

qj −R′s(ĉε)
)
θε dx

= −
∫

Ω

qH

d2(ρ(pε), θε)
θε dx−

∫

Ω

q

d2(ρ(pε), θε)
(
U0 + Uε +

pε

ρ(pε)
)
θε dx. (2.1)

We begin by recalling that the functions pε and then ρ(pε) are bounded in
L∞(ΩT ), uniformly in ε. We also bear in mind the bounds for cp/d2, 1/d2 and C
given by Assumption (1.10). Due to the definition of Hε, we have

∣∣∣
∫

Ω

1
d2(ρ(pε), θε)

Hε(uε · ∇θε) dx
∣∣∣

=
∣∣∣
∫

Ω

1
d2(ρ(pε), θε)

(
U0 + cp(θε)(θε − θ0) +

pε

ρ(pε)
)
(uε · ∇θε) dx

∣∣∣.

Thanks to the Cauchy-Schwarz and Young inequalities, we write with Assumption
(1.10)

∣∣∣
∫

Ω

1
d2(ρ(pε), θε)

(U0 − cp(θε) θ0) (uε · ∇θε) dx
∣∣∣ ≤

(( cp

d2

)−1

− +
( 1
d2

)
+

)

×
( C

4δ

∫

Ω

|uε|2 dx + δ

∫

Ω

|∇θε|2 dx
)
≤ C

δ

∫

Ω

|uε|2 dx + δ

∫

Ω

|∇θε|2 dx,

∣∣∣
∫

Ω

cp(θε) θε

d2(ρ(pε), θε)
(uε · ∇θε) dx

∣∣∣ ≤ ‖ cp(θ)θ
d2(ρ, θ)

‖∞
(
δ

∫

Ω

|∇θε|2 dx

+
C

4δ

∫

Ω

|uε|2 dx
)
,

∣∣∣
∫

Ω

C(ρ(pε), θε) θε (uε · ∇θε) dx
∣∣∣ ≤ ‖C(ρ(p), θ) θ‖∞

(
δ

∫

Ω

|∇θε|2 dx

+
C

4δ

∫

Ω

|uε|2 dx
)

and
∣∣∣
∫

Ω

1
d2(ρ(pε), θε)

pε

ρ(pε)
(uε · ∇θε) dx

∣∣∣ ≤ δ

∫

Ω

|∇θε|2 dx +
C

4δ

∫

Ω

|uε|2 dx,

for any δ > 0. The function (pε/ρ(pε)) is indeed uniformly bounded in L∞(ΩT )
since m ≤ pε(x, t) ≤ M a.e. in ΩT . Now we transform the fourth term of Relation
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(2.1). It follows by integration by parts that
∫

Ω

θε − θ0

F
div

( cp(θε)
d2(ρ(pε), θε)

uε

)
θε dx

= −
∫

Ω

cp(θε) θε

d2(ρ(pε), θε)
(θε − θ0)uε · ∇(F−1) dx

−
∫

Ω

cp(θε) θε

d2(ρ(pε), θε)
2
F

uε · ∇θε dx +
∫

Ω

cp(θε)
d2(ρ(pε), θε)

θ0

F
uε · ∇θε dx.

We have replaced the duality product 〈·, ·〉(H1(Ω))′×H1(Ω) by three terms in the
form 〈·, ·〉L2(Ω)×L2(Ω). We recall that F−1 ∈ W 1,∞(ΩT ). Thus, similar tools as
previously allow to estimate the terms in the right hand-side of the latter description
of 〈div

( cp(θε)
d2(ρ(pε),θε)uε

)
, θε−θ0

F θε〉(H1(Ω))′×H1(Ω). And the other terms of (2.1) do not
bring additional difficulty. Bearing in mind that

∫

Ω

φcp(θε)
d2(ρ(pε), θε)

(Km + ε|uε|)∇θε · ∇θε dx

≥
∫

Ω

( cp

d2

)
−

φ−
( km

ρ(M)
+ ε|uε|

)
|∇θε|2 dx,

the previous estimates finally yield in (2.1) to

1
2

d

dt

∫

Ω

|θε(·, t)|2 dx +
∫

Ω

(( cp

d2

)
−

φ−
( km

ρ(M)
+ ε|uε|

)
− δ

)
|∇θε|2 dx

≤ C

δ

(
1 + ‖uε‖2(L2(Ω))2

)
+ C

∫

Ω

|θε|2 dx, (2.2)

for any δ > 0. We choose δ such that
((

cp

d2

)
−

φ−km/ρ(M)− δ
)

> 0. The Gronwall

lemma then yields the result ii).
It remains to prove iii). Let ψ ∈ L∞(0, T ; W 1,4(Ω)). We multiply Eq. (1.3) by

ψ and integrate over ΩT . Integrating by parts, we get
∣∣〈∂tθε, ψ〉L1(0,T ;(W 1,4(Ω))′),L∞(0,T ;W 1,4(Ω))

∣∣

≤
∣∣∣
∫

ΩT

φcp(θε)
d2(ρ(pε), θε)

( km

ρ(pε)
+ ε|uε|

)∇θε · ∇ψ
∣∣∣

+
∣∣∣
∫

ΩT

Hε

d2(ρ(pε), θε)
(uε · ∇ψ)

∣∣∣ +
∣∣∣
∫

ΩT

Uε

Fd2(ρ(pε), θε)
(uε · ∇ψ)

∣∣∣

+
∣∣∣
∫

ΩT

C(ρ(pε), θε) (uε · ∇θε) ψ
∣∣∣ +

∣∣∣
∫

ΩT

cp(θε)
Fd2(ρ(pε), θε)

(uε · ∇θε) ψ
∣∣∣

+
∣∣∣
∫

ΩT

Uε

F 2d2(ρ(pε), θε)
(uε · ∇F )ψ

∣∣∣ +
∣∣∣
∫

ΩT

1
d2(ρ(pε), θε)

(qH + qHε)ψ
∣∣∣

+
∣∣∣
∫

ΩT

Uε

Fd2(ρ(pε), θε)
(
φ∂tF + q +

N∑

j=1

qj −R′s(cε)
)
ψ

∣∣∣.
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Each term of the right hand-side of the latter relation can be estimated as follows.
∣∣〈∂tθε, ψ〉L1(0,T ;(W 1,4(Ω))′),L∞(0,T ;W 1,4(Ω))

∣∣
≤ C‖∇θε‖(L2(ΩT ))2‖∇ψ‖(L2(ΩT ))2 + C‖ε|uε|∇θε‖(L4/3(ΩT ))2‖∇ψ‖(L4(ΩT ))2

+
∥∥∥ Hε + Uε

d2(ρ(pε), θε)

∥∥∥
L∞(ΩT )

‖uε‖(L2(ΩT ))2‖∇ψ‖(L2(ΩT ))2

+C((cp/d2)−, (1/d2)+,m,M, ‖F‖W 1,∞(ΩT ), F−, ‖q‖L∞ , ‖qj‖L∞)‖ψ‖L1(ΩT )

+C‖uε‖(L2(ΩT ))2‖∇θε‖(L2(ΩT ))2‖ψ‖L∞(ΩT ) ≤ C‖ψ‖L∞(0,T ;W 1,4(Ω)).

So the sequence (∂tθε) is uniformly bounded in L1(0, T ; (W 1,4(Ω))′). We then con-
clude with arguments of Aubin’s type [13]. The proof is achieved. ¥

Next we consider the concentrations problem. We claim the following lemma.

Lemma 2.3 For any fixed ε > 0, the solution cε = (ĉε, c1,ε, .., cN−2,ε) of Problem
(1.4)-(1.5), (1.15)-(1.16) belongs to

(
L∞(ΩT ) ∩ L2(0, T ;H1(Ω))

)N−1 and satisfies

i) 0 ≤ ci,ε(x, t), ĉε(x, t) and
∑N−2

i=1 ci,ε(x, t) + ĉε(x, t) ≤ 1 a.e. in ΩT ;

ii) the sequences (ĉε) and (ci,ε) are uniformly bounded in L2(0, T ; H1(Ω)), while
((ε|uε|)

1
2∇ĉε) and ((ε|uε|)

1
2∇ci,ε) are bounded in (L2(ΩT ))2;

iii) the sequences (ĉε) and (ci,ε) are sequentially compact in L2(ΩT ).

Proof. The maximum principle in item i) is due to the construction of the solution
cε in [2]. The proof of item ii) follows the lines of the proof of ii) in Lemma 2. The
only difference lies in the terms containing ∂tpε. Let us consider for instance the
one appearing when we multiply the salt equation (1.4) by ĉε and then integrate
over Ω. It writes

∫
Ω

d3(ĉε)∂tpεĉεdx. We recall that by Lemma 1, we can only assert
that ∂tpε is uniformly bounded in L2(0, T ; (H1(Ω))′). So the zero order estimate
for ĉε given by the maximum principle i) is not sufficient for getting an estimate
of

∫
Ω

d3(ĉε)∂tpεĉεdx. We thus note that the former expression is defined by the
duality product 〈φ1F∂tpε,

d3(ĉε)ĉε

φ1F 〉(H1(Ω))′×H1(Ω). Using the Cauchy-Schwarz and
the Young inequalities, we then estimate it as follows.

∣∣∣〈φ1F ∂tpε,
d3(ĉε)ĉε

φ1F
〉(H1(Ω))′×H1(Ω)

∣∣∣ ≤ ‖φ1F ∂tpε‖(H1(Ω))′

∥∥∥d3(ĉε)ĉε

φ1F

∥∥∥
H1(Ω)

≤ C‖φ1F ∂tpε‖(H1(Ω))′ ‖∇F‖(L∞(ΩT ))2 +
C‖ĉε‖2L∞(ΩT )

4δ
‖φ1F ∂tpε‖2(H1(Ω))′

+δ

∫

Ω

|∇ĉε|2 dx,

for any δ > 0. The terms of the right hand-side of the latter relation can be
included in a relation for ĉε similar to (2.2). We recall that we have stated in
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Lemma 1 that φ1F∂tpε is uniformly bounded in L2(0, T ; (H1(Ω))′). The Gron-
wall lemma then gives ii). Similar adaptations of the proof of Lemma 2 iii) al-
low to claim that φ∂tĉε and φ∂tci,ε are uniformly bounded in L1(0, T ; (W 1,4(Ω))′).
The sequential compactness of (φĉε) and (φci,ε) in L2(0, T ; (H1(Ω))′) follows from
Aubin’s arguments type. Since the functions ĉε and ci,ε are uniformly bounded in
L2(0, T ; H1(Ω)), we can pass to the limit in the products 〈φĉε, ĉε〉 and 〈φci,ε, ci,ε〉 of
L2(0, T ; (H1(Ω))′) × L2(0, T ; H1(Ω)). Since φ(x) ≥ φ− > 0 a.e. in Ω, we conclude
that (ĉε) and (ci,ε) are sequentially compact in L2(ΩT ). ¥

3 Convergence results and proof of Theorem 2

The estimates of the previous section prove the existence of limit functions p ∈
L∞(ΩT ), u ∈ (

L2(ΩT )
)2, θ ∈ L∞(0, T ; L2(Ω))∩L2(0, T ;H1(Ω)), c = (ĉ, c1, .., cN−2)

∈ (
L∞(ΩT ) ∩ L2(0, T ;H1(Ω))

)N−1, satisfying for extracted subsequences

pε ⇀ p ∗ −weakly in L∞(ΩT ), uε ⇀ u weakly in (L2(ΩT ))2,
θε ⇀ θ weakly in L2(0, T ; H1(Ω)) and a.e. in ΩT ,

cε ⇀ c weakly in (L2(0, T ; H1(Ω)))N−1 and a.e. in ΩT .

Furthermore, the functions θ and c are physically relevant. Indeed, the maximum
principles of Lemmas 2 and 3 give at the limit

θ(x, t) ≥ θ− > 0 a.e. in ΩT ,

0 ≤ ĉ(x, t), ci(x, t) and
N−2∑

i=1

ci(x, t) + ĉ(x, t) ≤ 1 a.e. in ΩT .

Letting ε → 0 in (1.1), we get in a first step

φ1F ∂tp + φ∂tF + div(u) = −q −
N∑

j=1

qj + R′s(ĉ) in ΩT . (3.1)

We now study the limit behavior of the Darcy law (1.2). The main difficulty is
the degenerating of Eq. (1.1). The lack of estimate on ∇pε does not allow to pass
directly to the limit in (1.2).

Lemma 3.1 The limit Darcy law is

u = − k

µ(c, θ)
∇p in ΩT .
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Proof. Let us prove that the structure of the Darcy law is conserved by the asymp-
totic process. We have to compute the limit in (L2(ΩT ))2 of (1/µ(cε, θε))∇pε. We
consider in a first step the sequence (1/

√
µ(cε, θε))∇pε. It writes

1√
µ(cε, θε)

∇pε = div
( 1√

µ(cε, θε)
pε

)
− pε∇

( 1√
µ(cε, θε)

)
.

We now aim to pass to the limit in the terms of the right hand-side. Since
µ(cε, θε) → µ(c, θ) almost everywhere in ΩT , the convergence of the sequence
div(pε/

√
µ(cε, θε)) to div(p/

√
µ(c, θ)) is clear. Using Lemma 1, we note that

∂t(φ1Fpε) = φ1F∂tpε + φ1pε∂tF (respectively φ1Fpε) is uniformly bounded in
L2(0, T ; (H1(Ω))′) (respectively in L∞(ΩT )). Aubin’s arguments [13] then lead to
the sequential compactness of (φ1Fpε) in L2(0, T ; (H1(Ω))′). By Lemmas 1, 2 and
3, the function (1/

√
µ(cε, θε))pε is uniformly bounded in L2(0, T ; H1(Ω)). Thus,

we can compute

lim
ε→0

∫

ΩT

φ1F√
µ(cε, θε)

p2
εdxdt = lim

ε→0

∫ T

0

〈φ1Fpε,
pε√

µ(cε, θε)
〉(H1(Ω))′×H1(Ω)dt

=
∫

ΩT

φ1F√
µ(c, θ)

p2 dxdt.

Since φ1(x)F (x, t) ≥ cwφ−F− > 0 a.e. in ΩT , we conclude that

1
µ(cε, θε)1/4

pε → 1
µ(c, θ)1/4

p a.e. in ΩT and in Lp(ΩT ), ∀p ∈ (1, +∞). (3.2)

With the a.e. convergence in ΩT of the sequence (µ′(cε, θε)/µ(cε, θε)5/4) to its limit
µ′(c, θ)/µ(c, θ)5/4, it leads to

pε ∇
( 1√

µ(cε, θε)

)
= − µ′(cε, θε)

2µ(cε, θε)3/2
pε

(
∇ĉε +

N−2∑

i=1

∇ci,ε +∇θε

)

⇀ p ∇
( 1√

µ(c, θ)

)

in (L2(ΩT ))2, and then

1√
µ(cε, θε)

∇pε ⇀
1√

µ(c, θ)
∇p in (L2(ΩT ))2.

Besides, the Darcy law (1.2) gives at the limit

u = − k

µ(c, θ)
∇p in ΩT . (3.3)

¥
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To treat the nonlinearities in Eqs. (1.3)-(1.5), we need an additional compactness
result on (pε).

Lemma 3.2 i) The sequence (pε) converges to p almost everywhere in ΩT .

ii) Furthermore, as ε → 0, we have the following strong convergence.

1√
µ(cε, θε)

∇pε → 1√
µ(c, θ)

∇p strongly in (L2(ΩT ))2 and a.e. in ΩT .

Proof. Since µ(cε, θε) → µ(c, θ) a.e. in ΩT with µ(cε, θε)(x, t), µ(c, θ)(x, t) ≥ µ− > 0,
the first part of the lemma is proved by (3.2). We then multiply Eq. (1.1) by pε,
Eq. (3.1) by p and integrate over Ωt = Ω × (0, t), t ∈ (0, T ). We obtain almost
everywhere in (0, T )

1
2

∫

Ω

φ1F (·, t) |pε(·, t)|2dx− 1
2

∫

Ω

φ1F (·, 0) |pinit|2dx−
∫

Ωt

φ1 ∂tF |pε|2dxds

+
∫

Ωt

k

µ(cε, θε)
∇pε · ∇pεdxds =

∫

Ωt

(−φ∂tF − q −
N∑

j=1

qj + R′s(cε)
)
pεdxds,

1
2

∫

Ω

φ1F (·, t) |p(·, t)|2dx− 1
2

∫

Ω

φ1F (·, 0) |pinit|2dx−
∫

Ωt

φ1 ∂tF |p|2dxds

+
∫

Ωt

k

µ(c, θ)
∇p · ∇p dxds =

∫

Ωt

(−φ∂tF − q −
N∑

j=1

qj + R′s(ĉ)
)
p dxds.

We substract the two relations, and let ε → 0. Using the result i) of Lemma 5, we
get for almost any t ∈ (0, T )

lim
ε→0

∫

Ωt

k

µ(cε, θε)
∇pε · ∇pε dxds =

∫

Ωt

k

µ(c, θ)
∇p · ∇p dxds.

It allows to compute the following limit.

lim
ε→0

∫

Ωt

k
( 1

µ(cε, θε)1/2
∇pε − 1

µ(c, θ)1/2
∇p

)

·
( 1

µ(cε, θε)1/2
∇pε − 1

µ(c, θ)1/2
∇p

)
dxds = 0.

With Hypothese (1.11) for k, we conclude that

0 ≤ lim
ε→0

∫

Ωt

( 1
µ(cε, θε)1/2

∇pε − 1
µ(c, θ)1/2

∇p
)
·
( 1

µ(cε, θε)1/2
∇pε

− 1
µ(c, θ)1/2

∇p
)

dxds ≤ 1
k−

lim
ε→0

∫

Ωt

k
( 1

µ(cε, θε)1/2
∇pε − 1

µ(c, θ)1/2
∇p

)

·
( 1

µ(cε, θε)1/2
∇pε − 1

µ(c, θ)1/2
∇p

)
dxds = 0.
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The proof is achieved. ¥

We now have the tools to pass to the limit in (1.3)-(1.5) as ε → 0. We only give
some details for the salt equation (1.4). We write the nonlinear terms under the
following forms:

uε · ∇ĉε = −k
( 1

µ(cε, θε)1/2
∇pε

)
·
( 1

µ(cε, θε)1/2
∇ĉε

)
,

φ1F ĉε ∂tpε = −ĉε div(uε)− φ∂tF ĉε − q ĉε − ĉε

N∑

j=1

qj + R′s(ĉε) ĉε

= div(ĉε uε)− uε · ∇ĉε − φ ∂tF ĉε − q ĉε − ĉε

N∑

j=1

qj + R′s(ĉε) ĉε.

Our compactness results are sufficient to pass to the limit in these expressions. Eqs.
(1.3) and (1.5) can be treated in the same way. Theorem 2 is proved.
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